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Heisenbergs Dissertation zur

Turbulenz
(60 Jahre darnach)

Albert Gyr

Einleitung

Werner Carl Heisenberg reichte seine Inaugural-Disserta-
tion am 10. Juli 1923 an der philosophischen Fakultét Il der
Ludwig-Maximilian-Universitat Minchen ein. Sie war beti-
telt: «Uber Stabilitit und Turbulenz von Fliissigkeitsstro-
men». Dieser Titel ist Uberraschend, ist doch Heisenbergs
Name untrennbar mit der Quantenmechanik verbunden, im
speziellen mit der Unscharfe-Relation, deren philosophi-
scher Inhalt das physikalische Weltbild unserer Zeit ganz
wesentlich verandert hat.

Um diese Dissertation in sein Lebenswerk einordnen zu
konnen, haben wir uns einige Lebensdaten in Erinnerung
zu rufen. Werner Heisenberg wurde am 5. Dezember 1901
geboren, 1920 bestand er die Reifepriifung, und schon zwei
Jahre darnach reichte er seine Dissertation ein. Er bewal-
tigte sein Studium nicht nur in kiirzester Zeit in Minchen,
sondern verbrachte davon ein halbes Jahr in Gottingen, wo
er die Physikvorlesungen von Born und Franck besuchte,
Mathematik bei Hilbert und Courant horte und Stromungs-
mechanik bei Ludwig Prandtl. Bericksichtigt man die Inter-
essen seines Hauptlehrers, Arnold Sommerfeld fir Konti-
nuumsmechanik, so wird das Thema seiner Doktorarbeit
schon viel verstandlicher. Zudem war Wien sein Lehrer in
experimenteller Physik, dessen Buch (1900) das Wissen der
Zeit zur Stromungsmechanik zusammenfasst.

Dennoch, viele seiner Kollegen hielten das Gebiet der Hy-
dromechanik fur Uberholt; zu verlockend waren die Mog-
lichkeiten, Aussagen zu machen Uber die Grundstrukturen
der Welt und uber die Moglichkeiten des Menschen, diese
Strukturen zu erkennen. So schrieb Wolfgang Pauli seinem
Freund Heisenberg wohl ironisch, als dieser 1933 den No-
belpreis rickwirkend fur 1932 verliehen bekam: «Der Ver-
gleich mit friiheren Begrtiindungen (namentlich der an Ein-
stein) und die Durchsicht der Statuten der Nobelstiftung
lassen es mich als sicher annehmen, dass Du den Preis fur
Deine beriihmte und bis heute unwiderlegte hydrodynami-
sche Dissertation bekommen hast, denn diese hat ja den
unmittelbarsten Zusammenhang mit physikalischen Expe-
rimenten, auf die die Nobelstiftung einen so grossen Wert
Iegt.»

60 Jahre darnach sind die Fortschritte der Quantenmecha-
nik bereits Geschichte, das Problem der turbulenten Stro-
mung, nach Feinmann vielleicht das letzte grosse Problem
der klassischen Mechanik, wartet aber immer noch auf eine
geschlossene theoretische Beschreibung. Nicht zuletzt
deshalb, weil die Apparaturen, die es braucht, um die Tur-
bulenz experimentell gentigend detailliert anzugehen, aus-
serhalb der finanziellen Moglichkeiten der Stromungs-
mechaniker liegen, im Gegensatz zum Aufwand, den heute
ein Forscher auf dem Gebiet der Elementarteilchen betrei-
ben kann. Der von Pauliangesprochene experimentelle Zu-
gang ist demnach fur die Kernphysik, nicht aber fiur die
Stromungsmechanik im gewilinschten Ausmass gegeben.
Was aber waren die Vorstellungen, die Heisenberg entwarf{?
Man findet sie in den Annalen der Physik (Heisenberg,
1924), wo seine Dissertation veroffentlicht ist; seine Origi-
nalarbeit wurde aber nie gedruckt, so dass auf Anfrage hin
die Universitat Minchen eine Kopie auslieh, deren Formel-
sdtze alle von Heisenberg handgeschrieben sind. Gerade
diese Federstriche zeigen deutlich, mit welcher Sicherheit

damals eine Theorie rasch vorangetrieben wurde. Hier soll
dem Laufe dieser Arbeit gefolgt und sie soll aus der heuti-
gen Sicht kommentiert werden. Es soll gezeigt werden, wie
sehr diese Arbeit auch heute noch Giltigkeit hat und noch
immer Impulse zu vermitteln vermag.

