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Heisenbergs Dissertation zur
Turbulenz
(60 Jahre darnach)

Albert Gyr

Einleitung
Werner Carl Heisenberg reichte seine Inaugural-Dissertation

am 10. Juli 1923 an der philosophischen Fakultät II der
Ludwig-Maximilian-Universität München ein. Sie war betitelt:

«Über Stabilität und Turbulenz von Fiüssigkeitsströ-
men». Dieser Titel ist überraschend, ist doch Heisenbergs
Name untrennbar mit der Quantenmechanik verbunden, im

speziellen mit der Unschärfe-Relation, deren philosophischer

Inhalt das physikalische Weltbild unserer Zeit ganz
wesentlich verändert hat.
Um diese Dissertation in sein Lebenswerk einordnen zu
können, haben wir uns einige Lebensdaten in Erinnerung
zu rufen. Werner Heisenberg wurde am 5. Dezember 1901

geboren, 1920 bestand er die Reifeprüfung, und schon zwei
Jahre darnach reichte er seine Dissertation ein. Er bewältigte

sein Studium nicht nur in kürzester Zeit in München,
sondern verbrachte davon ein halbes Jahr in Göttingen, wo
er die Physikvorlesungen von Born und Franck besuchte,
Mathematik bei Hilbert und Courant hörte und Strömungsmechanik

bei Ludwig Prandtl. Berücksichtigt man die
Interessen seines Hauptlehrers, Arnold Sommerfeld für Konti-
nuumsmechanik, so wird das Thema seiner Doktorarbeit
schon viel verständlicher. Zudem war Wien sein Lehrer in

experimenteller Physik, dessen Buch (1900) das Wissen der
Zeit zur Strömungsmechanik zusammenfasst.
Dennoch, viele seiner Kollegen hielten das Gebiet der
Hydromechanik für überholt; zu verlockend waren die
Möglichkeiten, Aussagen zu machen über die Grundstrukturen
der Welt und über die Möglichkeiten des Menschen, diese
Strukturen zu erkennen. So schrieb Wolfgang Pauli seinem
Freund Heisenberg wohl ironisch, als dieser 1933 den
Nobelpreis rückwirkend für 1932 verliehen bekam: «Der
Vergleich mit früheren Begründungen (namentlich der an
Einstein) und die Durchsicht der Statuten der Nobelstiftung
lassen es mich als sicher annehmen, dass Du den Preis für
Deine berühmte und bis heute unwiderlegte hydrodynamische

Dissertation bekommen hast, denn diese hat ja den
unmittelbarsten Zusammenhang mit physikalischen
Experimenten, auf die die Nobelstiftung einen so grossen Wert
legt.»
60 Jahre darnach sind die Fortschritte der Quantenmechanik

bereits Geschichte, das Problem der turbulenten
Strömung, nach Feinmann vielleicht das letzte grosse Problem
der klassischen Mechanik, wartet aber immer noch auf eine
geschlossene theoretische Beschreibung. Nicht zuletzt
deshalb, weil die Apparaturen, die es braucht, um die
Turbulenz experimentell genügend detailliert anzugehen,
ausserhalb der finanziellen Möglichkeiten der
Strömungsmechaniker liegen, im Gegensatz zum Aufwand, den heute
ein Forscher auf dem Gebiet der Elementarteilchen betreiben

kann. Der von Pau/Zangesprochene experimentelle
Zugang ist demnach für die Kernphysik, nicht aber für die
Strömungsmechanik im gewünschten Ausmass gegeben.
Was aber waren die Vorstellungen, die Heisenberg entwarf?
Man findet sie in den Annalen der Physik (Heisenberg,
1924), wo seine Dissertation veröffentlicht ist; seine
Originalarbeit wurde aber nie gedruckt, so dass auf Anfrage hin
die Universität München eine Kopie auslieh, deren Formelsätze

alle von Heisenberg handgeschrieben sind. Gerade
diese Federstriche zeigen deutlich, mit welcher Sicherheit

damals eine Theorie rasch vorangetrieben wurde. Hier soll
dem Laufe dieser Arbeit gefolgt und sie soll aus der heutigen

Sicht kommentiert werden. Es soll gezeigt werden, wie
sehr diese Arbeit auch heute noch Gültigkeit hat und noch
immer Impulse zu vermitteln vermag.

