Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 69 (1977)

Heft: 10

Artikel: Erneuerung alter Wasserkraftwerke

Autor: Nüssli, Walter / Jacobsen, Sidney / Bohun, Vladimir

DOI: https://doi.org/10.5169/seals-941501

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Walter Nüssli, Sidney Jacobsen, Vladimir Bohun

Résumé: Rénovation de l'aménagements hydro-électriques

Par le renouvellement des centrales hydrauliques agées en Suisse, on pourrait gagner une production annuelle d'énergie supplémentaire d'environ 2000 GWh.

Dans de nombreux cas, ce qui incite au renouvellement d'une centrale n'est pas en premier lieu l'appât de l'augmentation de la puissance et de la production, mais avant tout le souci de maintenir la sécurité de service des conduites forcées, des installations du barrage et des installations électromécaniques de la centrale, ainsi que de solutionner les difficultés de service et autres problèmes.

L'article traite en détail des arguments possibles pour un renouvellement de centrale et illustre au moyen de quelques exemples réalisés avec succès les différents degrés de renouvellement possibles: remplacement d'une installation existante par une nouvelle; transformation ou agrandissement d'une installation existante tout en continuant d'utiliser des éléments importants de la dite installation, remplacement partiel ou en grande partie des éléments d'une installation; automatisation des groupes, des installations du barrage et des systèmes auxiliaires; mise hors service et liquidation de la centrale.

L'article se termine par une considération des aspects économiques spécifiques des renouvellements de centra-

Einleitung

Die jüngste Entwicklung auf dem Energiesektor verleiht den Anstrengungen um Erneuerung und Verbesserung älterer Wasserkraftwerke neue Impulse.

Wenn auch Leistung und Produktion der einzelnen in der Pionierzeit der Elektrizitätswirtschaft erstellten Anlagen zum Teil recht klein ist, so zeigt doch eine Erhebung, dass allein in der Schweiz durch Erneuerung älterer Wasserkraftwerke bis zum Jahre 2000 eine zusätzliche jährliche Energieproduktion von immerhin 1500 bis 2000 GWh gewonnen werden kann [8] (Bild 1).

Es ist nun aber keineswegs so, dass sich für eine Kraftwerkanlage ein bestimmtes Betriebsalter definieren lässt, nach dem es automatisch erneuerungsbedürftig wird. Vielmehr muss jede Erneuerung sorgfältig und objektiv untersucht werden, um die für den Besitzer technisch, betrieblich und wirtschaftlich optimale Lösung zu finden.

Dabei kann es dem heutigen Ingenieur zuweilen recht schwerfallen, die Konzeption eines vor 60 Jahren erbauten Kraftwerkes zu verbessern und mit modernen Maschinensätzen die Leistung der oft museumswürdigen Turbinen und Generatoren massgeblich zu übertreffen, womit an dieser Stelle den Leistungen unserer Vorväter und Erbauer dieser Pionierwerke uneingeschränkt Hochachtung gezollt sei.

Die gesuchten Leistungs- und Produktionsreserven liegen meist eher in den nur teilweise genutzten Wassermengen und Fallhöhen, d. h. im niedrigen, der damaligen Zeit angepassten Ausbaugrad der Anlagen und in den geringen Speichermöglichkeiten, die für die älteren Anlagen kennzeichnend sind.

Die mannigfaltigen Aspekte und Probleme im Zusammenhang mit Erneuerungsstudien sollen nachstehend kurz beleuchtet und anhand einer Auswahl von ausgeführten Arbeiten Lösungsmöglichkeiten und Ergebnisse dargestellt werden.

Argumente für eine Erneuerung

Massgebend für eine Kraftwerkerneuerung wird immer sein, ob sie wirtschaftlich gestaltet werden kann. Die Wirtschaftlichkeit hängt dabei meistens in entscheidender Weise davon ab, ob und wieweit Fallhöhen und/oder Ausbauwassermengen und damit Leistung und Produktion erhöht oder durch Schaffung von Speichervolumen die gelieferte Energie aufgewertet werden kann.

Paradoxerweise ist es aber in vielen Fällen nicht der Anreiz einer erhöhten Leistung und Produktion, welcher An-

lass zur Erneuerung gibt, sondern es ist weit eher die Sorge um die Erhaltung der Betriebssicherheit und -kontinuität, oder es sind betriebliche Erschwernisse, die Sanierungspläne wachrufen. Dabei stehen materialtechnische Gründe bei Druckleitungen, Abschlussorganen, Wehranlagen und Maschinengruppen im Vordergrund. Betrieblich erforderliche Sanierungen beziehen sich eher auf Wehranlagen, Maschinengruppen und elektrische Einrichtungen.

1.1 Wann wird eine Druckleitung erneuerungsbedürftig?

Während die ersten geschlossenen Druckleitungen durchwegs genietet wurden, kamen nach der Jahrhundertwende wassergas- oder feuergeschweisste Rohre zum Einsatz, die auf Montage verflanscht oder zusammengenietet wurden

Das autogene Schweissen kam um 1910 auf und wurde später durch die noch heute übliche Lichtbogenschweissung verdrängt.

Seit Mitte der zwanziger Jahre ist praktisch keine Druckleitung mehr genietet worden, und seit Anfang der dreissiger Jahre wurden fast ausnahmslos lichtbogengeschweisste Rohre verwendet.

Für die Sicherheit einer Druckleitung ist nicht die Materialfestigkeit, sondern seine Sprödbruchneigung ausschlaggebend. Die alten Rohrleitungen sind oft stark sprödbruchanfällig, hauptsächlich unter schlagartiger oder dynami-

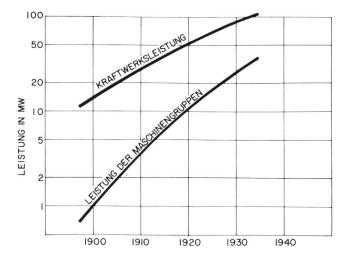


Bild 1. Entwicklung der hydraulischen Kraftwerks- und Maschineneinheitsleistungen im Zeitraum von 1900 bis 1930 (Schweiz).

scher Belastung (Druckstoss). Die Anfälligkeit nimmt mit den Jahren zu (Alterung). Besonders gefährdet sind ältere geschweisste Druckleitungen, nicht nur weil die damaligen Schweissungen oft zahlreiche Trennungen, Hohlräume und Einschlüsse aufweisen, sondern weil die nicht weit entwickelte Schweisstechnik die Sprödbruchneigung des Schweissgutes und des Nachbarmaterials stark vergrösserte. Da die Niettechnik (Bohren der Löcher) die Materialeigenschaften kaum ungünstig beeinflusst hat, sind die genieteten Rohrleitungen wesentlich betriebssicherer als die alten, geschweissten Leitungen.

Seit einigen Jahren beachtet man das Sicherheitsproblem der alten Druckleitungen vermehrt. Das Eidgenössische Amt für Strassen- und Flussbau hat einen Experten ernannt, der in Zusammenarbeit mit der EMPA den Zustand der alten Anlagen feststellen und Folgemassnahmen vorschlagen soll. Sämtliche geschweisste Druckleitungen, die in den Jahren 1925 bis 1930 erstellt wurden, können ein Sicherheitsrisiko darstellen.

Obwohl früher mit einfachen Rostschutzmethoden gearbeitet wurde (einfache Bitumenanstriche), sind kaum Fälle bekannt, bei denen die Anrostung so stark war, dass die Sicherheit der Anlage aus diesem Grund nennenswert eingebüsst hatte.

1.2 Wehranlagen

Die Schützenkonstruktionen, die man als bewegliche Tragkonstruktionen für grosse Lasten definieren kann, haben heute hinsichtlich Funktion, Fertigungstechnik und Perfektion einen hohen Stand erreicht. Aber auch die über 50 Jahre alten Verschlüsse mussten schon Betriebsbedingungen erfüllen, die eine recht genaue Fabrikation erforderten. Dies muss im Zusammenhang mit den meist sehr voluminösen und kräftig gebauten Schützenkörpern gesehen werden, um zu verstehen, warum die Schützenbauer so lange davor zurückschreckten, ihre Konstruktionen zu schweissen. Gerade die Konstrukteure der grossen Stahlwasserbaufirmen hielten hier wohlweislich zurück, weil sie um die Folgen wussten, die sich einstellen könnten: Verzug, Verwerfungen, die bei der Grösse der Objekte nicht mehr gutzumachen sind.

Die alten Wehrschützen, ob es sich nun um einfache Tafelschützen, zweiteilige Hub- oder Hubhakenschützen, einoder zweiteilige Segmentschützen oder Sektorschützen handelt, sind Nietkonstruktionen. Sie stellen, wenn sie richtig unterhalten wurden, im allgemeinen keine Sicherheitsprobleme dar.