Zur Stabilitdtsfrage

Der Stromungszustand einer Newtonschen Flissigkeit
kann kontinuumsmechanisch mit der gleichen Gleichung
beschrieben werden, ob er nun laminar oder turbulent ist.
Was unterscheidet dann aber diese Zustande? Heisenberg,
der sich immer wieder mit Fragen der turbulenten Stromung
beschéaftigt hat, dusserte andernorts, dass das Rétsel, das
uns die Natur aufgibt, viel weniger in dem chaotisch anmu-
tenden Stréomungsfeld einer turbulenten Stromung zu su-
chensei, alsin der Existenz der laminaren. Gehe man davon
aus, dass die FlUssigkeit eine enorm hohe Zahl an Freiheits-
graden der Bewegung besitze, so sei die turbulente Stro-
mung die nattirliche, die laminare aber die ratselhafte.
Ahnliche Gedanken schwingen bereits in seiner Disserta-
tion an, wenn er Hopfs Idee Uibernimmt, dass die kritische
Reynoldssche Grenzzahl nicht jenen Zustand angibt, bei
dem die Laminarbewegung anfangt, labil zu werden, son-
dern den, an dem zum erstenmal die turbulente Bewegung
als stationdrer Zustand moglich ist. Indirekt wird damit eine
ganz wesentliche Frage gestellt, namlich die, ob die turbu-
lente Stromung Uberhaupt als ein Stabilitdtsproblem ange-
gangen werden kann. Die Vermutung liegt nahe, dass man
dies darf, da ja die turbulente Strémung unter gegebenen
Anfangs- und Randbedingungen zwar nicht im Detail, aber
als mittlere Stromung einen reproduzierbaren stabilen Ver-
lauf besitzt. Heisenberg geht dieses Problem in seiner allge-
meinsten Form an; er untersucht die Stabilitat eines beliebi-
gen Profiles einer turbulenten Stromung. Seine Begriin-
dung: «Wir kennen das Grundprofil der turbulenten Stro-
mung noch gar nicht.»

Allerdings muss er der Kompliziertheit des mathematischen
Problems entsprechend die Randbedingung einschréanken,
da er in dieser allgemeinen Form nur zweidimensionale
Stromungen untersuchen kann. Dies erlaubt ihm, die Stro-
mung durch ein Vektorpotential

V=2 )+ o) exp(i[Bt—ax]) M

zu beschreiben, das aus @ (y) fur die Grundstromung be-
steht und @(y) exp (i[Bt — ax]) flr die Storung. Das Ge-
schwindigkeitsfeld ist damit durch v = 9y/dy, v = —0y/dx
gegeben und fir ¢ = o gilt

00 /dy=u(y)=u 2

Diese Grundstromung ist entweder vermoge der dusseren
Kréfte wirklich stationar oder aber zeitlich langsam veran-
derlich gegenuber den kleinen Schwingungen der Stérung.
In die Stokesschen Gleichungen eingesetzt und Glieder von
der Grossenordnung ¢? vernachldssigt, ergibt die Noether-
sche Gleichung dieses Stabilitdtsproblems, in dimensions-
loser Form