Zur Stabilitätsfrage
Der Strömungszustand einer Newtonschen Flüssigkeit
kann kontinuumsmechanisch mit der gleichen Gleichung
beschrieben werden, ob er nun laminar oder turbulent ist.

Was unterscheidet dann aber diese Zustände? Heisenberg,
der sich immer wieder mit Fragen der turbulenten Strömung
beschäftigt hat, äusserte andernorts, dass das Rätsel, das
uns die Natur aufgibt, viel weniger in dem chaotisch
anmutenden Strömungsfeld einer turbulenten Strömung zu
suchen sei, als in der Existenz der laminaren. Gehe man davon
aus, dass die Flüssigkeit eine enorm hohe Zahl an Freiheitsgraden

der Bewegung besitze, so sei die turbulente
Strömung die natürliche, die laminare aber die rätselhafte.
Ähnliche Gedanken schwingen bereits in seiner Dissertation

an, wenn er Hopfs Idee übernimmt, dass die kritische
Reynoldssche Grenzzahl nicht jenen Zustand angibt, bei
dem die Laminarbewegung anfängt, labil zu werden,
sondern den, an dem zum erstenmal die turbulente Bewegung
als stationärer Zustand möglich ist. Indirekt wird damit eine

ganz wesentliche Frage gestellt, nämlich die, ob die turbulente

Strömung überhaupt als ein Stabilitätsproblem
angegangen werden kann. Die Vermutung liegt nahe, dass man
dies darf, da ja die turbulente Strömung unter gegebenen
Anfangs- und Randbedingungen zwar nicht im Detail, aber
als mittlere Strömung einen reproduzierbaren stabilen Verlauf

besitzt. Heisenberg geht dieses Problem in seiner
allgemeinsten Form an; er untersucht die Stabilität eines beliebigen

Profiles einer turbulenten Strömung. Seine Begründung:

«Wir kennen das Grundprofil der turbulenten
Strömung noch gar nicht.»
Allerdings muss er der Kompliziertheit des mathematischen
Problems entsprechend die Randbedingung einschränken,
da er in dieser allgemeinen Form nur zweidimensionale
Strömungen untersuchen kann. Dies erlaubt ihm, die
Strömung durch ein Vektorpotential

+ 0 (y) + <p(y)exp(/[ßf-ax]) (1)

zu beschreiben, das aus 0 (y) für die Grundströmung
besteht und cp(y) exp (/'[ßf - ax]) für die Störung. Das
Geschwindigkeitsfeld ist damit durch u 3\[V3y, v -3\|V3x
gegeben und für qp o gilt

3 0/3y=u(y)=u (2)

Diese Grundströmung ist entweder vermöge der äusseren
Kräfte wirklich stationär oder aber zeitlich langsam
veränderlich gegenüber den kleinen Schwingungen der Störung.
In die Stokesschen Gleichungen eingesetzt und Glieder von
der Grössenordnung tp2 vernachlässigt, ergibt die Noether-
sche Gleichung dieses Stabilitätsproblems, in dimensionsloser

Form

(qp" — a2qp) (u - -&-) - <pu" if01 RetsPIV ~~ 2oi2qp" + a4cp) (3)

mit den dem Problem angepassten Anfangs- und
Randbedingungen. Berechnet man zu gegebenen a und Re,

c ß/a, so ist das System stabil, sofern der Imaginärteil Im
(c) > o, labil für Im (c) < o und ungedämpft für Im (c) o.

Heisenberg verwendete zur Lösung von Gleichung (3) seiner

Zeit entsprechend Potenzreihen-Ansätze. Er wählte für
dieses Problem zwei Reihen, nämlich eine in negativen Po-
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tenzen von \/oi/?eund eine in positiven Potenzen von a2, ein
Näherungsverfahren, das Poincaréfür astronomische
Probleme entwickelte. Ohne Heisenbergs Rechnung nachzu-
vollziehen, sollen einige Resultate herausgegriffen werden,
die auch heute noch von grosser Bedeutung sind, obschon
sie von ihm teilweise nur physikalisch begründet wurden.
Lässt man in Gleichung (3) Re gross werden (untersucht
werden ja turbulente Strömungen), so degeneriert diese
Gleichung auf

