Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 68 (1976)

Heft: 2-3

Artikel: Die Umweltschutzanlage des Cellulose Attisholz AG

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-939279

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das gefundene Optimum bei 10 bis 20 geordneten Deponien macht es notwendig, dass sich jeweils mehrere Gemeinden regional zusammenschliessen. Die kantonale Baudirektion schlägt den Gemeinden die Bildung von 5 Regionen mit insgesamt 13 Deponiestandorten vor, wobei ein etappenweises Vorgehen möglich ist, und ein Zeitraum von 10 bis 50 Jahren überbrückt werden kann. Für den Betrieb der Deponien werden Zweckverbände vorgesehen; diese können ihre Aufgaben auch Dritten übertragen. Die Beseitigung von Aushubmaterial und gefährlichen Abfällen (Sondermüll) ist kantonal zu ordnen.

W. Obrist

Die Umweltschutzanlage der Cellulose Attisholz AG

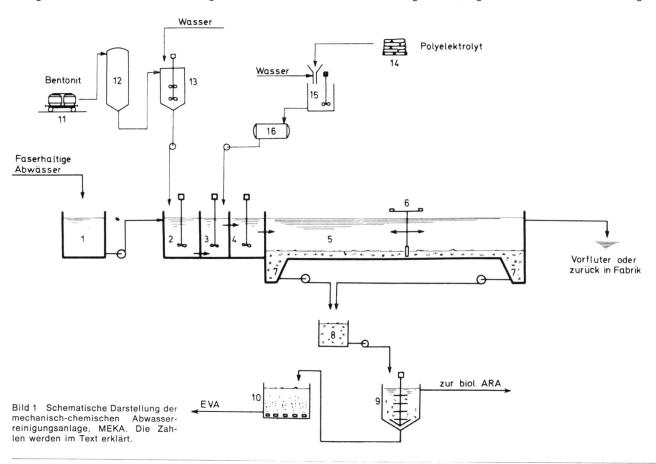
DK 661.728:676.16:628.3

Die Cellulose-Herstellung

Für die Herstellung von 1 t Cellulose werden als Hauptrohstoff gegen 6 Ster Holz verarbeitet. Der Jahresverbrauch von Attisholz beträgt rund 600 000 Ster Holz für etwa 100 000 t Cellulose, eine Menge, die ohne Uebernutzung der Wälder durch die schweizerische Forstwirtschaft geliefert wird

Für die Herstellung der Kochsäure — einer wässrigen Lösung von Kalziumbisulfit — werden Kalzium und Schwefel benötigt. Mehlfein gemahlener Kalkstein aus dem nahen Jura liefert das Kalzium, Brockenschwefel und flüssiger Schwefel ausländischer Herkunft sowie Schwefelkies (Pyrit) aus Italien dienen zur Gewinnung von Schwefeldioxyd.

Die zum Bleichen der Cellulosefasern notwendigen Chemikalien Chlor und Natronlauge werden aus Kochsalz gewonnen, das die schweizerischen Rheinsalinen in Schweizerhalle liefern.


Eine ganz besondere Rolle spielt das Wasser, werden davon doch je t Cellulose über 300 m³ benötigt. Die erforderliche Wassermenge wird zu 15 Prozent dem Grundwasser und zu 85 Prozent der Aare entnommen. Das Flusswasser wird in einer grossen Quarzsand-Filteranlage gereinigt und zu Fabrikationswasser aufgearbeitet.

Aus der nach dem Kochprozess anfallenden Ablauge, die rund 50 Prozent der eingesetzten Holzsubstanz enthält, werden folgende Nebenprodukte gewonnen:

- Feinsprit für die chemische, pharmazeutische und kosmetische Industrie
- Absoluter Alkohol f
 ür pharmazeutische und kosmetische Zwecke
- Torula-Hefe als Nähr- und Futtermittelbestandteil
- Ligninsulfonsäure (Attisol) in eingedickter und pulverisierter Form als Netzmittel für Farbstoffe und Insektizide
- Cymol, Furfurol, Isomylalkohol und Methanol als Rohstoffe für die chemische und kosmetische Industrie.

