Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 70 (1978)

Heft: 1-2

Artikel: Energetische Vergleiche zwischen Vor- und Nachpasteurisierung von

Klärschlamm

Autor: Wuhrmann, Karl A.

DOI: https://doi.org/10.5169/seals-941051

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Karl A. Wuhrmann

Summary: Economic Comparisons of Sewage Sludge Pasteurization before and after Digestion

Besides the qualitative advantages of pasteurization before as opposed to after digestion, a reduction of fuel consumption is also attributed to this method. All economic heat recovery techniques are based on the heat exchanger which needs special attention when used on high temperature sewage sludge.

This report compares common patterns of high temperature heat transfer for both methods of pasteurization as well as conventional system using heat exchangers for digestion only plus steam injection for pasteurization.

Résumé: Comparaisons économiques de pasteurisation des boues d'épuration avant et après leur digestion

A part des avantages qualitatives de pasteurisation avant la digestion on attribue également une réduction de la consommation d'énergie à cette méthode. Toutes les techniques de récupération de chaleur se basent sur l'échangeur, qui exige une attention particulière lors de son application à des boues de températures élevées.

Cet article établit une comparaison économique entre deux exemples de pasteurisation avec transfert de chaleur uniquement par échangeurs et ainsi qu'un système conventionnel avec injection de vapeur pour la pasteurisation.

Die Ausdrücke «Vor- und Nachpasteurisierung» werden heute zur Unterscheidung der Methoden gebraucht, Klärschlamm vor oder nach der Faulung zu pasteurisieren.

Neben qualitativen Vorteilen, die hier nicht zur Diskussion stehen, wird für die Vorpasteurisierung mitunter eine Senkung der Betriebskosten gegenüber der Nachpasteurisierung geltend gemacht. Nachfolgend sind einige Ueberlegungen zum Energiebedarf bei den beiden Methoden sowie über die erforderlichen Wärmeaustauschflächen angestellt, die bei der Vorpasteurisierung wirtschaftlich unerlässlich sind.

Oberhalb etwa 50 °C Schlammtemperatur ist mit einer stärkeren Verschmutzung der Wärmetauschflächen zu rechnen. Aus diesem Grunde müssen die wirtschaftlich tragbaren Wärmesprünge realistisch angesetzt werden, da sonst die Reinigungsarbeiten zu aufwendig und die Wärmeeinsparung ungenügend ausfallen. Bei der Nachpasteurisierung wird aus diesen Gründen auch öfters mit direkter Dampfeindüsung gearbeitet, um Wärmetausch bei höheren Temperaturen zu vermeiden. Zum Vergleich ist auch eine solche Variante nachstehend beigefügt.

Ein wirklichkeitsnaher Vergleich der verschiedenen Systeme (Eingangswerte gemäss Tabelle 1) wird durch die Tatsache erschwert, dass die Frischschlammkonzentration (nachstehend als Trockenrückstand TR bezeichnet) von Faktoren abhängt, die schwer beeinflussbar und vom kalorischen System unabhängig sind. Zur Darstellung dieses Einflusses ist nachstehend jedes Beispiel (Bilder 1 bis 3) für einen dünnen und einen dicken Frischschlamm gerechnet (3 bzw. 6 % TR). Ausserdem wird die kalorische Bilanz von der jahreszeitlich variablen Frischschlammtemperatur beherrscht. Als Beispiele sind in die Rechnung einbezogen 5 und 15 °C, zwischen denen die häufigsten Werte liegen. Näherungsweise ist der Wärmeinhalt des Schlammes je-

nem des Wassers gleichgesetzt. Bezüglich des Absetzverhaltens nach der Faulung wird auf die Verhältnisse bei gutem Verlauf der Faulung abgestellt, ebenso in bezug auf die Energieausbeute aus letzterer. Entgegen der heute üblichen Quantifizierung der Energie in Joule werden nachstehend — da als Energieträger nur mit Wasser zu rechnen ist — Kilokalorien angegeben (Tabellen 2 und 3).

Bild 1. Vorpasteurisierung mit direkter Wärmekoppelung über Hochtemperatur-Wärmetauscher.