(cp"-oi2<p)(u-c)-<pu" o (4)

Die Lösbarkeit von Gleichung (4) ist von Rayleigh ausführlich

untersucht worden. Je nachdem diese Gleichung eine
Lösung mit reellem c besitzt oder nicht, spricht man von
einer «schwingungsfähigen» oder von einer «nicht
schwingungsfähigen» Grundströmung. Diese viel einfachere
Untersuchung ist deshalb so entscheidend, weil Heisenberg
die gut belegte Vermutung äussert, dass das Profil udann,
und nur dann, unter Einfluss der Reibung labile oder
ungedämpfte Schwingungen zulässt, wenn es zu den
schwingungsfähigen Grundströmungen gehört.
Die Gleichung (3) besitzt vier Lösungen. Zwei sind
Grenzschichtintegrale. Sie sind unabhängig von a2 und enthalten
den Einfluss der Zähigkeit. Die zwei übrigen Lösungen sind
diejenigen des nicht viskosen Falles, durch (4) beschrieben;
in ihnen tritt a2 auf.
Dieses Gleichungsverhalten entspricht physikalisch dem
Strömungsfeld, wie es durch die Prandtlsche
Grenzschichttheorie beschrieben wird. Dabei kann aber gerade
die Heisenbergsche Reihenentwicklung eine Angabe zur
Dicke dieser Schicht machen, in der die Geschwindigkeit
zur Wand hin sehr rasch abnimmt. Sie wird in bezug auf eine
Stabilitätsbetrachtung von der Grössenordnung (uRe) ~1/2,

was bedeutet, dass jede Störwelle bei einer gegebenen
Reynoldszahl eine andere Wandschicht als Grenzschicht
erlebt. Es stellt sich zumindest für die Behandlung von
Stabilitätsproblemen die Frage, ob anstelle von Re nicht die
Grösse aRe verwendet werden soll.
Die turbulente Strömung wird aufgefasst als eine bestimmte
Grundströmung mit überlagerten ungedämpften
Schwingungen. Das Turbulenzproblem besteht dann darin, zu
erklären, wie es die Strömung zuwege bringt, diesen Zustand
zu stabilisieren. Heisenberg zeigt nun, dass gerade diese
Frage durch Stabilitätsbetrachtungen allein nicht lösbar ist;
entscheiden kann sie nur, ob ein solcher Zustand möglich
ist. Getestet hat er seine Methode an der ebenen Poiseuille-
Strömung, von der etliche Autoren behaupteten, sie wäre
stets stabil - Heisenberg erkennt, dass auch diese
Grundströmung unstabil ist, was zu erheblichen Auseinandersetzungen

führte.
Die Experimente sprachen gegen Heisenberg. Es entstand
ein eigentlicher Wettbewerb, den laminaren Zustand durch
Unterdrücken der äusseren Störungen nach immer höheren

Reynoldszahlen hin zu verschieben. Gerade diesen
Widerspruch konnte Heisenberg aufgrund seiner Theorie aber
sehr elegant erklären, wobei er einen Hinweis von Prandtl
aufnahm, den er in dieser Frage konsultierte. Darnach würden

die erwähnten Versuche (zum Beispiel Ekmann, 1910)
nur eine Art Anlaufeffekt wiedergegeben. Je kleiner die
äusseren Störungen sind, desto länger dauert es, bis die
Bewegung merklich beeinflusst wird. Heisenbergs Theorie
zeigt nun, dass bei hohen Reynoldszahlen die Anfachung
von der Grössenordnung (aRe) ~1/2 ist. Damit ist es möglich,

den Zeitpunkt, bei dem die Turbulenz ausgebildet ist,
immer weiter hinauszuschieben; im Experiment dergestalt,
dass die betreffende Flüssigkeitsmenge, deren Stabilität

man untersuchen will, die Testanlage bereits wieder verlassen

hat, bevor die Labilität in Erscheinung tritt. Leider ver-
misst man diese Erklärung auch heute noch in den meisten
Lehrbüchern, die noch immer die erwähnten Experimente
als Beweis dafür wiedergeben, dass die Poiseuille-Strömung

eine sehr grosse, wenn nicht absolute Stabilität
besitze.