Eine Wehranlage wird in den meisten Fällen erneuert, weil weiter aufgestaut werden soll, weil neue Schützen mit moderner Steuerung und Abflussregulierung einen Gewinn an Produktivität bringen oder weil die bisherige Schützenbedienung nicht mehr zumutbar erscheint oder Betriebspersonal eingespart werden kann.

1.3 Maschinelle und elektrische Kraftwerkeinrichtungen

Turbinen, Abschlussorgane und Einlaufschützen sind normalerweise die ältesten Einrichtungen, die in Kraftwerkanlagen anzutreffen sind. In verschiedenen Anlagen versehen noch Turbinen den Betrieb, die um die Jahrhundertwende gebaut wurden. Bei den langsam drehenden Einheiten in Niederdruckanlagen besteht dabei selbst bei geringerer Materialqualität auch heute keine Gefahr eines Maschinenbruches. Dies vor allem dank der im allgemeinen geringen spezifischen Materialbelastung von Laufrad, Welle und Lagerung sowie dank der konservativen und kavitationssicheren Aufstellung.

Kritisch kann die Lage bei alten Peltonrädern werden, die, durch Erosionserscheinungen geschwächt, derart gefährdet sind, dass ganze Schaufelstücke ausbrechen oder Schaufeln fortfliegen könnten. Bei den Turbinen sind es jedoch meistens die Reguliereinrichtungen, die Abschluss- und Sicherheitsorgane und Getriebe, die selbst bei sorgfältigstem Unterhalt ihre Funktionen nicht mehr mit der erforderlichen Zuverlässigkeit erfüllen und deren Reparatur weder zweckmässig noch lohnend ist.

Die Lebensdauer von Generatoren ist ebenfalls erstaunlich, und auch davon sind noch viele wahre Museumsstükke aus der Zeit nach der Jahrhundertwende in Betrieb. Allerdings mussten diese meistens nach einer Betriebszeit von 30 bis 40 Jahren neu gewickelt werden, da die Isolationstechnik noch nicht sehr fortgeschritten war.

Die elektrischen Einrichtungen einer Kraftwerkanlage nehmen in bezug auf ihre Erneuerungswürdigkeit einen speziellen Platz ein. Mit Ausnahme der Transformatoren mussten die Schaltanlagen, Schutz- und Reguliereinrichtungen laufend den betrieblichen Bedürfnissen (oft auch Spannungsänderungen) angepasst werden, was im Laufe der Zeit in kleinen Schritten durch das werkseigene Fachpersonal im Rahmen der Unterhaltsbudgets geschah. Mangelnde Uebersichtlichkeit und Sicherheit verlangt aber oft auch eine umfassende Erneuerung.

Generell lässt sich die Betriebssicherheit einer Maschinengruppe sowie der elektrischen Anlageteile durch nachträglichen Einbau von modernen Betriebsüberwachungsapparaten verbessern. Doch sind hier Grenzen gesetzt, wenn die eigentlichen Sicherheitsorgane versagen oder wenn diese sogar fehlen (z. B. Strahlablenker bei alten Peltonturbinen).

1.4 Wirkungsgrad

Die Verbesserung des Maschinen- und Anlagewirkungsgrades ist ein zusätzliches, einleuchtendes Argument für den Erneuerungsentschluss. Allerdings kann mit dem Wirkungsgradgewinn allein und ohne gleichzeitigen Leistungsausbau eine Erneuerung in den seltensten Fällen gerechtfertigt werden.

Schon in früher Zeit wurden in Niederdruck- wie in Hochdruckanlagen bereits beachtliche Turbinenwirkungsgrade erreicht (Augst-Wyhlen 1912: 83 $^{\circ}$ /_o, Eglisau 1920: 86 $^{\circ}$ /_o, Ackersand 1909: 86 $^{\circ}$ /_o, Bramois 1915: 86 $^{\circ}$ /_o).

Die Wirkungsgraderhöhung von Druckleitung, Turbine und Generator können zusammen oft Verbesserungen von 10 bis 20 % Gesamtwirkungsgrad bringen.

Noch bedeutender wird der Wirkungsgradgewinn in jenen Niederdruckanlagen, in denen alte Francis- oder Propeller-

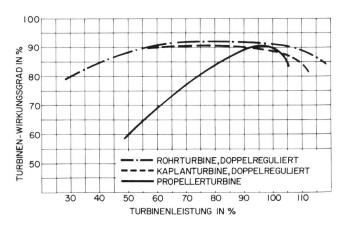


Bild 2. Vergleich des Wirkungsgrades für Propeller-, Kaplan- und Rohrturbine.

turbinen durch Kaplan- oder Rohrturbinen ersetzt werden. Niederdruck-Francis- und Propellerräder besitzen im Teillastgebiet stark abfallende Wirkungsgrade, während sich Kaplan- und Rohrturbinen nicht nur durch hohe Werte, sondern durch einen ausgesprochen flachen Verlauf der Kurve über dem gesamten Betriebsgebiet auszeichnen. Die ungünstige Form der Wirkungsgradkurven bei den alten Einheiten wird allerdings oft durch die vorhandene grosse Anzahl von Gruppen teilweise korrigiert (Bild 2).

Neben der rein wirtschaftlichen Betrachtungsweise des Maschinenwirkungsgrades darf aber in diesem Zusammenhang nicht übersehen werden, dass ein niedriger Wirkungsgrad gleichbedeutend ist mit Energieverlusten, die sich in gewissen Fällen in mechanischen Schwingungen und Materialbeanspruchungen ausdrücken können, die gerade bei überalterten Maschinen zu ernsthaften Schäden führen können, abgesehen von der Lärmentwicklung, die oft auch darin begründet liegt.

1.5 Betriebliche Argumente

Auslöser einer Anlagenerneuerung können auch Rationalisierungsbestrebungen zur Senkung von Betriebs- und Personalkosten werden. Diese sind gerade bei älteren Kleinanlagen unverhältnismässig gross, wenn Betriebsüberwachung und Unterhalt noch im Dreischichtbetrieb erforderlich sind. Umgekehrt kann auch Personalmangel Anstoss zu Rationalisierungs- oder Erneuerungsmassnahmen geben; in mehreren Fällen waren es bevorstehende Pensionierungen im Betriebspersonal, welche den Terminplan von Teil- oder Gesamterneuerungen festlegten.

Für Betriebsrationalisierungen reichen die Massnahmen je nach Ziel von einer Reduktion des Betriebspersonals (z. B. Verzicht auf Nachtschicht) bis zum unbemannten, fernüberwachten und -gesteuerten Betrieb.

Auch wasserrechtliche Fragen, der bevorstehende Ablauf der Konzessionsdauer oder die Unwirtschaftlichkeit eines Betriebs können die Abklärung von Sanierungsvarianten erfordern [1]. Was auch immer im Vordergrund stehen mag, nie sollte ein Argument isoliert betrachtet und behandelt werden. Vielmehr muss versucht werden, alle technischen und wirtschaftlichen Aspekte zu erfassen und verschiedene Lösungen zu prüfen, damit Fehlinvestitionen vermieden werden oder damit nicht durch voreilige Teilsanierungen eine grosszügige und energiewirtschaftlich interessante Erneuerung verbaut wird.

Die bei Umbauten und Erneuerungen zu gewinnenden, oft recht bescheidenen Leistungswerte dürfen nicht darüber hinwegtäuschen, dass die gestellten Aufgaben technisch anspruchsvoll sind und grosse Erfahrung und Phantasie verlangen. Erforderlich ist auch Mut zu unüblichen Lösungen und zu Einsparungen (am richtigen Ort). Druckstossowie hydraulische und elektrische Stabilitätsverhältnisse können sich durch Erhöhung der Auslegungsdaten radikal ändern; entsprechende Massnahmen sind vorgängig zu prüfen und nach Möglichkeit zu optimieren. Umgekehrt könnten bei den heutigen Netzverhältnissen bei vielen kleinen Anlagen auf teure Regulierungseinrichtungen verzichtet werden.

Die produzierte Energie kann oft durch Schaffung von Speichern oder Tagesausgleichsbecken aufgewertet werden. In gewissen Fällen muss ferner auch das Zusammenlegen zweier oder mehrer Kraftwerke und die Bildung von Partnerschaften geprüft werden.

So ist es nicht erstaunlich, dass bei den Erneuerungskosten der Projektierungsanteil verhältnismässig hoch werden kann.

2. Erneuerungsgrad

Der Erneuerungsgrad lässt sich summarisch in folgende Stufen einteilen:

- Ersatz eines bestehenden Kraftwerkes durch eine Neuanlage, unter Umständen unter Zusammenlegung mehrerer Ausbaustufen
- Umbau/Ausbau einer bestehenden Anlage unter Weiterverwendung massgeblicher Anlageteile
- teilweiser oder weitgehender Ersatz von elektromechanischen Einrichtungen, Druckleitung, Hilfseinrichtungen, Wehranlage, unter Beibehaltung der wichtigsten Baukörper
- Automatisierung von Maschinengruppen, Wehranlagen, Hilfseinrichtungen
- Stillegung und Liquidation der Anlage

Aus der bedeutenden Zahl der in den letzten Jahren erfolgreich durchgeführten Kraftwerkserneuerungen werden im folgenden einige Beispiele herausgegriffen.