Die Abwasserbelastung

Es ist schon lange bekannt, dass die Sulfitcellulosefabriken zu den grossen Wasserverschmutzern gehören. Der Kampf gegen die Wasserverunreinigung wurde denn auch im Werk Attisholz schon sehr früh aufgenommen, als noch niemand von «Umweltproblemen» sprach. Zuerst wurden innerbetriebliche Massnahmen getroffen wie zum Beispiel die Erfassung der Ablauge und ihre Weiterverarbeitung zu

Hefe und/oder Alkohol, die Eindampfung der Ablauge und deren Verbrennung bzw. Verwendung in verschiedenen anderen Industriezweigen sowie die Schliessung der Wasserkreisläufe.

Alle die genannten Massnahmen werden nur zu einem kleinen Teil zu den Umweltschutzmassnahmen gezählt, da sie in der Regel einen Ertrag abwerfen. Gerade sie sind es aber, die, wenn richtig und zweckmässig durchgeführt, eine gewaltige Entlastung der Restabwässer mit sich bringen. Ohne diese «internen Massnahmen» ist eine sinnvolle Restabwassersanierung undenkbar.

Ein gewisser Rest von Schmutzstoffen, welcher nicht durch die internen Massnahmen erfasst werden kann, verbleibt in einem nicht mehr verwendbaren Rest des Fabrikationswassers.

Die drei nachfolgend beschriebenen Anlagen dienen der Reinigung der im Fabrikationsprozess anfallenden Restabwässer bzw. der Beseitigung der in diesen Reinigungsprozessen anfallenden Schlämme.

Die mechanisch-chemische Abwasserreinigungsanlage MEKA

Funktionsweise der Anlage (Bild 1 und Tabelle 1)

Die faserhaltigen Abwässer, vorwiegend aus der Zellstoffaufbereitung und den Entwässerungsmaschinen, werden in ein Sammelbecken (1) geleitet, und von dort, nach vorhergehender Mengenmessung in ein Reaktionsbecken gepumpt, in welchem dem Abwasser eine Bentonit-Aufschlämmung zudosiert wird.

Bentonit ist ein hochquellfähiges Tonmineral, das in seiner Natriumform (Aktiv-Bentonit) in Wasser zu kolloidalen Teilchengrössen aufteilbar ist. Bentonit kann verschiedene organische Stoffe absorbieren. Die Wirkungsmechanismen

Die wichtigsten Daten über die mechanisch-chemische Abwasserreinigungsanlage MEKA Tabelle 1

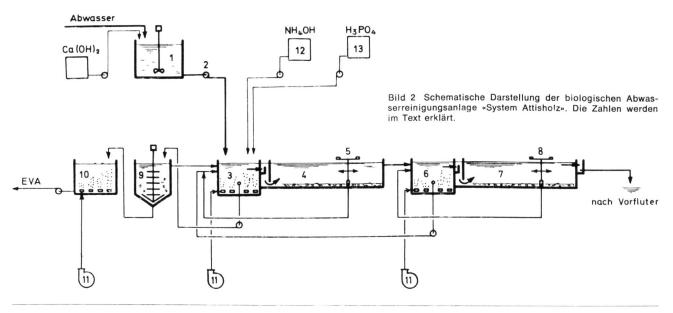
Bemessung der Anlage			
Hydraulische Belastung (zwei unabhängig voneinander arbeitende Strassen mit je 1250 m³/h) Reaktionsbecken für Bentonit Reaktionsbecken für Polyelektrolyt Flockungsbecken Sedimentationsvorkammer Sedimentationsbecken: Länge Breite Nutztiefe	2500 2 x 138 2 x 69 2 x 114 2 x 52 60,80 2 x 10,00 3,40	m³/h m³ m³ m³ m³ m m	
Nutzinhalt Oberflächenbelastung	2 x 2067 2,05	m³ m³/m² h	
Aufenthaltszeit	1,7	h	
Investitionskosten Gesamte Erstellungskosten einschl. Abbruch der Magazine auf dem Baugelände und Wiederaufstellung, Neuerstellung von Fabrikationswasserleitungen, Pfählung infolge schlechten Baugrundes	7 400 000	Fr.	
Betriebsmittelverbrauch (Stand Nov. 1975) Elektrische Energie Bentonit Polyelektrolyt	0,1 12 0,5	kWh/m³ Abwasser g/m³ Abwasser g/m³ Abwasser	
Betriebskosten (Stand Nov. 1975) (ohne Kapitaldienst)	345 000	Fr./Jahr	
Bedienung	1 Mann		
Reinigungsleistung bezogen auf Schwebestoffe Baubeginn Inbetriebnahme Bauzeit «Verbautes» Material: Beton Betoneisen Schalungen	93 bis 98 % 18. Januar 1972 4. Juni 1973 1½ Jahre 3800 m³ 236 t 8500 m²		