Heisenbergs asymptotische Methode blieb gerade wegen
dieses experimentellen Resultats nicht unwidersprochen.
Seine Kritiker stützten sich darauf, dass die Gleichung (3)
sehr komplex ist und deshalb von Heisenberg nicht alle
Schlüsse streng durchgeführt werden konnten.
Trotzdem erwies sie sich letztlich als brauchbar, wie Lin
(1944) zeigte und Thomas(1953) durch direkte numerische
Integration bestätigte.
Die Widersprüchlichkeit stammt aber vor allem daher, dass
die Bedeutung der Viskosität für die Stabilität unverstanden
bleibt. Einerseits hat sie einen dämpfenden Einfluss,
andererseits ist sie selbst Auslöser von Instabilitäten. Dies
bewirkt, dass erst nach Überschreiten einer gewissen
Reynoldszahl die Strömung instabil wird, dass aber der Bereich
jener Störungen, die dem System Energie zu entziehen
vermögen, oberhalb gewisser Re-Zahlen wieder abnimmt.
Diese Doppelrolle der Viskosität mathematisch richtig zu
erfassen ist denn auch eines der schwierigsten Probleme,
das sich als roter Faden durch alle Darstellungsversuche
der Turbulenz hindurchzieht. Es ist deshalb attraktiv, zu
versuchen, das Problem durch Analogieschlüsse anzugehen,

die man durch Lösungen einfacherer Sachverhalte
gewinnt. Ansätze dieser Art beruhen etwa auf der Analogie
der Entwicklung eines passiven Skalarfeldes fl(x, t) oder
eines quellenfreien Vektorfeldes B (x, t) und der
Bewegungsgleichung der turbulenten Strömung, Moffatt(1981).
Insbesondere anhand des passiven Skalarfeldes lässt sich
der Einfluss der Viskosität anschaulich darstellen, was hier
skizziert werden soll.
Die Entwicklung eines passiven Skalarfeldes in einem
Strömungsfeld u kann durch die Diffusionsgleichung mit der
Diffusivität k beschrieben werden:
SÛ

—-+U-V0 kV20 (5)
ot

k wird hier in Analogie zu einer effektiven Viskosität gesetzt.
Für k —>o erhält man das Taylorsche Asymptoten-Gesetz,
das die Dispersion in einem turbulenten Feld in Lagrange-
scher Darstellung beschreibt.

<*2>~2Dmt (6)

x x (a, t) ist der Lagrange-Positionsvektor, wobei a der
Vektor der Anfangsposition ist.

Gleichung (6) gibt die Aufenthaltswahrscheinlichkeit eines
Teilchens an, wenn dessen Mittelwert für eine verschwindende

mittlere Geschwindigkeit x o ist. Dm ist dann durch
eine einfache Korrelationsfunktion gegeben:

00

Dm — \ v (a, t) • v (a, t + t) di-, mit v ^ (7)
3 3 " 9t

o
Dies bedeutet, dass ein inhomogenes 0-Feld ständig und
immer intensiver durchmischt wird (Bild 1). Allerdings führt
dies mit k o zu einem immer stärkeren Anwachsen der
mittleren Gradienten der skalaren Grösse; <(V0)2>
wächst unbegrenzt.
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Bild 1. Schematische Darstellung einer nicht viskosen turbulenten
Durchmischung.

Es braucht somit die Viskosität, um diese «Katastrophe» zu
vermeiden. Ändert sich nun aber auch Dm drastisch? Wie
Saffman (1962) zeigte, trifft dies nicht zu. Die effektive Diffu-
sivität nimmt den Wert

Dm + K c K (8)

an mit c « 1; Rx= uQ\ /v;A (15 uj/<t/2>)1/2: der
Längsmassstab der Dissipation.

Mit anderen Worten, das sehr schöne Resultat von Taylor,
Gleichung (7), wonach die Diffusivität in direktem
Zusammenhang mit den Geschwindigkeits-Korrelationen steht,
behält seine Gültigkeit auch im Fall einer zähen Flüssigkeit.
Die schwache Auswirkung der Zähigkeit auf die globalen
Auswirkungen darf aber nicht darüber hinwegtäuschen,
dass das Problem ohne Viskosität nicht lösbar ist. Dies zeigt
auch, wie subtil dieser Einfluss in jedem Problem überprüft
werden sollte.
Diese Felddarstellungen erlangten ihre heutige Bedeutung
dadurch, dass Ansätze, wie sie aus der Quantenfeld-Theorie

bekannt sind, sich hier besonders gut anwenden lassen

- vor allem die Renormalisationsmethode. Damit erwies
sich jenes Gebiet als äusserst fruchtbar für die Turbulenztheorie,

an dem Heisenberg nach seiner Dissertation arbeitete.