(@ — 2g) (U= D) = qu” = i/« Re(g" — 262" + o'q)  (3)

mit den dem Problem angepassten Anfangs- und Rand-
bedingungen. Berechnet man zu gegebenen « und Re,
¢ = B/q, so ist das System stabil, sofern der Imaginarteil /m
(¢) > o, labil fir /Im (¢) <o und ungedampft flir /Im (¢c) = o.
Heisenberg verwendete zur Losung von Gleichung (3) sei-
ner Zeit entsprechend Potenzreihen-Anséatze. Er wahlte fur
dieses Problem zwei Reihen, namlich eine in negativen Po-
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tenzenvon \/a Reund einein positiven Potenzen von «?, ein
Néaherungsverfahren, das Poincaré fir astronomische Pro-
bleme entwickelte. Ohne Heisenbergs Rechnung nachzu-
vollziehen, sollen einige Resultate herausgegriffen werden,
die auch heute noch von grosser Bedeutung sind, obschon
sie von ihm teilweise nur physikalisch begriindet wurden.
Lasst man in Gleichung (3) Re gross werden (untersucht
werden ja turbulente Stromungen), so degeneriert diese
Gleichung auf

(¢"—Pp)(uU—C)—gu” =0 (4)

Die Losbarkeit von Gleichung (4) ist von Rayleigh ausfihr-
lich untersucht worden. Je nachdem diese Gleichung eine
Lésung mit reellem c¢ besitzt oder nicht, spricht man von
einer «schwingungsfahigen» oder von einer «nicht schwin-
gungsfahigen» Grundstromung. Diese viel einfachere Un-
tersuchung ist deshalb so entscheidend, weil Heisenberg
die gut belegte Vermutung aussert, dass das Profil u dann,
und nur dann, unter Einfluss der Reibung labile oder unge-
dampfte Schwingungen zuladsst, wenn es zu den schwin-
gungsfahigen Grundstromungen gehort.

Die Gleichung (3) besitzt vier Losungen. Zwei sind Grenz-
schichtintegrale. Sie sind unabhangig von «? und enthalten
den Einfluss der Zahigkeit. Die zwei tUbrigen Lésungen sind
diejenigen des nichtviskosen Falles, durch (4) beschrieben;
in ihnen tritt «? auf.

Dieses Gleichungsverhalten entspricht physikalisch dem
Stromungsfeld, wie es durch die Prandtlsche Grenz-
schichttheorie beschrieben wird. Dabei kann aber gerade
die Heisenbergsche Reihenentwicklung eine Angabe zur
Dicke dieser Schicht machen, in der die Geschwindigkeit
zur Wand hin sehr rasch abnimmt. Sie wird in bezug auf eine
Stabilitatsbetrachtung von der Gréssenordnung («Re) —1/2,
was bedeutet, dass jede Storwelle bei einer gegebenen
Reynoldszahl eine andere Wandschicht als Grenzschicht
erlebt. Es stellt sich zumindest fir die Behandlung von Sta-
bilitatsproblemen die Frage, ob anstelle von Re nicht die
Grosse aRe verwendet werden soll.

Die turbulente Strémung wird aufgefasst als eine bestimmte
Grundstromung mit Uberlagerten ungedampften Schwin-
gungen. Das Turbulenzproblem besteht dann darin, zu er-
klaren, wie es die Stromung zuwege bringt, diesen Zustand
zu stabilisieren. Heisenberg zeigt nun, dass gerade diese
Frage durch Stabilitatsbetrachtungen allein nicht |6sbar ist;
entscheiden kann sie nur, ob ein solcher Zustand moglich
ist. Getestet hat er seine Methode an der ebenen Poiseuille-
Stromung, von der etliche Autoren behaupteten, sie ware
stets stabil — Heisenberg erkennt, dass auch diese Grund-
stromung unstabil ist, was zu erheblichen Auseinanderset-
zungen fuhrte.

Die Experimente sprachen gegen Heisenberg. Es entstand
ein eigentlicher Wettbewerb, den laminaren Zustand durch
Unterdricken der dausseren Storungen nach immer héhe-
ren Reynoldszahlen hin zu verschieben. Gerade diesen Wi-
derspruch konnte Heisenberg aufgrund seiner Theorie aber
sehr elegant erklaren, wobei er einen Hinweis von Prandt!
aufnahm, den er in dieser Frage konsultierte. Darnach wiir-
den die erwédhnten Versuche (zum Beispiel Ekmann, 1910)
nur eine Art Anlaufeffekt wiedergegeben. Je kleiner die
ausseren Storungen sind, desto langer dauert es, bis die
Bewegung merklich beeinflusst wird. Heisenbergs Theorie
zeigt nun, dass bei hohen Reynoldszahlen die Anfachung
von der Gréssenordnung (aRe) ~1/2 ist. Damit ist es mog-
lich, den Zeitpunkt, bei dem die Turbulenz ausgebildet ist,
immer weiter hinauszuschieben; im Experiment dergestalt,
dass die betreffende Flussigkeitsmenge, deren Stabilitat