2.1 Ersatz eines bestehenden Kraftwerks durch eine Neuanlage

Mit dem Bau des Kraftwerkes *Lötschen* im unteren Lötschental (Wallis) wurden die 3 Kraftwerke Gampel 1 bis 3 durch eine einzige Kraftwerkstufe ersetzt. Mit den 1898, 1900 und 1942 erstellten kleinen Kraftwerkanlagen konnte nur Laufenergie erzeugt werden; der Betrieb der dreistufigen, überalterten Anlagen war personalintensiv und teuer. Wesentliches Merkmal der neuen Anlage ist neben der Erhöhung der Ausbauwassermenge die Erstellung des Ausgleichsbeckens Ferden, dessen Nutzinhalt als Ergebnis einer Optimierungsrechnung auf 1,7 Mio m³ festgelegt wurde. Das Becken dient dem Tages- und Wochenendausgleich, erlaubt eine wesentliche Aufwertung der produzierten Energie und dient nicht zuletzt der Sicherstellung der Energieversorgung des Aluminiumwerkes in Steq (Tabelle 1).

Ein Beispiel einer erfolgreichen vollständigen Erneuerung eines Flusskraftwerkes ist das neuerstellte Reuss-Kraftwerk Bremgarten-Zutikon. Hier wurde die 1894 erstellte, in ihrer Konzeption aussergewöhnliche und markante Anlage durch ein modernes Flusskraftwerk mit Rohrturbinen ersetzt. Das im Rahmen der 1970 beschlossenen Reusstal-Sanierung erstellte Projekt gestattete die Erhöhung des Nutzgefälles und der Ausbauwassermenge, womit die Gefällstufe wieder wirtschaftlich ausgenutzt werden kann.

Neben der Erfüllung ihres Mehrzweckcharakters zeichnet sich die neue Anlage dadurch aus, dass sie sich besonders gut ins Landschaftsbild einfügt (Bild 3).

Vergleiche zwischen den alten Anlagen Gampel 1 bis 3 und der neuen Anlage Lötschen Tabelle 1

	Alte Anlagen	Neue Anlage
	Gampel 1 bis 3	Lötschen
Erstellungsjahr	1898/1900/1942	1975
Installierte Leistung	19 MW	110 MW
Produktion im Mitteljahr	113 GWh	312 GWh
Erneuerungskosten		1000 Fr./kW

Vergleich zwischen dem alten Kraftwerk Bremgarten und der neuen Anlage Bremgarten-Zufikon Tabelle 2

Alte Anlage	Neue Anlage
1894	1975
1,6 MW	18,1 MW
12 GWh	100 GWh
	2900 Fr./kW
	1894 1,6 MW

Die beiden Beispiele, Hochdruckanlage und Spitzenkraftwerk Lötschen und die Niederdruckanlage für Laufenergie Bremgarten-Zufikon, zeigen eindrücklich die Leistungs- und Energiereserven, welche durch zielgerichtete und integrierte Erneuerungsmassnahmen nutzbar gemacht werden können, und dies im Einklang mit ökologischen und landschaftsschützerischen Forderungen.

Da der Bau der Ersatzanlage in diesen Fällen alle Eigenschaften einer Neuanlage in sich trägt und die für Erneuerungsbauten sonst typischen Besonderheiten fehlen, sei hier auf eine nähere Beschreibung der Anlagen verzichtet und auf die entsprechenden Fachaufsätze verwiesen [2, 3].

Bei einer umfassenden Neuerstellung einer bereits bestehenden Anlage kann letztere während der gesamten Bauzeit meist uneingeschränkt und unbehindert weiterbetrieben werden, was unter Umständen bedeutend, ja entscheidend Kosten spart.

2.2 Umbau/Ausbau einer bestehenden Anlage

Das aus den Jahren 1907 bis 1909 stammende Limmatkraftwerk *Aue*, Baden, wurde 1965/66 umfassend um- und ausgebaut, ohne dass dabei seine von aussen sichtbaren Anlagen und Baukörper stark geändert wurden [4].

Augenfälligste Aenderung ist der Ersatz des alten Tafelschützenwehrs mit seinem hässlichen hohen Aufbau durch moderne Segmentschützen mit aufgesetzten Klappen, die erlaubten, die Wehrbrücke tiefer zu legen. Diese Wehrbrücke dient heute dem öffentlichen Fussgängerverkehr. Im Innern ihrer Hohlkonstruktion führt sie den regionalen Abwasserkanal und die Gasfernleitung Zürich—Baden. Auch hier wurden mit der Sanierung mehrere Zwecke erfüllt; auch der Verbesserung der Aesthetik wurde Rechnung getragen (Bild 5).

Der 275 m lange Oberwasserkanal blieb in seiner ursprünglichen Form bestehen, hingegen musste der Kanaleinlauf aufgrund der Erhöhung der Ausbauwassermenge von 70 m³/s auf 100 m³/s neu gestaltet werden. Dank Modellversuchen an der ETH Zürich konnten dabei trotz der erhöhten Wasserführung geringere Fallhöhenverluste als bei der alten Ausbauwassermenge erreicht werden.

Das in seiner äusseren Form völlig erhalten gebliebene Maschinenhaus wurde im Innern gründlich umgestaltet. Anstelle der beiden aus dem Jahre 1909 stammenden vertikalen Zwillings-Francis-Turbinen wurden 2 schrägliegende Rohrturbinen eingebaut, während die 3. Einheit mit Jahrgang 1925 lediglich einer gründlichen Revision und der zugehörige Generator einer Neuwicklung und Neublechung unterzogen wurde (Bild 4).

Bild 3. Flugaufnahme der neuen Anlage Bremgarten-Zufikon.

Wie die Schnittbilder zeigen, konnten die bestehenden Fundamente weitgehend übernommen werden, die neuen Rohrturbinen-Einheiten wurden zwischen die bestehenden Pfeiler gebaut. Die Eignung von Rohrturbinen für Erneuerungen von Niederdruckanlagen kam hier besonders schön zur Geltung, konnte doch dank der hohen Schluckfähigkeit dieses Turbinentyps bei gleicher Breitenentwicklung die verarbeitete Wassermenge von vorher 21 m³/s auf 36 m³/s gesteigert werden, so dass die gesamte Erhöhung der Ausbauwassermenge durch die beiden neuen Gruppen allein getragen wird.

Die auf engem Raum auszuführenden Ausbruch-, Gründungs- und Betonierarbeiten wurden trotz allerlei unvorhergesehenen Ueberraschungen, wie sie für Umbauten typisch sind, gut und rasch gemeistert. Dabei musste auf die während der gesamten Umbauzeit in Betrieb stehende,

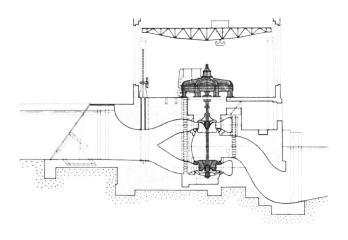
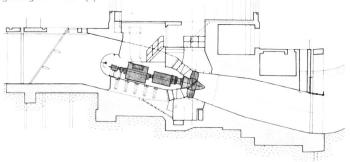



Bild 4. Maschinenhausquerschnitte des alten und des erneuerten Werkes Aue in Baden. In den Jahren 1965/66 wurden zwei vertikalachsige Zwillings-Francisturbinen durch Rohrturbinen mit leicht geneigter Achse ersetzt. Dadurch konnte die installierte Leistung von 2950 kW auf 3900 kW, die jährliche Energieabgabe von 18,7 GWh auf 26 GWh gesteigert werden [4].

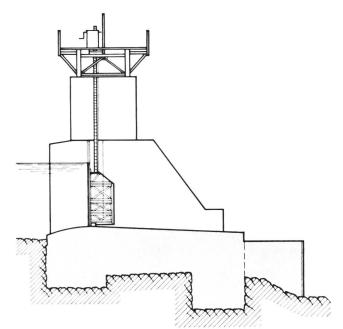
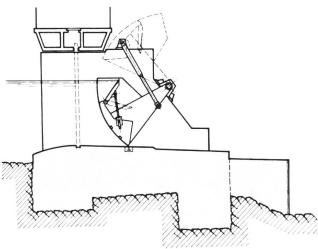



Bild 5. Erneuerung der Wasserkraftanlage Aue bei Baden. Querschnitt durch das alte (links) und das neue Wehr, rechts [4].

sich durch das ganze Maschinenhaus hinziehende 8-kV-Anlage Rücksicht genommen werden. Die Stillstandszeiten betrugen lediglich 61/2 Monate für die revidierte Gruppe 3 und $9^{1}/_{2}$ bzw. $11^{1}/_{2}$ Monate für die vollständig ersetzten Gruppen 1 und 2.