In der Zwischenzeit hat aber auch die Stabilitätstheorie ihre
zusammenfassende Gestaltung gefunden, zum Beispiel Lin
(1967), allerdings, wiesich zeigte, ohne Heisenbergs Ideen
in Frage zu stellen. Dennoch geht heute der Trend weg von
einer reinen Stabilitätstheorie und hin zu einer mechanistischen

Darstellung. Diese Abkehr von der statistischen Sicht
ist die Folge experimenteller Resultate, die aufzeigen, dass
die turbulente Strömung charakteristische Bewegungszyklen

aufweist. Diese manifestieren sich in einem intermitten-
ten Geschwindigkeitssignal oder im Auftreten von Wider-
stands-Erniedrigungseffekten, einem Phänomen, das rein
statistisch kaum erklärt werden kann. Interessanterweise
sind aber die Theorien, die diese Darstellung miteinbeziehen

wollen, bis zu einem gewissen Grade durch Heisenberg
antizipiert.
Landahls Wellenfokussierungs-Theorie braucht eine ähnliche

Annahme wie sie zur Vereinfachung von Gleichung (4)
gebraucht wurde. Aber auch die statistischen
Weiterentwicklungen gehen teilweise auf Heisenberg zurück. So
kann Malkus' Theorie (1979), wonach die Stabilitätseigenschaften

auch auf die Geometrie des Geschwindigkeitsfeldes
auszudehen sei, als eine direkte Weiterentwicklung von

Heisenbergs allgemeiner Profilannahme angesehen werden.

Zur turbulenten Bewegung
Im zweiten Teil seiner Dissertation widmet Heisenberg sich
der Charakterisierung der eigentlichen turbulenten Bewegung,

zu deren Verständnis er zusammen mit v. Weizsäcker

(1948) (Heisenberg, 1948) nochmals einen wesentlichen
Beitrag lieferte. In seiner Dissertation hielt er aber einige
Aspekte der Turbulenz fest, die leider nicht Allgemeingut
wurden. Was in seiner Stabilitätstheorie bereits vorgebracht
wurde, sei hier wiederholt: die kritische Reynoldszahl hat
mit Stabilitätsfragen der Laminarströmung nichts zu tun.
Sie ist eine charakteristische Konstante der turbulenten
Bewegung. Die turbulente Strömung ist eine zweite mögliche

Bewegungsform der zähen Flüssigkeiten. Heisenberg
formulierte dies so: «Das Turbulenzproblem der
Hydromechanik ist ein Problem der energetischen und nicht der
dynamischen Stabilität.» Dies bedeutet, beide Bewegungsformen

können nebeneinander existieren, die laminare von
Re o — oo (sie wird allerdings oberhalb eines Re-Wertes
labil) und die turbulente für Re>ReGrenze. Im

Überlappungsbereich ist die turbulente Strömung immer energetisch

stabiler als die laminare (Noether), das heisst beim
Übergang laminar/turbulent wird Energie freigesetzt. Unter
energetisch stabilen Strömungen versteht man solche, die
mit der Grundströmung im Gleichgewicht stehen; einem
Gleichgewicht, das dadurch beschrieben ist, dass die
Strömung weder fähig ist, dem Grundsystem mehr Energie zu
entziehen, noch diesem über Dämpfungsvorgänge wieder
Energie zuzuführen. Heisenberg geht das Problem mittels
einer Fourierentwicklung der Stromfunktion an. Diese in die
Stokessche Gleichung eingesezt und nach den quadratischen

Termen abgebrochen, ergibt durch Koeffizientenvergleich

die Gleichungen für die cp-Funktion. So findet er
nach einiger Umrechnung ein Gleichungssystem, aus zwei
Gleichungen bestehend. Die erste ist die im ersten Teil
untersuchte Stabilitätsgleichung (3), die zweite ist der Impulssatz.