man untersuchen will, die Testanlage bereits wieder verlas-
sen hat, bevor die Labilitat in Erscheinung tritt. Leider ver-
misst man diese Erklarung auch heute noch in den meisten
Lehrblichern, die noch immer die erwdhnten Experimente
als Beweis daflir wiedergeben, dass die Poiseuille-Stro-
mung eine sehr grosse, wenn nicht absolute Stabilitat be-
sitze.

Heisenbergs asymptotische Methode blieb gerade wegen
dieses experimentellen Resultats nicht unwidersprochen.
Seine Kritiker stltzten sich darauf, dass die Gleichung (3)
sehr komplex ist und deshalb von Heisenberg nicht alle
Schlusse streng durchgeflhrt werden konnten.

Trotzdem erwies sie sich letztlich als brauchbar, wie Lin
(1944) zeigte und Thomas (1953) durch direkte numerische
Integration bestatigte.

Die Widerspruchlichkeit stammt aber vor allem daher, dass
die Bedeutung der Viskositat flr die Stabilitat unverstanden
bleibt. Einerseits hat sie einen dampfenden Einfluss, ande-
rerseits ist sie selbst Ausloser von Instabilitaten. Dies be-
wirkt, dass erst nach Uberschreiten einer gewissen Rey-
noldszahl die Stromung instabil wird, dass aber der Bereich
jener Storungen, die dem System Energie zu entziehen ver-
mogen, oberhalb gewisser Re-Zahlen wieder abnimmt.
Diese Doppelrolle der Viskositat mathematisch richtig zu
erfassen ist denn auch eines der schwierigsten Probleme,
das sich als roter Faden durch alle Darstellungsversuche
der Turbulenz hindurchzieht. Es ist deshalb attraktiv, zu
versuchen, das Problem durch Analogieschliisse anzuge-
hen, die man durch Lésungen einfacherer Sachverhalte
gewinnt. Ansatze dieser Art beruhen etwa auf der Analogie
der Entwicklung eines passiven Skalarfeldes 60(x, t) oder
eines quellenfreien Vektorfeldes B (x, t) und der Bewe-
gungsgleichung der turbulenten Stromung, Moffatt (1981).
Insbesondere anhand des passiven Skalarfeldes lasst sich
der Einfluss der Viskositat anschaulich darstellen, was hier
skizziert werden soll.

Die Entwicklung eines passiven Skalarfeldes in einem Stro-
mungsfeld v kann durch die Diffusionsgleichung mit der
Diffusivitat k beschrieben werden:

%‘:+ U 0= kv (5)

k wird hier in Analogie zu einer effektiven Viskositat gesetzt.
Flr k —o erhélt man das Taylorsche Asymptoten-Gesetz,
das die Dispersion in einem turbulenten Feld in Lagrange-
scher Darstellung beschreibt.

<x?>~2D,t (6)

x = x (a, 1) ist der Lagrange-Positionsvektor, wobei a der
Vektor der Anfangsposition ist.

Gleichung (6) gibt die Aufenthaltswahrscheinlichkeit eines
Teilchens an, wenn dessen Mittelwert fiir eine verschwin-
dende mittlere Geschwindigkeit x = o ist. D, ist dann durch
eine einfache Korrelationsfunktion gegeben:

o0
ax (a, t)
ot

D,, = S vat)-vat+r)dr mitv= (7)

w | =

o
Dies bedeutet, dass ein inhomogenes 6-Feld standig und
immer intensiver durchmischt wird (Bild 1). Allerdings fiihrt
dies mit k = 0 zu einem immer starkeren Anwachsen der
mittleren Gradienten der skalaren Grosse; <(WV0)?>
wachst unbegrenzt.
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Bild 1. Schematische Darstellung einer nicht viskosen turbulenten Durch-
mischung.