Modernisiert wurden auch die elektrischen Ausrüstungen. Die Anlage wird heute vom unterliegenden Kraftwerk Kappelerhof aus fernbedient und fernüberwacht. Die kombinierte Turbinen- und Wehrsteuerung reguliert den Oberwasserstand automatisch auf die eingestellte Staukote (Tabelle 3).

Für das 1892 erbaute Limmatkraftwerk Kappelerhof wurden seit Jahrzehnten in regelmässigen Abständen Erneuerungen studiert, die den ganzen Bereich von Möglichkeiten, von einem Neubau bis zur Stillegung und Liquidation, umfassten.

Nachdem die ursprünglich beabsichtigte Erhöhung des Oberwasserspiegels und damit eine wesentliche Erhöhung des Nutzgefälles mit Rücksicht auf Grundwasserbeeinträchtigungen fallengelassen werden musste, wurde 1973 ein bescheidenerer Umbau beschlossen mit einer beschränkten Erhöhung des Nutzgefälles mittels Ausbaggerung des unterwasserseitigen Flussbettes und Erhöhung der Ausbauwassermenge von 40 auf 60 m³/s. Diese Ausbaugrösse wurde durch den weiterhin verwendeten Oberwasserkanal begrenzt. Die Erneuerung limitierte sich damit vorläufig einzig auf das Maschinenhaus. Eingehende Studien ergaben, dass ein Umbau des bestehenden, sehr alten Maschinenhauses mit seinen 4 historischen Maschinengruppen nicht mehr möglich war, und führten in diesem Fall als ökonomischste Lösung zur interessanten Anordnung einer schrägliegenden Rohrturbine in S-Form mit Aufstellung eines Uebersetzungsgetriebes und Generators in einem an das alte Maschinenhaus flussseitig anschliessenden unterirdischen Betonkörper (Bild 6). Auch diese Anlage ist mit moderner Anfahr- und Abstellautomatik, Fernbedienung und -überwachung und einer vom Oberwasserniveau abhängigen Steuerautomatik ausgerüstet. Die Bauzeit der neuen Anlageteile betrug 20 Monate, die Zeitspanne zwischen Stilllegung der alten Anlage und Inbetriebnahme der neuen Gruppe 4 Monate [5].

Eine trotz ihrer bescheidenen Leistungswerte interessante und erwähnenswerte Erneuerung wurde 1968 im Kraftwerk Morteratsch der Bündner Kraftwerke durchgeführt. (Bilder 7 und 8.)

Der Erneuerung gingen verschiedene Studien über die ganze Skala von Sanierungsstufen voran. Schliesslich hat sich auch in diesem Fall die Neuerstellung der Zentrale mitsamt den maschinellen und elektrischen Einrichtungen sowie der Ersatz der alten Druckleitung als wirtschaftlichste Lösung erwiesen. Durch den mit diesen Massnahmen erreichten Fallhöhengewinn (geringere Druckverluste der neuen Leitung), die vollständige Ausnützung der konzessionierten Ausbauwassermenge und den verbesserten Maschinenwirkungsgrad konnte Leistung und Produktion beträchtlich gesteigert werden (Tabelle 5).

Vergleich zwischen alter und erneuerter Anlage Aue bei Baden

		Tabelle 3
	Alte Anlage	Erneuerte Anlage
Erstellungsjahr	1907 bis 1909	1965/66
Installierte Leistung	2950 kW	3900 kW
Produktion im Mitteljahr	18,7 GWh	26 GWh
Erneuerungskosten		3100 Fr./kW

Vergleich zwischen alter und erneuerter Anlage Kappelerhof

	Alte Anlage	Erneuerte Anlage
Erstellungsjahr	1892	1976
Installierte Leistung	1200 kW	2800 kW
Jahresproduktion	9,5 GWh	20 GWh
Erneuerungskosten		5400 Fr./kW

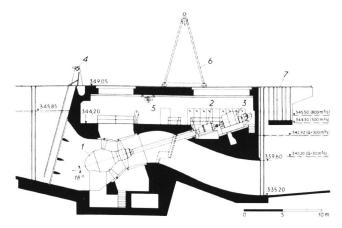


Bild 6. Querschnitt durch das Maschinenhaus des Kraftwerkes Kappelerhof 1:500. 1 Kaplan-S-Rohrturbine, 60 m³/s, 2800 kW, Nettogefälle 5,15 m. 2 Planetengetriebe, 86,3/750 U/min. 3 Generator, 3300 kVA. Automatische Rechenreinigungsmaschine. 5 Deckenlaufkran 2 t. 6 Portalkran 25 t. 7 Dammbalkenlager [5].

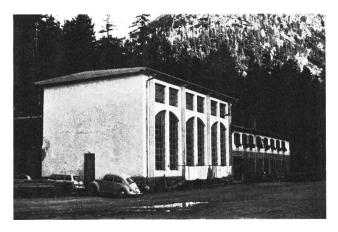


Bild 7. Das 1891 erstellte Kraftwerk Morteratsch. Im Vordergrund das Dieselgebäude, im Hintergrund das Maschinenhaus der hydraulischen Anlage. Im ersten Stock sind die Werkwohnungen untergebracht.

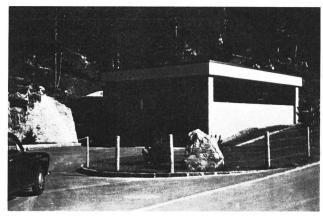


Bild 8. Ansteile des alten Gebäudekomplexes des Kraftwerks Morteratsch wurde 1968 das neue Maschinenhaus gebaut, die Maschinenleistung konnte verdoppelt werden.

Vergleich zwischen alter und erneuerter Anlage Morteratsch

a	bel	le	5

Erneuerte Anlage

1968 570 kW

3,3 GWh 2600 Fr./kW

	Alte Anlage
Erstellungsjahr	1891/1926
Installierte Leistung	260 kW
Jahresproduktion	1,96 GWh
Erneuerungskosten	

Auch hier konnten die gesamten Umbauarbeiten in erstaunlich kurzer Zeit ausgeführt werden, so dass zwischen Stilllegung der alten Anlage und Inbetriebnahme der neuen Gruppe lediglich 7 Monate verstrichen. Erwähnenswert ist an dieser Kleinanlage mit Laufwerkcharakter die mit der Erneuerung auf einfachste Weise erzielte vollautomatische, unbemannte Betriebsweise. Zwar muss die Maschinengruppe an Ort und Stelle angefahren und ans Netz geschaltet werden, aber der Betrieb geschieht unbemannt durch Selbstüberwachung der wichtigsten mechanischen und elektrischen Betriebswerte, und die Laststeuerung erfolgt ebenfalls automatisch in Abhängigkeit des Wasserzuflusses bzw. des Wasserstandes an der Fassung. Allfällige Störungen im Betriebsablauf setzen die Maschinengruppen selbständig still und werden auf der Signaltafel in der Zentrale angezeigt. Ein Sammelalarm wird sodann über die Securiton-Uebermittlungsanlage über Telefonnetz an 4 vorbestimmte und in festgelegter Reihenfolge aufgerufene Telefonabonnenten (Pikettstellen) weitergeleitet.

2.3 Erneuerung von Komponenten von Kraftwerkanlagen

Lassen sich die hydraulischen Auslegungsgrössen, Nutzgefälle und Wassermengen, aus technisch/wirtschaftlichen oder rechtlichen Gründen nicht oder nur unwesentlich erhöhen und sind die wasserführenden Anlageteile wie Fassungen, Zuleitung und Wasserrückgabe in gutem Zustand, kann sich eine Erneuerung eines Kraftwerkes nur auf den Ersatz der maschinellen und/oder elektrischen Einrichtungen oder einzelner Teile im bestehenden Krafthaus beschränken

Anlass zu einer derartigen beschränkten Erneuerung geben im allgemeinen altersbedingt fehlende Betriebssicherheit und schlechte Betriebseigenschaften; Mängel, die durch verstärkten Unterhalt allein nicht behoben werden können; erhöhte Reparaturanfälligkeit und Betriebsausfälle sowie im Zuge von Automatisierungsbestrebungen erforderliche Anpassungen. Bei Automatisierungsstudien zeigt sich zudem oft, dass alte, noch durchaus zuverlässige Elemente so konstruiert sind, dass sie sich auch mit aller

Phantasie nicht automatisieren lassen. So bleibt nur die Wahl, mit der Automatisierung auf halbem Wege stehen zu bleiben oder die entsprechenden Komponenten zu ersetzen

Wirtschaftlich zu begründen im Sinne einer erhöhten Leistungsfähigkeit oder Produktion sind diese Teilerneuerungen in seltenen Fällen; da jedoch die damit verbundenen Investitionen nicht sehr gross sind, können diese teilweise durch bestehende Unterhaltsreserven abgedeckt werden.