sind dabei teils chemischer, teils physikalischer Natur. Der Bentonit wird in Silowagen (11) angeliefert und wird aus diesen in den 100 m³ fassenden Silo (12) geblasen. In Mischbehältern (13) von 60 m³ Inhalt wird Bentonit chargenweise als wässrige Aufschlämmung mit 10 bis 20 g/l zubereitet und in das Reaktionsbecken (2) dosiert.

Das Abwasser/Bentonit-Gemisch fliesst anschliessend in das Reaktionsbecken (3). In diesem Becken wird dem Abwasser/Bentonit-Gemisch ein Flockungsmittel in Form eines anionischen Polyelektrolyten (Polyacrylamid) zudosiert. Polyelektrolyt wird in Säcken oder kleinen Kartonbehältern (14) angeliefert und im Auflösebehälter (15) mit Wasser in einer Konzentration von 0,5 g/l aufgelöst. Im Stapelbehälter (16) mit einem Nutzinhalt von 10 m³ wird die Flockungsmittellösung vor der Dosierung aufbewahrt. Im Flockungsbecken (4), welches mit einem langsam laufenden Rührwerk ausgestattet ist, bilden sich die Schlammflocken. Das Abwasser-Flocken-Gemisch tritt über die Sedimentationsbecken-Vorkammer in das Sedimentationsbekken (5) aus. Hier setzen sich die Schlammflocken infolge natürlicher Schwerkraft auf den Beckenboden ab. Der Wagenschildräumer (6) transportiert den sedimentierten Schlamm abwechslungsweise in den vorderen und hinteren Schlammsumpf (7). Das über die Ueberlaufrinnen ablaufende, gereinigte Abwasser kann dem Vorfluter (Aare) zugeleitet oder aber für bestimmte Zwecke im Betrieb wieder verwendet werden.

Der Faserschlamm (MEKA-Stoff genannt) wird aus den Schlammsümpfen (7) in einer Konzentration von 0,4 bis 0,7 Prozent in die Pumpvorlage (8) abgezogen und von dort in den Schlammeindicker (9) gepumpt.

Der eingedickte Schlamm wird mit einer Konzentration von 2,2 bis 3,5 Prozent dem Eindicker entnommen und im belüfteten Stapelbehälter bis zur weiteren Verarbeitung aufbewahrt.


Die biologische Abwasserreinigungsanlage BIKA

Funktionsweise der Anlage (Bild 2 und Tabelle 2)

Die gesammelten biochemisch und chemisch belasteten Abwässer, vorwiegend Bleichereiabwässer und Eindampfkondensate, werden in der Neutralisationsanlage mit Asche der Sulfitablaugeverbrennung und mit Kalkschlamm auf einen pH-Wert von 7,3 bis 7,8 neutralisiert (1). Pumpen (2) fördern das neutralisierte Abwasser in das Belebungsbekken der ersten biologischen Stufe (3). Dort wird dieses einem Abbauprozess mit Mikroorganismen unterworfen. Der sich dort bildende Belebtschlamm wird im nachfolgenden Nachklärbecken (4) durch Sedimentation abgeschieden. Der Saugräumer (5) bringt den sedimentierten Schlamm in das Belebungsbecken (3) zurück, während das überstehende, in der ersten Stufe vorgereinigte Abwasser, zum Belebungsbecken der zweiten Stufe (6) fliesst. Im Belebungsbecken der zweiten Stufe (6) spielen sich ähnliche Vorgänge wie in der ersten Stufe ab, jedoch unter anderen Bedingungen. Auch in der zweiten Stufe findet eine ständige Rückführung des Schlammes aus dem Nachklärbecken (7) mittels des Saugräumers (8) in das Belebungsbecken (6) statt. Das aus dem Nachklärbecken der zweiten Stufe abfliessende, gereinigte Abwasser wird in den Vorfluter eingeleitet.