Es braucht somit die Viskositat, um diese «Katastrophe» zu
vermeiden. Andert sich nun aber auch D,, drastisch? Wie
Saffman (1962) zeigte, trifft dies nicht zu. Die effektive Diffu-
sivitat nimmt den Wert

Do=D,,+«x—cCcR\xk (8)

an mit ¢ ~ 1; A\= U /v, = (15 ug/<u?>)1/2: der
Langsmassstab der Dissipation.

Mit anderen Worten, das sehr schéne Resultat von Taylor,
Gleichung (7), wonach die Diffusivitat in direktem Zusam-
menhang mit den Geschwindigkeits-Korrelationen steht,
behalt seine Giltigkeit auch im Fall einer zahen Fliussigkeit.
Die schwache Auswirkung der Zahigkeit auf die globalen
Auswirkungen darf aber nicht darlber hinwegtauschen,
dass das Problem ohne Viskositat nicht 16sbar ist. Dies zeigt
auch, wie subtil dieser Einfluss in jedem Problem utberpruft
werden sollte.

Diese Felddarstellungen erlangten ihre heutige Bedeutung
dadurch, dass Ansatze, wie sie aus der Quantenfeld-Theo-
rie bekannt sind, sich hier besonders gut anwenden lassen
— vor allem die Renormalisationsmethode. Damit erwies
sich jenes Gebiet als dusserst fruchtbar fir die Turbulenz-
theorie, an dem Heisenberg nach seiner Dissertation arbei-
tete.

In der Zwischenzeit hat aber auch die Stabilitatstheorie ihre
zusammenfassende Gestaltung gefunden, zum Beispiel Lin
(1967), allerdings, wie sich zeigte, ohne Heisenbergs Ideen
in Frage zu stellen. Dennoch geht heute der Trend weg von
einer reinen Stabilitatstheorie und hin zu einer mechanisti-
schen Darstellung. Diese Abkehr von der statistischen Sicht
ist die Folge experimenteller Resultate, die aufzeigen, dass
die turbulente Stromung charakteristische Bewegungszyk-
len aufweist. Diese manifestieren sich in einem intermitten-
ten Geschwindigkeitssignal oder im Auftreten von Wider-
stands-Erniedrigungseffekten, einem Phanomen, das rein
statistisch kaum erklart werden kann. Interessanterweise
sind aber die Theorien, die diese Darstellung miteinbezie-
hen wollen, bis zu einem gewissen Grade durch Heisenberg
antizipiert.

Landahls Wellenfokussierungs-Theorie braucht eine dhnli-
che Annahme wie sie zur Vereinfachung von Gleichung (4)
gebraucht wurde. Aber auch die statistischen Weiterent-
wicklungen gehen teilweise auf Heisenberg zurick. So
kann Malkus’ Theorie (1979), wonach die Stabilitatseigen-
schaften auch auf die Geometrie des Geschwindigkeitsfel-
des auszudehen sei, als eine direkte Weiterentwicklung von
Heisenbergs allgemeiner Profilannahme angesehen wer-
den.

Zur turbulenten Bewegung

Im zweiten Teil seiner Dissertation widmet Heisenberg sich
der Charakterisierung der eigentlichen turbulenten Bewe-
gung, zu deren Verstandnis er zusammen mit v. Weizsdcker