Im Rheinkraftwerk *Rheinfelden*, wo 20 Maschinengruppen installiert sind, wurden kürzlich auch die 6 von der Aluminiumhütte Rheinfelden betriebenen Einheiten saniert und modernisiert.

Vor allem die aus den Jahren 1896 bis 1898 stammenden Gleichstromgeneratoren führten durch häufige Wicklungsschäden zu unliebsamen Reparatur-Stillstandszeiten. Da ferner seit einigen Jahren die unmittelbare Verwendungsmöglichkeit für Gleichstrom entfallen war und dieser mit schlechtem Wirkungsgrad durch Maschinenumformergruppen umgeformt wurde, war ein vollständiger Ersatz der überalterten Gleichstromgeneratoren durch neue Drehstromgeneratoren gegeben.

Bei dieser Erneuerung der Generatoren wurde ein Stirnradgetriebe zur Erhöhung der Turbinendrehzahl von 72/min auf 1000/min zwischengeschaltet, was den Einsatz von bedeutend preisgünstigeren Generatoren erlaubte. Gleichzeitig wurden neben einer Generalrevision und teilweiser Erneuerung der Turbinenregulierorgane die nötigen Stellantriebe und Ueberwachungseinrichtungen für die Fernbedienung der Maschinen eingebaut.

Durch die Sanierung und Modernisierung konnte die mittlere Leistung der 6 Einheiten um 25 % erhöht werden; die Unterhaltskosten sowie der Personalaufwand wurde massgebend verringert. Die Arbeiten wurden in 8 Monaten durchgeführt. Jede Maschinengruppe stand lediglich 4 Wochen still [6].

Wie bei andern in den Kriegsjahren 1939 bis 1945 erbauten Kraftwerkanlagen waren auch beim Kraftwerk Luchsingen (Glarus) frühzeitige Alterungserscheinungen festzustellen, besonders bei den kriegsbedingten störungsanfälligen Aluminium-Wicklungen bei einem Generator und den Transformatoren.

Für eine umfassende Erneuerung massgebend war zudem, dass die Generatorenleistung einer der beiden Maschinengruppen nicht an die 1949 realisierte Gefälls- und damit verbundene Leistungserhöhung der Turbine angepasst worden war.

Die Untersuchungen der möglichen Erneuerungsvarianten haben zur technisch und wirtschaftlich interessanten Lösung geführt, bei dieser Maschinengruppe eine Leistungserhöhung auf den durch die bestehende Zuleitung begrenzten Wert, von 1000 kVA auf 2060 kVA, anzustreben, was einen vollständigen Ersatz der Maschinengruppe durch eine neue Einheit erforderte. Gleichzeitig wurden beide Maschinengruppen mit einer Anfahr- und Abstellautomatik ausgerüstet, die Kommandoanlage erneuert, 2 neue Transformatoren eingebaut sowie die 16-kV-Verteilanlage ersetzt (Bild 9).

Der ganze Umbau konnte in einem Winter durchgeführt werden, und dadurch, dass eine Maschinengruppe stets in Betrieb gehalten wurde, entstand praktisch kein Produktionsausfall. Die Erneuerungskosten beliefen sich auf rund 1000 Fr./kW.

Die an beiden Turbinen abschliessend nach der thermodynamischen Messmethode durchgeführten Wirkungsgradmessungen ergaben für die neue Einheit gegenüber den 1949 eingebauten Turbinen einen um $7\,^{0}/_{0}$ höheren Volllastwirkungsgrad und einen um $4,5\,^{0}/_{0}$ erhöhten Wirkungsgrad im Bestpunkt.

Nachdem die Kraftwerke Brusio AG 1968/69 die 6 Druckleitungen ihres untersten Kraftwerkes *Campocologno* ersetzten, wurden in den Jahren 1974/75 die Druckleitungen der mittleren Stufen, Robbia und Cavaglia, erneuert.

Das Kraftwerk Robbia (697 m Betriebsdruck) bezieht das Triebwasser aus 2 Druckleitungen, wovon die eine während des letzten Krieges gebaut wurde und die andere schon 1910 den Betrieb aufnahm. Die ältere Druckleitung wurde verschiedentlich auf ihre Betriebstüchtigkeit untersucht. Es liegen Prüfungsresultate von Trepanationen aus den vierziger Jahren vor, die zeigen, dass die Rohre nach heutigem Wissen damals schon stark sprödbruchgefährdet waren. Die damaligen Experten empfahlen keine radikale Sanierung, sondern mildere Massnahmen, wie Normalglühen der Rohre oder Schutz der Rohre gegen schlagartige Beanspruchung von innen und aussen, Massnahmen, die schwer durchführbar waren.

Die Direktion der Kraftwerke Brusio AG beschloss deshalb, die alte Druckleitung durch eine neue zu ersetzen, um die latente Gefahr zu beseitigen. Neuere Studien hatten ergeben, dass von den nachstehenden möglichen Variantenvorschlägen die Variante 1 zu empfehlen sei:

- Ersatz der alten Druckleitung durch eine neue gleichen Durchmessers
- Ersatz der alten Druckleitung durch eine neue mit wirtschaftlichstem Durchmesser

- Ersatz beider Druckleitungen durch eine neue mit wirtschaftlichstem Durchmesser
- 4. Einziehen neuer Rohre in die alte Druckleitung

Der Abbruch der alten Rohre begann im März 1974. Die Arbeiten gestalteten sich zum Teil sehr schwierig, weil die alten Rohre in engen Galerien über die zweite Druckleitung hinweg gehoben werden mussten, während die letztere ständig in Betrieb blieb. Die neue Druckleitung, 1545 m lang, 307 t schwer, konnte im September des gleichen Jahres dem Betrieb übergeben werden. Der Kraftwerkbetrieb musste nur 6 Wochen unterbrochen werden. In dieser Zeit wurden Rest-Korrosionsschutzarbeiten, Druckprobe, Anschluss an die Verteilleitung u. a. m. durchgeführt.

Die aus dem Jahre 1927 stammende 750 m lange *Cavaglia*-Druckleitung mit Durchmessern von 1200 bis 1000 mm und Wandstärken bis zu 30 mm war in einem Rohrstollen offen verlegt und führte direkt in die Zentrale Cavaglia. Der Betriebsdruck beträgt maximal 275 m. Untersuchungen an im Jahre 1972 entnommenen Trepanationen ergaben, dass die Schweissnähte nicht nur zahlreiche Risse und innere Fehler aufwiesen, sondern auch die sehr niedrigen Kerbschlagzähigkeiten deuteten auf eine zu geringe Sprödbruchsicherheit. Die alte Druckleitung wurde im Jahre 1975 während 4 Monaten durch eine neue, 130 t schwere Leitung ersetzt, deren Wände 9 mm stark sind.

Die Druckleitung der oberen Stufe, Kraftwerk *Palü*, stammt aus dem gleichen Jahr wie die Cavaglia-Druckleitung. Obwohl die Rohre der Palü-Leitung wahrscheinlich die gleichen Fehler aufweisen wie diejenige von Cavaglia, konnte mit gutem Gewissen empfohlen werden, die Palü-Druckleitung bis zum Konzessionsende im heutigen Zustand zu belassen.

Sie ist nämlich entweder eingegraben oder verläuft in geschlossenen Stollen. Nach menschlichem Ermessen wäre selbst bei einem Rohrbruch kein Menschenleben gefährdet, zumal in der Nähe der Druckleitung keine Siedlungen zu finden sind.

Das Beispiel der Sanierung der Druckleitungen der Kraftwerke Brusio AG zeigt, dass beim Entscheid über «Sein oder Nichtsein» von alten Druckleitungen das Risiko, das Gefahrenmoment und vor allem die Gefährdung von Menschenleben mit entscheidend sind (Bilder 10 und 11).

2.4 Automatisierungen

Die in den dreissiger und vierziger Jahren entstandenen Kraftwerkanlagen, darunter die ersten als «Grossanlagen» zu bezeichnenden, sind mit maschinellen und elektrischen

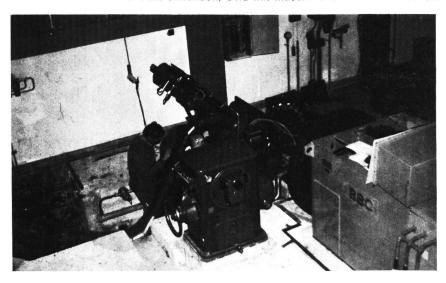


Bild 9. Das 1975/76 erneuerte Kraftwerk Luchsingen im Kanton Glarus. Man erkennt die abgedeckte zweidüsige Peltonturbine und den Verschalten Generator. Die Leistung der Anlage konnte von 1000 kVA auf 2060 kVA gesteigert werden.