Der im biologischen Prozess zugewachsene Schlamm wird aus der zweiten Stufe in die erste übergeführt und von dort zusammen mit dem Ueberschuss-Schlamm der ersten Stufe in den Eindicker (9) abgepumpt und auf 2 bis 4 Prozent TS eingedickt. Das überstehende Wasser aus

Hydraulische Belastung					Schlammstapelbecken		
Abwassermenge			52 800 m ³	/Tag	2 Rechteckbecken		
Hydr. Einwohnergleichwe	erte (500 I/Eg _h)	105 600		Breite	je 14	m
Mittlerer Abwasseranfall			2 200 m ³		Länge	je 11,2	m
Spitzenbelastung (max. 2		2 h)	2 500 m ³	*	Nutztiefe	je 4,5	m
Kurzzeitspitzen (max. 30	J Willi. TX pro 1.	2 11)	3 000 m ³	7 11	Nutzinhalt	je 705	m³
Biologische Belastung					Aufenthaltszeit	2,1	Tage
BSB ₅ -Tagesanfall BSB ₅ -Konzentration			17 500 kg 332 mg		Luftversorgung		
BSB ₅ -Einwohnergleichwe	erte (75 g O/Eg	ь)	233 330	9 0/1	1. Stufe		
Feststoff-Belastung					6 Drehkolbengebläse à 5166 m³ Luft/h	31 000	m³/h
Feststoffanfall			7 920 kg	/Tag	1 Reservegebläse (für 1. und 2. Stufe) Alpha-Faktor 0.8		
Feststoffkonzentration			150 mg		O ₂ -Ausnützung rund 7,5 %		
					(Mammutpumpen)		
Bemessung					Sauerstoffbedarf	526	kg/h
					OC-load	0,72	0
Belebungsbecken 1. und	z. Stute				2. Stufe		
je 2 Rechteckbecken	1. Stufe		2. Stufe		2 Drehkolbengebläse à 4000 m³ Luft/h	8 000	m3/h
Breite	je 20	m	20	m	Alpha-Faktor 0,8, O ₂ -Ausnützung rund 12.7 %	8 000	m³/h
Länge	je 28	m	28	m	Sauerstoffbedarf	227	kg/h
Nutztiefe	je 4,5	m	4,5	m	OC-load	1,56	Ng/II
Nutzinhalt pro Becken	2 520	m³	2 520	m³	4 40 000		
Nutzinhalt total	5 040	m³	5 040	m³	 und 2. Stufe zusammen, OC-load 	1,03	
Aufenthaltszeit	407	NAME:			Cohlammatanal /für higlariachen Cahlanan)		
(2200 m³/h) Biochem. Raum-	137	Min.	137	Min.	Schlammstapel (für biologischen Schlamm) 2 Drehkolbengebläse à 1000 m³ Luft/h	2 000	m 1 / h
belastung	3,47	kg BSBs, BV Tag	/m³ 0,7		1 Reservegebläse	2 000	m³/h
Mittl. Schlamm-	9	kg/m³	3	kg/m³	Sauerstoffbedarf	44	kg/h
konzentration	Ü	Ng/III	3	Kg/III-			Ng/II
Schlammbelastung	0,38	kg BSBs m³ STS			Bedarf an elektrischer Energie		
			9		Stufe (Belüftung)	13 248	kWh/Tag
Nachklärbecken 1. und 2	Stufe				2. Stufe (Belüftung)	3 840	kWh/Tag
je 2 Rechteckbecken	1. Stufe		O Chuife		Schlammeindickung und	1 056	kWh/Tag
5			2. Stufe		-belüftung		
Breite	je 20	m	20	m	Nebenaggregate:		
Länge Nutztiefe	je 62,5	m	62,5	m	Gebäudeheizung, Beckenkronen-		
Nutzirele Nutzinhalt pro Becken	je 3,4 4 250	m m³	3,4 4 250	m m³	heizung, Spritz- und Brauch-	0.004	1.14/1- /
Nutzinhalt total	8 500	m³	8 500	m³	wasserpumpen, Beleuchtung usw.	2 304	kWh/Tag
Oberfläche pro Becken	1 250	m²	1 250	m²	Zusammen	20 448	kWh/Tag
Oberfläche total	2 500	m²	2 500	m²			
Oberflächenbelastung		$m^3/m^2 h$			Investitionskosten		
— bei 2200 m³/h	0,88		0,88		Baukosten für Anlageblock,		
— bei 2500 m³/h	1,00)	1,00		Schlammeindicker, Schlamm-		
— bei 3000 m³/h	1,2		1,2		stapelbecken, Betriebsgebäude,		
Aufenthaltszeit bei 2200 m³/h	232	Min.	232	Mir	Maschinenraum, gesamte mech masch. Einrichtungen	15 800 000) Er
2200 1117/11	232	WIIII.	232	Min.	•		
Schlammeindicker					Investitionskosten je I/s (für BIKA, 611 I/s)	25 859	₽Fr.
2 Eindicker für biologisch	nen Schlamm				Investitionskosten pro Eg _b (für BIKA, 233 330 Eg _b)	67.70) Fr
Durchmesser		je	14,68 m		(-E. Direct 200 000 EaD)	07.70	
Nutztiefe		je je	3 m		Betriebsmittelverbrauch (Stand Nov. 1975)		
Oberfläche		ie	169 m²			0.5 1-14/1	/mal Alessa
Nutzinhalt pro Eindicker		,6	507 m ³		Elektrische Energie	0,5 kWh 1,35 kWh	/m³ Abwass
Oberflächenbelastung				/m² h			baut
Feststoff-Oberflächenbela	astung			/m² Tag	Entschäumungsmittel ca		Abwasser
					Bedienung	3 Mann	