(1948) (Heisenberg, 1948) nochmals einen wesentlichen
Beitrag lieferte. In seiner Dissertation hielt er aber einige
Aspekte der Turbulenz fest, die leider nicht Allgemeingut
wurden. Was in seiner Stabilitatstheorie bereits vorgebracht
wurde, sei hier wiederholt: die kritische Reynoldszahl hat
mit Stabilitatsfragen der Laminarstromung nichts zu tun.
Sie ist eine charakteristische Konstante der turbulenten
Bewegung. Die turbulente Strémung ist eine zweite mog-
liche Bewegungsform der zéhen Flissigkeiten. Heisenberg
formulierte dies so: «Das Turbulenzproblem der Hydro-
mechanik ist ein Problem der energetischen und nicht der
dynamischen Stabilit4t. » Dies bedeutet, beide Bewegungs-
formen kdnnen nebeneinander existieren, die laminare von
Re = 0 — oo (sie wird allerdings oberhalb eines Re-Wertes
labil) und die turbulente fir Re>Regenze- IM Uberlap-
pungsbereich ist die turbulente Stromung immer energe-
tisch stabiler als die laminare (Noether), das heisst beim
Ubergang laminar/turbulent wird Energie freigesetzt. Unter
energetisch stabilen Stromungen versteht man solche, die
mit der Grundstromung im Gleichgewicht stehen; einem
Gleichgewicht, das dadurch beschrieben ist, dass die Stro-
mung weder fahig ist, dem Grundsystem mehr Energie zu
entziehen, noch diesem uUber Dampfungsvorgange wieder
Energie zuzufiihren. Heisenberg geht das Problem mittels
einer Fourierentwicklung der Stromfunktion an. Diese in die
Stokessche Gleichung eingesezt und nach den quadrati-
schen Termen abgebrochen, ergibt durch Koeffizienten-
vergleich die Gleichungen fiir die g-Funktion. So findet er
nach einiger Umrechnung ein Gleichungssystem, aus zwei
Gleichungen bestehend. Die erste ist die im ersten Teil un-
tersuchte Stabilitatsgleichung (3), die zweite ist der Impuls-
satz. Wie in der Stabilitdtsuntersuchung bereits gefunden,
kann gezeigt werden, dass nahe der Wand der Impulstrans-
port Uberwiegt. Dieser ist aber deshalb so interessant, weil
durch ihn ein Widerstandsgesetz formuliert werden kann,
das hier auf einer Turbulenztheorie beruht. Heisenberg fin-
det mit seiner Abschatzung das Blasiussche Widerstands-
gesetz

ca(Re)' /4 ©)

das Blasius experimentell ermittelte und von dem v. Karman
gezeigt hat, dass es einem wandnahen Geschwindigkeits-
profil von der Form
way'7 yaw’ (10)
entspricht, und zwar fur Stromungen, die unabhangig von
der Kanalbreite sind.

Die Grossenordnungsbetrachtung in der Heisenbergschen
Darstellung liefert aber noch mehr: mit ihr lasst sich unab-
héangig von der Wandbeschaffenheit eine obere Grenze fur
das Widerstandsgesetz angeben:

Tau? an
Er vermutet, dass das Gesetz
Tau’4 (12)

nur fir glatte Wande gilt, flr die das Gesetz (10) hergeleitet
wurde, fur rauhe Wande sich aber immer starker dem qua-
dratischen Gesetz nahert, und zwar weil fir rauhe Wande
die Stérungsamplitude von Re unabhéngig und von der
Grosse der Wandstorungen sein sollte.

Bis heute hat es in dieser Beziehung nichts Besseres gege-
ben; eine umfassende Theorie des Wandwiderstandes ist
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Bild 2. Unbeschwerte Urlaubstage am Bodensee: der 32jahrige Werner
Heisenberg (aus dem Buch «Werner Heisenberg, Atomphysiker und Phi-
losoph» erschienen 1976 im Verlag Frankische Gesellschaftsdruckerei
GmbH, Wiirzburg)