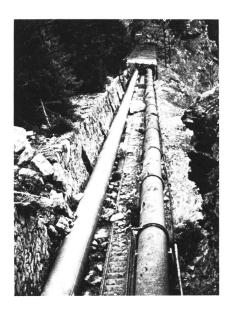


Bild 10. Links die neue (1974), rechts die alte (1910) Druckleitung des Kraftwerkes Robbia der Kraftwerke Brusio AG. Kurz vor der Betriebsaufnahme der neuen Leitung zerstörte am 10. November 1974 ein Steinschlag die alte Druckleitung. Die neue Druckleitung wurde nur leicht beschädigt.

Bild 11. Beim Bau der neuen Druckleitung des Kraftwerkes Robbia konnte das Betonwiderlager der alten Leitung für den Fixpunkt der neuen Leitung mitverwendet werden. Man erkennt die Verankerung der neuen Druckleitung.

Ausrüstungen versehen, die als durchaus neuzeitlich gelten können und im allgemeinen zuverlässig und betriebssicher sind. In diesen Werken wurden und werden auch Anlageteile im Rahmen des normalen Unterhalts laufend saniert und den neuesten betrieblichen Bedürfnissen angepasst. Gesamterneuerungen unter Einbezug der Turbinen-Generator-Einheiten sind im heutigen Zeitpunkt meist noch nicht aktuell, vorausgesetzt, dass nicht gleichzeitig die Anlage wesentlich höher ausgebaut werden kann.

Hingegen können durch gezielte Automatisierung graduell Betriebspersonal abgebaut und damit die Betriebskosten gesenkt werden.

Für das Aarekraftwerk *Klingnau* (erstellt 1935, installierte Leistung 37 MW) wurden in einer ausführlichen Vorstudie verschiedene Automatisierungsvarianten technisch und wirtschaftlich untersucht. Gegenübergestellt wurden folgende Ausbaumöglichkeiten:

- A: Einführung eines Einmann-Schichtbetriebes
- B: Aufhebung des Schichtbetriebs, jedoch Fernbedienung ab Fernleitstelle mit Tages- und Pikettdienst
- C: Vollautomatischer Betrieb mit Pikettdienst

Untersucht wurden die notwendigen Anpassungen und Ergänzungen an Regulier- und Steuerorganen der Turbinen, Spurlager, Generatorbremse, Wehrschützensteuerung und Pegelmesseinrichtung, Rechengefällsmesseinrichtung, Niveauregelung, Steuer- und Ueberwachungseinrichtungen für die Maschinengruppen und allgemeinen Anlagen, Eigenbedarfsanlagen, Hilfsbetriebe, Alarmerfassungs- und Uebermittlungsanlage, Brandmeldeanlage, Freiluftschaltanlage. Das Ergebnis der Untersuchungen kann wie folgt zusammengefasst werden:

	Ist-Zustand	Ausbaualt	ernativen	
Investitionskosten einschliesslich Bauzir Energieausfall und	isen,	Α	В	С
Projektierungskosten		100 º/o	170 %	270 º/o
Schichtpersonal (Einsparungen)	10 Mann	5 Mann (5 Mann)	4,5 Mann (5,5 Mann)	3 Mann (7 Mann)
Mittlere Jahreskosten	100 %	70 %	77 ⁰ / ₀	80 %

Es zeigt sich, dass mit jeder der 3 untersuchten Automatisierungsmöglichkeiten die Jahreskosten gesenkt werden können. Für die Entscheidung, welches Erneuerungsprogramm schliesslich zu verfolgen sei, wird allerdings nicht nur der Kostenvergleich massgebend sein, sondern die 3 Ausbauvarianten sind auch technisch zu bewerten,

und betriebs- und personalpolitische Ueberlegungen sind mit zu berücksichtigen.

Aehnliche Untersuchungen im Rheinkraftwerk Reckingen (erbaut 1941) führten durch die werksintern studierte und durchgeführte «Rationalisierung der kleinen Schritte» zur Einführung eines Einmann-Schichtbetriebs und zu einer bedeutenden Senkung des Personalbestandes [7].

Generell sind Automatisierungen mit automatisierter Steuerung und Ueberwachung bei Hochdruckanlagen einfacher und konsequenter zu realisieren als bei Flusskraftwerken. Der Grund liegt hauptsächlich im sehr breiten Spektrum bezüglich Gefälle und Wassermenge, das durch das Flusskraftwerk zu verarbeiten ist, während bei älteren Hochdruckanlagen die Betriebsvariationen doch recht gering sind. Die natürlichen Einflüsse durch Hochwasser im zugehörigen Flusslauf, aber auch in Nebenzuflüssen, stellen oft heikle Probleme an eine automatische niveauabhängige Turbinen- und Wehrsteuerung, doch sind in den letzten Jahren auch für komplexe Betriebsbedingungen zuverlässige Lösungen gefunden worden.

Schwierig und aufwendig ist nach wie vor die Automatisierung von Rechenreinigungs- und Geschwemmselbeseitigungsanlagen. Aber auch auf diesem Gebiet sind schon interessante Rationalisierungen durchgeführt worden.

2.5 Stillegung und Liquidation einer Kraftwerkanlage

Ein Wort noch zu dieser letzten Stufe in der Skala der Sanierungsmöglichkeiten, welche möglicherweise den Juristen mehr beschäftigen wird als den Ingenieur. Als Alternative zu andern Sanierungsmethoden dürfen aber die technischen und finanziellen Folgen einer Stillegung nicht ausser acht gelassen werden. Wenn der Kraftwerkbesitzer aufgrund von Konzessionsbestimmungen zum Beispiel gehalten werden kann, nach einer allfälligen Stillegung die Umgebung des Kraftwerks entsprechend dem Zustand vor der Konzessionserteilung wiederherzustellen, kann dies mit beträchtlichen Kosten verbunden sein. Wehranlagen müssen oft für die Abflussregulierung erhalten bleiben; ihr Abbruch könnte die Geschiebe- und Grundwasserverhältnisse ungünstig beeinflussen. Müssen Wehranlagen weiter betrieben und unterhalten werden, kann das sehr teuer sein. Aehnliches gilt für Zufahrtswege, Brücken oder andere Anlageteile, die der Oeffentlichkeit dienten, aber vom Kraftwerkbesitzer auf seine Kosten unterhalten und gepflegt wurden.

Stillegung und Liquidation können für den Betreiber wie für die öffentliche Hand ausgesprochen kostspielig und unwirtschaftlich sein.

3. Wirtschaftlichkeitsanalyse von Kraftwerkerneuerungen

Die Analyse einer Kraftwerkerneuerung muss die Frage abklären, ob die Erneuerung vom wirtschaftlichen Standpunkt aus gerechtfertigt ist (absolute Wirtschaftlichkeit) und welche der Erneuerungsvarianten optimal ist (relative Wirtschaftlichkeit).

Hierzu müssen die Erneuerungsvarianten sowohl untereinander als auch mit dem Ist-Zustand verglichen werden. Wie das folgende Beispiel zeigt, ist der Energiegestehungspreis des bestehenden sowie des erneuerten Kraftwerkes kein geeignetes Instrument dafür:

Eine Gemeinde deckt den Energiebedarf von 10 GWh/Jahr zu 30 % aus einem eigenen Wasserkraftwerk, der einen Energiegestehungspreis von 5 Rp./kWh aufweist, und zu 70 % durch Fremdstrombezug zu einem Durchschnittspreis von 10 Rp./kWh. Es besteht die Möglichkeit, das Kraftwerk zu erneuern und dadurch seine Erzeugung zu erhöhen. Gemäss einer ersten Variante könnte man durch Ersetzung von Druckleitungen und Turbinen die Eigenproduktion um die Hälfte steigern, und dies bei einem Energiegestehungspreis von 4 Rp./kWh für die gesamte eigene Produktion. Bei einer zweiten Variante würde man zusätzlich mittels eines Dammes einen kleinen Stausee bilden und dadurch die Eigenerzeugung verdreifachen, wobei der Energiegestehungspreis 6 Rp./kWh betragen würde. Wenn man nun die beste Lösung aufgrund des Energiegestehungspreises bestimmen würde, müsste man sich für die erste Variante entscheiden, gemäss welcher der Energiegestehungspreis von 5 auf 4 Rp./kWh gesenkt und die Produktion um die Hälfte erhöht wird. Die zweite Variante wäre bei solcher Betrachtungsweise ungünstiger, da sie zwar eine Produktionsverdreifachung ermöglicht, aber einen Energiegestehungspreis von 6 Rp./kWh aufweist, d.h. mehr als beim Ist-Zustand. Diese Betrachtungsweise ist jedoch falsch. Wenn man nämlich die jährlichen Gesamtkosten der Energiebedarfsdeckung vergleicht, stellt man fest, dass die zweite Variante trotz dem etwas höheren Energiegestehungspreis die optimale Lösung darstellt.