dem Eindicker wird der Biologie zugeleitet, während der eingedickte Schlamm im belüfteten Stapelbehälter (10) bis zu seiner Weiterverarbeitung aufbewahrt wird.

Gebläse (11) versorgen die Biologie und die Schlammstapelbehälter mit Luft.

Dem biologischen Prozess werden geringe Mengen Nährstoffe in Form von Ammoniakwasser (12) und Phosphorsäure (13) zudosiert.

Entwässerungs- und Verbrennungsanlage EVA

Entwässerungsanlage (Tabelle 3)

Die Entwässerungsanlage besteht aus folgenden Hauptteilen: einem Eindicker für MEKA-Stoff, einem Stapelbehälter für MEKA-Stoff (belüftet), einem Stapelbehälter für Misch-Schlamm (belüftet), drei Doppelsieb-Entwässerungspressen und einer Flockungsmittel-Aufbereitungsanlage.

Verbrennungsanlage (Tabelle 4)

Die Verbrennungsanlage ist so ausgelegt worden, dass der gesamte Rinden- und BIKA-Schlammanfall sowie ein Drittel des MEKA-Stoffes verbrannt werden kann. Zurzeit (Stand November 1975) wird mit der Holzrinde zusammen die gesamte Schlammenge verbrannt.

Die Verbrennungsanlage besteht aus folgenden Hauptteilen: Wirbelschichtofen, Wasserrohr-Zwangsumlauf-Abhitzekessel, Elektrofilter (Elex), Kamin (40 m Höhe, 1 m Innendurchmesser), Rindensilo (200 m³), Aschesilo (100 m³), Schweröltank (stehend, 200 m³), Leichtöltank (liegend, 40 m³).