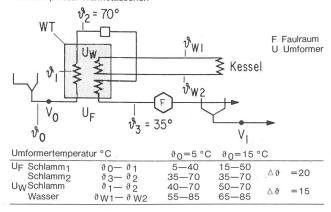
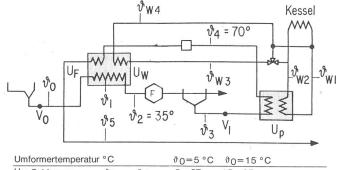
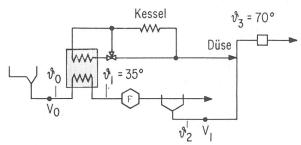




Bild 2. Nachpasteurisierung mit direkter Wärmekoppelung über Hochtemperatur-Wärmetauscher.

Umformertempera	tur °C	ϑ0=5°C	ϑ ₀ =15 °	,C	
UF Schlamm ₁ Schlamm ₂		5—27 23—70	15—35 33—70	Δϑ	=18
U _W Schlamm Wasser	$\vartheta_1 - \vartheta_2$ $\vartheta_{W3} - \vartheta_{W4}$	27—35 42—50	_	$\triangle\vartheta$	=15
Up Schlamm Wasser	$\vartheta_2 - \vartheta_4$ $\vartheta_{W1} - \vartheta_{W2}$	25—70 40—85		$\triangle \vartheta$	=15

Bild 3. Nachpasteurisierung mit Dampfeindüsung ohne Hochtemperatur-Wärmetauscher.

Umformertempera	tur °C	ϑ 0=5 °C	ϑ ₀ =15	°C	
UF Schlamm E Eindüsung	ϑ0- ϑ1 ϑ2- ϑ3	5—35 25—70	15—35 25—70	Δϑ	=15

Vergleichs-Voraussetzungen für die Beispiele					Tabelle 1
Einwohnerlast TR		110			g/Ed
Frischschlamm-TR	3	6	;		0/0
Frischschlamm-Volumen	3,8	1	,9		I/Ed
Faulschlamm-TR	4	7	,5		0/0
Faulschlamm-Volumen	1,8	1	,0		I/Ed
Faulraumtemperatur		35			°C
Pasteurisiertemperatur		70			°C
Wärmesprung bei Vollast					
Schlamm-Wasser		≥15			°C
Schlamm-Schlamm		≥18			°C
Anaerober Abbau		30			g/Ed
entsprechende Faulgasmenge		27			In/Ed
entsprechende Faulgasenergie		142			kcal/Ed
Wärmeübergangszahl nach 1000 Bh		600			kcal/m² °h

Lineare Mittelwerte zwischen Sc	Tabelle 3				
	Energ bei 3 % TR-Gehalt			piebedarf bei 6 % TR-Gehalt	
Vorpasteurisierung mit Hochtem Wärmetauscher Nachpasteurisierung mit Hochte	137	70 kcal/Ed			
Wärmetauscher Nachpasteurisierung ohne Hoch	131	69 kcal/Ed			
Wärmetauscher	238	76 kcal/Ed			
Spezifische Wärmetauschflächen, F _{spez} , in m ² /E Tabelle					
	UF	UW	UP	F _{spez}	
Vorpasteurisierung Nachpasteurisierung mit Hoch-	0,012	0,013	3 —	0,025	
temperatur-Wärmetauscher Nachpasteurisierung ohne Hoch	0,011	0,003	0,009	0,023	
temperatur-Wärmetauscher	0,013	_	_	0,013	

Beim Vergleich mit der vorgenannten Energieausbeute aus dem Faulgas von 142 kcal/Ed (Tabelle 1) ist zu beachten, dass ein hoher Ausnützungsgrad nur bei mehrtägiger Gasspeicherkapazität und störungsfreier Faulung erzielbar ist. Zu berücksichtigen ist auch die Gebäudeheizung, die bei kleineren Anlagen energiemässig ins Gewicht fällt. Bei den Varianten mit Nachpasteurisierung kommt dazu, dass bei Störungen des Faulbetriebes eine Verschlechterung der Absetzrate in der Faulschlammeindickung eintritt, was zu

grösseren Faulschlammvolumina und entsprechend steigendem Energiebedarf führt.