Ist-Zustand

Eigenproduktion 3 GWh/Jahr zu 5 Rp./kWh Energiezukauf 7 GWh/Jahr zu 10 Rp./kWh Gesamtkosten der Energiebedarfsdeckung 850 000 Fr./Jahr

Erste Variante

Eigenproduktion 4,5 GWh/Jahr zu 4 Rp./kWh Energiezukauf 5,5 GWh/Jahr zu 10 Rp./kWh Gesamtkosten der Energiebedarfsdeckung 730 000 Fr./Jahr

Zweite Variante

Eigenproduktion 9 GWh/Jahr zu 6 Rp./kWh Energiezukauf 1 GWh/Jahr zu 10 Rp. kWh Gesamtkosten der Energiebedarfsdeckung 640 000 Fr./Jahr

Besser als der Vergleich der Jahreskosten ist die Barwertmethode, insbesondere dann, wenn die Erneuerungsvarianten in einzelnen Jahren schwankende Kosten aufweisen, wie dies zum Beispiel bei etappenweisem Ausbau der Fall ist.

Bei den Barwertmethoden wird für jede Variante sowie den Ist-Zustand ein Zahlungsplan (bzw.- strom) aufgestellt, der eine genügend lange Periode, am besten die Umbauzeit und die anschliessende Lebensdauer, umfasst, und dann wird der Gegenwartswert des Zahlungsstromes, der sogenannte Barwert, durch Diskontieren und Aufaddieren der Zahlungen berechnet. Falls man nur die Kosten vergleichen muss, da alle Varianten den gleichen Nutzen aufweisen wie der Ist-Zustand, ist jene Lösung am besten, welche den niedrigsten Kostenbarwert hat. Wenn der Nutzen der einzelnen Varianten unterschiedlich ist, so dass auch die Erträge zum Vergleich herangezogen werden müssen, ist die Lösung mit der grössten Differenz zwischen dem Ertragswert und dem Kostenbarwert optimal.

Grossen Einfluss auf die Wirtschaftlichkeit einer Kraftwerkerneuerung hat die Länge der Umbauzeit und der damit verbundene Ausfall in der Energieerzeugung. Dieser ist jeweils als effektiver Kostenanfall bzw. Ertragsausfall beim Eigentümer zu bewerten. In anderen Worten, wird die Erzeugung zur Deckung des eigenen Energiebedarfs verwendet, so sind als Energieausfall während der Umbauzeit jene Kosten in Rechnung zu setzen, welche durch die Beschaffung der nicht verfügbaren Energie verursacht werden. Wenn dagegen die erzeugte Energie an Fremde verkauft wird, ist der Energieausfall durch die ausbleibenden Erträge gegeben.

Zum Schluss sei an das wichtige Verhältnis zwischen der Erneuerungswürdigkeit einerseits und der Kraftwerkleistung andererseits hingewiesen. Im Gegensatz zu Neubauten, von denen die meisten heutzutage erst ab einer bestimmten, ziemlich hohen Leistung wirtschaftlich sind, liegt diese Leistungsschwelle bei Kraftwerkerneuerungen dank den bereits vorhandenen Leitungen, Fassungen, Wehren, Infrastruktureinrichtungen usw. wesentlich tiefer, so dass es sich lohnt, auch kleinere alte Kraftwerke diesbezüglich technisch und wirtschaftlich zu untersuchen.

Die Bauherren der erneuerten Wasserkraftanlagen

Lötschen Bremgarten-Zufikon Aue, Baden Kappelerhof, Baden Morteratsch Rheinfelden Luchsingen Robbia Cavaglia Palü Klingnau Reckingen EW Lonza/Alusuisse
Aargauisches Elektrizitätswerk
Städtische Werke Baden
Städtische Werke Baden
Bündner Kraftwerke AG
Aluminiumhütte Rheinfelden GmbH
Elektrizitätsversorgung Glarus
Kraftwerke Brusio AG
Kraftwerke Brusio AG
Kraftwerke Brusio AG
Aarewerke AG
KW Reckingen AG

Literatur

- [1] Walter Pfeiffer: Zur energiewirtschaftlichen Bedeutung der frühzeitigen Neuregelung von ablaufenden Wasserrechtsverleihungen. «Wasser, Energie, Luft» 69 (1977), Heft 1/2, S. 13—15.
- [2] Christian Fux: Das Kraftwerk Lötschen. «Wasser- und Energiewirtschaft» (1974), Heft 8/9, S. 278—286.
 [3] Paul Fischer: Das Kraftwerk Bremgarten-Zufikon. «Wasser- und
- [3] Paul Fischer: Das Kraftwerk Bremgarten-Zufikon. «Wasser- und Energiewirtschaft» 66 (1974), Heft 4/5, S. 149—154.
 [4] Daniel Vischer, Arthur Scherer: Der Umbau des Kraftwerkes Aue,
- [4] Daniel Vischer, Arthur Scherer: Der Umbau des Kraftwerkes Aue, Baden. «Wasser- und Energiewirtschaft» 59 (1967), Heft 1, S. 12—17.
- [5] Joseph Stalder: Erneuerung des Kraftwerks Kappelerhof in Baden. «Wasser, Energie, Luft» 68 (1976), Heft 5, S. 120—125.
 [6] Alois Schollmeyer: Erhöhung der elektrischen Energieerzeugung und Betriebskostenreduktion durch Modernisierung im Wasser-
- und Betriebskostenreduktion durch Modernisierung im Wasserkraftwerk Rheinfelden. «Wasser, Energie, Luft» 68 (1976), Heft 4, S. 94—96.
- [7] Hans Frei: Rationalisierung der kleinen Schritte. «Wasser, Energie, Luft» 68 (1976), Heft 4, S. 90—91.
- [8] Ausmass und Bedeutung der noch ungenutzten Schweizer Wasserkräfte Beitrag des Schweizerischen Wasserwirtschaftsverbandes zur Erarbeitung der Gesamtenergiekonzeption. «Wasser, Energie, Luft» 69 (1977), Heft 5.

Adresse der Verfasser: Walter Nüssli, Sidney Jacobsen und Vladimir Bohun in Firma Motor-Columbus Ingenieurunternehmung AG, 5401 Baden.

Talsperren, die 1976 der Oberaufsicht des Bundes unterstellt sind

Barrages soumis à la surveillance de la Confédération en 1976

Sbarramenti idrici sottomessi alla sorveglianza della Confederazione nel 1976

Diese Angaben wurden mit freundlicher Genehmigung des Eidgenössischen Amtes für Strassen- und Flussbau der jüngsten Veröffentlichung entnommen: Hochwasserschutz in der Schweiz — 100 Jahre Bundesgesetz über die Wasserbaupolizei. Zu beziehen bei der Eidg. Drucksachen- und Materialzentrale, 3000 Bern. Preis 34 Franken.

Nome	Compi- mento	Cantone	Tipo	Altezza (m)	Lunghezza (m)	Lago di acc livello massimo m s. m.	cumulazione volume utile 10 ⁶ m ³
Grande Dixence	1962	VS		284	700	2364	400
Mauvoisin	1962	VS VS	G B	284	520	1962	180
Contra	1965						
Luzzone		TI TI	В	221	380	470	105
	1963		В	208	530	1591	87
Emosson	1974	VS	В	180	555	1930	225
Zeuzier	1957	VS	0	150	050	1777	50
a)			B E	156	256		
b) Proz Riond	1000	110	E	20	155	4700	7-
Göscheneralp	1960	UR	E-S	155	540	1792	75
Curnera	1966	GR	В	152	350	1956	41
Zervreila	1957	GR					
a)			В	151	504	1862	100
b)			S	44	70	1735	0,1
Moiry	1958	VS	В	148	610	2249	77
Gigerwald	1976	SG	В	147	430	1335	34
Limmern	1963	GL	В	145	375	1857	90
Valle di Lei	1961	GR	В	143	710	1931	197
Sambuco	1956	TI	BG	130	363	1461	63
Punt dal Gall (Livigno)	1969	GR	В	130	540	1805	164
Nalps	1962	GR	В	128	480	1908	45
Hongrin	1968	VD				1255	53
Nord			В	125	325		
Sud			В	97	270		
Gebidem	1967	VS	В	122	325	1437	9
Mattmark	1967	VS	E-S	120	770	2197	100
Santa Maria	1968	GR	В	117	560	1908	67
Albigna	1959	GR	GP	115	810	2163	67
Grimsel	1932	BE			23	1909	100
Spitallamm	. 302		BG	114	258	1000	100
Seeuferegg			G	42	289		
Wägital / Schräh	1924	SZ	G	111	156	900	147
Cavagnoli	1968	TI	В	111	320	2310	28
Oberaar	1954	BE	GP	100	526	2303	58
Rätherichsboden	1950	BE	GP	94	456	1767	27
Malvaglia	1959	TI	В	92	290	990	
Marmorera (Castiletto)	1954	GR	E	91	400	1680	4
Cleuson/St-Barthélemy	1950	VS	GP	87	420		60
Les Toules	1963	VS	В	86	460	2186	20
Rossens	1903	FR	В	83		1810	20
	1947	TI	D	63	320	677	180
Naret	1970	1.1	D	00	110	2310	31
Naret I			В	80	440		
Naret II	4070	0.0	G	45	260	000	0.5
Mapragg	1976	SG	G	75	140	865	2,5
Z'Mutt	1964	VS	В	74	144	1970	0,8
Châtelot	1953	NE	В	74	150	716	20,5
Ova Spin	1968	GR	В	73	129	1630	7
Lucendro	1947	TI	P	73	270	2135	25
Palagnedra	1953	TI	BG	72	120	486	4,1
Roggiasca	1965	GR	В	71	177	954	0,5
Vasasca	1967	TI	В	69	107	728	0,4
• 404004	1007	4.4			, 0 /	120	0, 1