Wie in der Stabilitätsuntersuchung bereits gefunden,
kann gezeigt werden, dass nahe der Wand der Impulstransport

überwiegt. Dieser ist aber deshalb so interessant, weil
durch ihn ein Widerstandsgesetz formuliert werden kann,
das hier auf einer Turbulenztheorie beruht. Heisenberg findet

mit seiner Abschätzung das Blasiussche Widerstandsgesetz

c,a(Re)1/4 (9)

das Blasius experimentell ermittelte und von dem v. Karman
gezeigt hat, dass es einem wandnahen Geschwindigkeitsprofil

von der Form

way1/7;ya w7 (10)

entspricht, und zwar für Strömungen, die unabhängig von
der Kanalbreite sind.
Die Grössenordnungsbetrachtung in der Heisenbergschen
Darstellung liefert aber noch mehr: mit ihr lässt sich
unabhängig von der Wandbeschaffenheit eine obere Grenze für
das Widerstandsgesetz angeben:

t au

Er vermutet, dass das Gesetz

Tai/774

(11)

(12)

nur für glatte Wände gilt, für die das Gesetz (10) hergeleitet
wurde, für rauhe Wände sich aber immer stärker dem
quadratischen Gesetz nähert, und zwar weil für rauhe Wände
die Störungsamplitude von Re unabhängig und von der
Grösse der Wandstörungen sein sollte.
Bis heute hat es in dieser Beziehung nichts Besseres gegeben;

eine umfassende Theorie des Wandwiderstandes ist
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Bild 2. Unbeschwerte Urlaubstage am Bodensee: der 32jährige Werner
Heisenberg (aus dem Buch «Werner Heisenberg, Atomphysiker und
Philosoph» erschienen 1976 im Verlag Fränkische Gesellschaftsdruckerei
GmbH, Würzburg)

immer noch ausstehend. Es existieren nur Beschreibungen
für einzelne Strömungsbereiche und vorgegebene
Randbedingungen. Der funktionale Zusammenhang zwischen
dem Reibungsfaktor und der Reynoldszahl sowie der
Rauhigkeit des Gerinnes wird deshalb auch heute noch nicht
analytisch bestimmt, sondern aus dem mit empirischen Daten

erstellten Diagramm herausgelesen, Moody (1944).
Wie sich zeigte, kann das Geschwindigkeitsprofil wandnah
in guter Näherung als Potentialgesetz angenommen werden.

Wie sieht es aber ausserhalb dieser Wandzone aus?
Auch dieses Problem findet sich in dieser Dissertation
behandelt. Die mathematische Aufgabe ist äusserst
anspruchsvoll und lässt sich verhältnismässig leicht nur im
Fall einer ebenen Cor/ette-Strömung lösen. In diesem
Strömungsfeld findet Heisenberg ein Grundprofil u für die
turbulente Strömung, das über die ganze Kanalbreite im
wesentlichen linear verläuft, allerdings viel flacher als im
laminaren Zustand. An die Wand schmiegt es sich mity1/7an.
Für die ebene Poiseuille-Strömung findet er ein Profil, das
ebenfalls näherungsweise über die ganze Kanalbreite
linear ist, in der Mitte jedoch einen scharfen Knick besitzt; an
den Wänden schmiegt es sich aber wie zuvor wiederum mit
y1/7 an. Eine Knickstelle ist natürlich-physikalisch nicht
erlaubt und zeigt somit auch die Grenze dieser Methode.
Erklärt werden kann dies durch die turbulente Impulsübertragung

in der Kanalmitte, die aus Symmetriegründen
verschwindet. Hieraus folgt, da der Gradient der gesamten
Impulsübertragung über die Kanalbreite konstant ist, dass der
Gradient der laminaren Impulsübertragung u" dort sehr
gross sein muss.
Den Neuigkeitswert der Arbeit, so sagte Heisenberg selbst,
bildete weniger die Aufstellung dieser zum grossen Teil
damals bekannten Gesetzmässigkeiten, als vielmehr der
Nachweis, dass die damals teilweise scheinbar sich
widersprechenden Ergebnisse durch einfache Grundannahmen
mathematisch beschrieben werden konnten.
Die Heisenbergsche Arbeit enthält aber einen wesentlichen
Aspekt, der für zukünftige Arbeiten ganz wichtig sein
könnte, was auch der Grund war, auf diese nun sechzigjäh¬