Damit wird ersichtlich, dass die Pasteurisierung unabhängig von der Methode der Vor- und Nachpasteurisierung im Frühling und vor allem — wenn überhaupt vorgesehen — im Winter bei vielen Anlagen zu einem Heizölverbrauch führt, bei solchen ohne Hochtemperatur-Wärmetauscher sogar durchwegs.

Die dargestellten Betriebsdaten sind an die Bedingung geknüpft, dass die Abwärme im Zeitpunkt der Schlammaufwärmung zur Verfügung steht. Im Gegensatz zu Anlagen ohne Hochtemperatur-Wärmetauscher müssen demnach die Abzugperioden des Frischschlammes mit der Chargierung der Pasteurisierbehälter zusammenfallen. Diese Perioden der Schlammförderung können aus Gründen der mindest zulässigen Strömungsgeschwindigkeit in den Rohren nicht beliebig ausgedehnt werden. Sie betragen etwa 0,5 bis 2 h im Tag je nach Grösse der Anlage. Daraus bemisst sich die spezifische Wärmetauschfläche, $F_{\rm spez}$, z. B. bei 1 h/d und nach 600 kcal/m² $^{\rm o}$ h zu

 $F_{\rm spez} = \triangle i_{\rm max}/600 \cdot \triangle \delta \, {\rm m}^3/{\rm E}$

wobei in unseren Beispielen \triangle δ 15 oder 20 °C beträgt. \triangle $i_{\rm max}$ bezeichnet den grössten spezifischen Wärmebedarf. Man erhält so die entsprechenden spezifischen Wärmetauschflächen (Tabelle 4).

Bei gleichwertigen Schaltungen mit Hochtemperatur-Umformern unterscheiden sich Vor- und Nachpasteurisierung unwesentlich im Heizölverbrauch und in der Wärmetauschfläche. Unter Winter- und Frühjahrsbedingungen steigt der Heizölverbrauch bei Dampfeindüsung auf ein Mehrfaches, wo hingegen Investition und Unterhalt der kalorischen Anlage hier bedeutend zurückstehen. Bei ausschliesslichem Sommerbetrieb ist die Dampfeindüsung den anderen Systemen wirtschaftlich überlegen, sofern es gelingt, die Frischschlammkonzentration auf mindestens 4 % zu halten.

Adresse des Verfassers: Karl A. Wuhrmann, dipl. Ing. ETH, EAWAG, Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Ueberlandstrasse 133, 8600 Dübendorf.

Leistungsdaten	Tabelle 2		
Frischschlammtemperatur	ग्रै o=5 °C	90=15 °C	

risciscinamintemperatur		₩ 0 – 3 ° C			v0=15°C			
	TF	TR=3 %		TR=3 %		TR=6 %	- ~	
	V∆ϑ	kcal/Ed	kcal/Ed	V∆ϑ	kcal/Ed	kcal/Ed		
Vorpasteurisierung								
mit direkter Wärmekoppelung								
Umformer U _F V _O	3,8.35	134	67	3,8.35	134	67		
V ₁	3,8.35	134	67	3,8.35	134	67		
Umformer U _W	3,8.30	115	57	3,8.20	76	38		
Kessel K		115	57		76	38		
Verluste Anlage 0,1 iF		13	7		13	7		
Verluste Kessel 0,3 iK		34	18		23	12		
Energiebedarf brutto		162	82		112	57		
Nachpasteurisierung								
mit 2 Wärmetauschern								
Umformer UF V ₀	3,8.30	115	57	3,8.20	76	38		
Umformer V ₁	1,8.47	85	47	1,8.37	85	47		
Umformer U _W V _O	3,8.8	30	10		0	0		
Umformer Up	1,8.45	81	45	1,8.45	81	45		
Kessel K		111	55		81	45		
Verluste Anlage 0,1 iF		12	6		0	0		
Verluste Kessel 0,3 iK		33	17		24	14		
Energiebedarf netto		156	78		105	59		
mit Dampfeindüsung		11			.00			
Umformer U _F V _O	3,8.30	115	57	3,8.20	76	38		
Eindüsung E V ₁	1,8.45	81	45		81	45		
Kessel K		196	102		157	83		
Verluste Anlage 0,1 iE		8	6		8	4		
Verluste Kessel 0,3 iK		59	31		47	25		
Energiebedarf brutto		263	139		212	112		