Nom	Achève- ment	Canton	Type	Hauteur (m)	Longueur (m)	Lac d'accum niveau max. m s. m.	nulation volume utile 106 m³
Robiei	1967	TI	GP	68	356	1940	7
Bärenburg	1961	GR	G	64	110	1080	1,4
Gries	1966	VS	G	60	400	2387	17,1
Sufers	1962	GR	В	58	125	1401	18,3
Schiffenen	1963	FR	В	57	417	532	35,5
Montsalvens	1920	FR	В	55	115	801	11
Salanfe	1952	VS	G	52	616	1925	40
Molina / Calancasca	1951	GR	G	52	70	687	0,8
Vieux Emosson	1955	VS	BG	51	180	2205	13,5
Illgraben	1970	VS	G	50	65	1050	*
Eggschi / Rabiusa	1949	GR	G	50	80	1151	0,5
Isola	1960	GR	BG	45	290	1604	6
St-Barthélemy B	1975	VS	В	45	90	1003	*
Garichte	1931	GL	0	4.0	000	1623	3
West			G	42	229		
Ost Sanetsch	1964	VS	G	. 18 42	254 210	2024	0.7
Carmena	1964	V S TI	GP B	42	100	2034 637	2,7 0,25
Orden	1909	GR	В	40	180	1788	1,7
Carassina	1963	TI	В	38	112	1701	0,19
Zöt	1967	Τİ	В	36	145	1940	1,6
Bannalp	1937	NW	E	36	182	1586	1,5
Sella	1947	TI	G	36	334	2256	9
Godey	1975	VS	Ε	35	170	1398	0,9
Gelmer	1929	BE	G	35	370	1849	13
Göschenerreuss	1949	UR	G	35	71	1084	0,1
Verbois	1943	GE	G/P/E	35	400	369	12
Lessoc	1973	FR	Р	33	20	774	0,75
Sihlsee	1936	SZ		0.000		889	91,8
In den Schlagen			G	33	127		
Hühnermatt			E	18	155		
Runcahez / Somvix	1960	GR	GP	33	180	1277	0,43
Clées	1955	VD	G	32	100	743	0,6
Pfaffensprung Rempen	1921	UR CZ	В	32	64	807	0,2
Turtmann	1924 1958	SZ VS	G	32 32	128	642 2177	0,5
Fionnay GD	1956	VS VS	B S	31	110 100	1486	0,8 0,3
Rossinière	1972	VD	P	30	35	860	1,7
Val d'Ambra	1965	TI	E	30	105	603	0,4
Châtelard CFF	1976	VS	Ē	30	110	1116	0,2
Wettingen	1930	AG	ĞР	29	140	380	6
Wohlensee / Mühleberg	1920	BE	G	28	250	481	27
nner Ferrera	1962	GR	G	28	61	1443	0,3
^{Fe} rpècle	1964	VS	В	28	91	1895	0,1
Lago Bianco	1927/45	GR				2234	18
Bernina Süd	. 5277 10		G	27	190		
Nord			G	16	280		
Klöntal	1910	GL	E G	27	217	848	50
IIIsee	1924/43	VS	G	27	295	2360	6,4
Mattenalp	1950	BE	G	27	98	1876	2,0
Mitom	1920/53	TI	G	27	300	1850	47
Schlattli	1965	SZ	G	25	40	550	0,35
Tannensee	1958	OW	Е	25	640	1975	4
Gübsenmoos	1900	SG	^	0.4	405	683	1,5
Ost			G E	24	105		
West	4004	0.5	E	17	308	40.0	
Preda Le Po	1961	GR	В	23	92	1948	0,37
Le Pontet Serra	1970	VD	G + E	22	54	792	0,1
Zen Dinas	1952	VS	В	22	75 46	1278	0,2
Zen Binnen	1953	VS	В	22	46	1308	0,2
Plons Mels Nord (Barmort)	1947	SG	_	20	124	1030	0,5
NUID (Barmort)			G	20	124		

Name	Fertig- stellung	Kanton	Тур	Höhe (m)	Länge (m)	Stausee Stauziel m ü M	Nutzinhalt 10 ⁶ m ³
Ost (Barmort)			G	12			
Darbola	1958	GR	G	20	120	1152	0,12
Les Esserts	1972	VS	E	20	300	1516	0,22
Prä	1961	GR	G	20	18	1080	0,02
Totensee	1949	VS	G	20	74	2160	2,5
Airolo	1968	TI	G/E	20	60/500	1135	0,37
Plans Mayens	1971	VS	E	20	180	1574	0,13
Les Marécottes	1925	VS	mB	19		1120	0,05
Löbbia	1959	GR	G	18	90	1418	0,2
La Fouly	1972	VS	G	18	58	1574	0,02
Brigels	1960	GR	Е	18	250	1255	0,3
Arnensee	1942/56	BE	E	17	140	1543	10,3
Essampilles / Icogne	1962	VS	E	17	52	1417	0,04
Schöni	1961	UR	G	17	66	1889	0,02
Val de Mulin / Laax	1962	GR	E	16	230	1059	0,07
Giétroz du Fond	1965	VS	G	15	22	1816	0,02
Safien Platz	1958	GR	E	15	470	1295	0,23
Waldialp	1961	SZ				1405	0,25
Nord			E	15	70		000 • 0000000
Süd			E	15	150		
Waldhalde	1895	ZH	E	15	120	683	0,25
Palü	1928	GR				1928	0,17
Palü I			G	14			
Palü II			G	12			
Handeck	1942	BE	E	14	145	1302	0,08
Zermeiggern	1964	VS	Е	14		1738	0,1
Arniboden	1910	UR	E	14		1371	0,26
Fully	1914/17	VS	G	14	110	2139	3,2
Frid	1966	VS	E	13		1741	0,05
Isel	1969	GR	E	12	45	1606	0,2
Wanna Safien	1957	GR	Ε	12	540	1720	0,3
Peccia	1954	TI	E	12	250	1302	0,12
Obermatt	1962	OW	E	11		660	0,1
Louvie	1966	VS	G	11	40	2213	0,2
Linthal	1964	GL	E	11		676	0,21
Châtelard ESA	1972	VS	G	11		1122	0,09
Corina / Moesa	1960	GR	Ε	11		1190	0,12
Fionnay FMM	1956	VS	E	11		1493	0,16
Burvagne	1941	GR	G	11	52	1117	0,2
Hintersand	1962	GL	Е	9		1298	0,1
Melchsee	1958	OW	E	8	295	1893	3,5
Spiezermoos	1908	BE	E	7		628	0,4
Mattsand	1958	VS	E	6,5		1230	0,2
Rodi	1940	TI	G	6	150	945	0,13
Murgsee	1925	SG	G + E	5	90	1820	1,9

Total 146

Legende
G Gewichtsstaumauer
P Pfeilerstaumauer
GP Gewichtsstaumauer mit Sparräumen
B Bogenstaumauer
BG Bogengewichtsstaumauer
E Erddamm
S Steindamm
mB Mehrfachbogenmauer

• Wildbachsperre

Légende
Barrage-poids
Barrage à contreforts
Barrage-poids évidé
Barrage-voûte
Barrage poids-voûte
Digue en terre
Digue en enrochements
Barrage à voûtes multiples
Barrage en torrents

Leggenda
Diga a gravitá
Diga a contraforti
Diga a gravitá alleggerita
Diga ad arco
Diga ad arco-gravitá
Diga in terra
Diga in scogliera
Diga ad archi multipli
Briglia

Bemerkung / Remarque / Osservazione

Einige Stauwehre, die der Talsperrenverordnung aus militärischen Gründen ebenfalls unterstellt sind, figurieren nicht in der Liste. Les quelques barrages-vannes soumis au règlement des barrages pour des raisons militaires ne sont pas mentionnés.

Gli sbarramenti fluviali a paratoie, sottomessi all'ordinanza sugli sbarramenti per ragioni militari, non sono menzionati.