rige Arbeit zurückzukommen, nämlich die Vorstellung, dass
das Geschwindigkeitsprofil in direktem Zusammenhang mit
einer Stabilität der Energie dieser Strömung stehe und aus
ihr heraus analytisch beschreibbar sein sollte. Heisenbergs
Approximationen geben den wandnahen Strömungszustand

recht gut wieder, nicht aber das Strömungsinnere,
was damit zusammenhängt, dass die Funktionen nicht
analytisch über die ganze Kanalbreite fortsetzbar sind.
Inzwischen hat aber die M/ll/kanscheDarsteUung (1928) die
Profildarstellungen der Heisenbergschen Art verdrängt.
Was MiUikan zeigte, war, dass das Mittengesetz

Um — U—— G(y/y0) (13)
%

mit G einer universellen Funktion ihres Argumentes, und
das Wandgesetz

=F(usty/v) (14)

mit Febenfalls einer universellen Funktion ihres Argumentes
im Bereich der Überlappung logarithmische Funktionen

erfordert. Ein Überlappen der beiden asymptotischen
Verhalten ist aber weder logisch noch dynamisch begründbar.
Es war die Beobachtung, die die Überlappung etablierte,
nicht die Deduktion.
Wir wissen, dass die turbulente Strömung charakteristische
Strömungsstrukturen enthält. Es ist deshalb naheliegend,
sich die Frage zu stellen, ob sich die Heisenbergsche
Methode nicht erweitern liesse auf Störungen mit beschränkter
Zeitdauer, was einer Wellenpaket-Darstellung entspräche,
womit nochmals die enge Verwandtschaft zwischen der
Quantenmechanik und der Turbulenztheorie angedeutet
wird. Gerade diese Zusammenhänge zwischen Quanten-
und Strömungsmechanik lassen es uns verstehen, weshalb
der Quantenmechaniker Heisenberg mit einer Arbeit zur
Turbulenztheorie promovierte.

Literatur

W. Heisenberg (1924) Über Stabilität und Turbulenz von Flüssigkeitsströmen.

V. W. Ekmann (1910) On the change from steady to turbulent motion of
liquids. Ark. Mat. Astronom. Fys. 6(12).
W. Heisenberg(1948) Zur statistischen Theorie derTurbulenz. Zs. f. Physik

124.

(1948) On the theory of statistical and isotropic turbulence. Proc. Roy.
Soc. A 195.

M. T. Landahl (1972) Wave mechanics of breakdown J. Fluid Mech. 56,
775—802.

C.C. 1/77(1944) On the stability of two-dimensional parallel flows. Proc.
Nat. Acad. Sei. Wash. 30, 316-323.
C. C. L/r?(1967) The theory of hydrodynamic stability. Cambr. Univ. Press.

W. Ma//cus(1979)Turbulent velocity profiles from stability criteria. J. Fluid
Mech. 90, 401—414.

H.K. Moffatt (1981) Some developments in the theory of turbulence. J.
Fluid Mech. 106, 27-47.

L.F. Moody (1944) Friction factors of pipe flow. Trans ASME 66, 8.

P. G. Saffman (1962) Some aspects of the effects of the molecular diffusi-
vity in turbulent diffusion. Mécanique de la turbulence CNRS 108, Paris.

L.H. Thomas (1953) The stability of plane Poiseuille flow. Phys. Rev. 91,
780-783.
C.F. v. Weizsäcker (1948) Das Spektrum derTurbulenz bei grossen Rey-
noldschen Zahlen. Zs. f. Physik, 124.

W. Wien (1900) Lehrbuch der Hydrodynamik. Verlag S. Hirzel, Leipzig.

Adresse des Verfassers: Dr. Albert Gyr, Institut für Hydromechanik und
Wasserwirtschaft, Eidg. Technische Hochschule Zürich, CH-8093
Zürich.

240 «wasser, energie, luft-eau, énergie, air» 76. Jahrgang, 1984, Heft 10, CH-5401 Baden


	Heisenbergs Dissertation zur Turbulenz