immer noch ausstehend. Es existieren nur Beschreibungen
fur einzelne Stromungsbereiche und vorgegebene Rand-
bedingungen. Der funktionale Zusammenhang zwischen
dem Reibungsfaktor und der Reynoldszahl sowie der Rau-
higkeit des Gerinnes wird deshalb auch heute noch nicht
analytisch bestimmt, sondern aus dem mit empirischen Da-
ten erstellten Diagramm herausgelesen, Moody (1944).
Wie sich zeigte, kann das Geschwindigkeitsprofil wandnah
in guter Naherung als Potentialgesetz angenommen wer-
den. Wie sieht es aber ausserhalb dieser Wandzone aus?
Auch dieses Problem findet sich in dieser Dissertation be-
handelt. Die mathematische Aufgabe ist &dusserst an-
spruchsvoll und lasst sich verhéltnismassig leicht nur im
Fall einer ebenen Couette-Stromung I6sen. In diesem Stro-
mungsfeld findet Heisenberg ein Grundprofil v fir die tur-
bulente Stromung, das Uber die ganze Kanalbreite im we-
sentlichen linear verlauft, allerdings viel flacher als im lami-
naren Zustand. An die Wand schmiegt es sich mit y'/7 an.
Fir die ebene Poiseuille-Stromung findet er ein Profil, das
ebenfalls ndherungsweise Uber die ganze Kanalbreite li-
near ist, in der Mitte jedoch einen scharfen Knick besitzt; an
den Wéanden schmiegt es sich aber wie zuvor wiederum mit
y1/7 an. Eine Knickstelle ist natirlich-physikalisch nicht er-
laubt und zeigt somit auch die Grenze dieser Methode. Er-
klart werden kann dies durch die turbulente Impulsubertra-
gung in der Kanalmitte, die aus Symmetriegriinden ver-
schwindet. Hieraus folgt, da der Gradient der gesamten Im-
pulsibertragung uber die Kanalbreite konstant ist, dass der
Gradient der laminaren Impulsibertragung v’ dort sehr
gross sein muss.

Den Neuigkeitswert der Arbeit, so sagte Heisenberg selbst,
bildete weniger die Aufstellung dieser zum grossen Teil da-
mals bekannten Gesetzmassigkeiten, als vielmehr der
Nachweis, dass die damals teilweise scheinbar sich wider-
sprechenden Ergebnisse durch einfache Grundannahmen
mathematisch beschrieben werden konnten.

Die Heisenbergsche Arbeit enthélt aber einen wesentlichen
Aspekt, der flr zukilnftige Arbeiten ganz wichtig sein
konnte, was auch der Grund war, auf diese nun sechzigjah-

rige Arbeit zuriickzukommen, namlich die Vorstellung, dass
das Geschwindigkeitsprofil in direktem Zusammenhang mit
einer Stabilitat der Energie dieser Stromung stehe und aus
ihr heraus analytisch beschreibbar sein sollte. Heisenbergs
Approximationen geben den wandnahen Stromungszu-
stand recht gut wieder, nicht aber das Stromungsinnere,
was damit zusammenhangt, dass die Funktionen nicht ana-
lytisch Uber die ganze Kanalbreite fortsetzbar sind.
Inzwischen hat aber die Millikansche Darstellung (1928) die
Profildarstellungen der Heisenbergschen Art verdrangt.
Was Millikan zeigte, war, dass das Mittengesetz

.
=Y Gy (13)

mit G einer universellen Funktion ihres Argumentes, und
das Wandgesetz

= Flu, yiv) (14)
mit F ebenfalls einer universellen Funktion ihres Argumen-
tes im Bereich der Uberlappung logarithmische Funktionen
erfordert. Ein Uberlappen der beiden asymptotischen Ver-
halten ist aber weder logisch noch dynamisch begriindbar.
Es war die Beobachtung, die die Uberlappung etablierte,
nicht die Deduktion.

Wir wissen, dass die turbulente Stromung charakteristische
Stromungsstrukturen enthalt. Es ist deshalb naheliegend,
sich die Frage zu stellen, ob sich die Heisenbergsche Me-
thode nicht erweitern liesse auf Storungen mit beschréankter
Zeitdauer, was einer Wellenpaket-Darstellung entsprache,
womit nochmals die enge Verwandtschaft zwischen der
Quantenmechanik und der Turbulenztheorie angedeutet
wird. Gerade diese Zusammenhédnge zwischen Quanten-
und Stromungsmechanik lassen es uns verstehen, weshalb
der Quantenmechaniker Heisenberg mit einer Arbeit zur
Turbulenztheorie promovierte.
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