Die Holzrinde aus der Entrindungsanlage wird nach vorheriger Zerkleinerung im Rindensilo gestapelt. Rinde (etwa 50 Prozent Trockengehalt) und Schlamm (etwa 22 Prozent Trockengehalt) werden gemeinsam, kontinuierlich über die Eintragsschnecke in den Wirbelschichtofen eingeschleust. Je nach Mengenverhältnis von Rinde und Schlamm wird zur Verbrennung eine gewisse Menge

Die wichtigsten Daten über die Entwässerunganlage (EVA) Tabelle 3

			rabelle 3
Entwässerungsgebäude			
Konstruktion: Beton/Max	jerwerk		
Gebäudeabmessungen: (aussen) L		20	m
	reite	17,2	m
	löhe	12,8	m
Umbauter Raum (nach SIA)		5090	m³
Eindicker			
Durchmesser		14,68	m
Nutztiefe		3	m
Oberfläche		169	m²
Nutzinhalt		507	m³
Oberflächenbelastung			
(2000 m³ à ca. 1 % pro Tag)		0,5	m³/m² h
Feststoff-Oberflächenbelastung		118,3	kg/m² Tag
Schlammstapel			
Ein Schlammstapel für MEKA-Stoff,			
ein Schlammstapel für Mischschlan			
(MEKA und BIKA)			
Länge	ie	14	m
Mittlere Breite	je	14	m
Nutztiefe	je	5	m
Nutzinhalt	je	980	m³
O ₂ -Bedarf pro Stapelbecken	,	32	kg O₂/h
Luftuoroovauna			
Luftversorgung			
2 Drehkolbengeb!äse à 1000 m³ Luf	t/h	2000	m³/h
1 Reservegebläse			
Bedarf an elektrischer Energie			
Schlammeindickung (MEKA) und Sch	chlamm-		
belüftung (MEKA und Mischschlam		864	kWh/Tag
Schlammentwässerung (inkl. Trogke			
förderer, Nebenaggregate, Beleucht		3288	kWh/Tag
Schlammentwässerung insgesamt	0,	4152	kWh/Tag

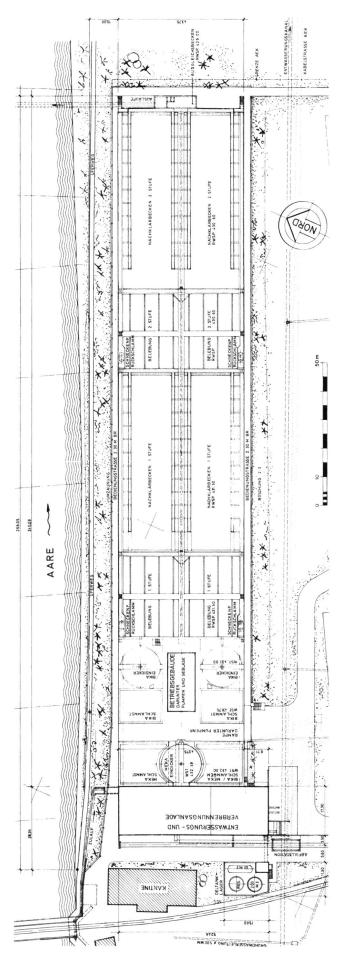


Bild 3 Uebersichtsplan etwa 1:1350; biologische Abwasserreinigungsanlage «System Attisholz», BIKA, und Entwässerungs- und Verbrennungsanlage, EVA.

Bild 4 Biologische Abwasserreinigungsanlage, BIKA, Gesamtaufnahme, Anlageblock mit Betriebsgebäude.

Daten	tur	ale	verbrennungsanlage	(EVA)	Tab	elle 4

Errechnete Daten	Normal- leistung	Maximal- leistung	
Durchsatz von Rinde (50 % TS) Durchsatz von BIKA-Schlamm (19 % TS) Durchsatz von MEKA-Stoff (25 % TS) Zusatzfeuerung (Heizöl, schwer) Verbrennungsluft Abgasmenge Dampferzeugung (13 atü, Sattdampf) Kraftbedarf Aschenanfall	550 3 310 650 480 10 390 15 700 5 950 3 840 304	3 000 3 310 650 240 14 500 22 100 8 700 4 776 353	kg/h kg/h kg/h kg/h Nm³/h Nm³/h kg/h kWh/Tag kg/h
Investitionskosten Entwässerung und Verbrennung		9 600 000) Fr.
Betriebsmittelverbrauch (Stand Nov. 1975) Elektrische Energie Wirbelbettsand (Quarzsand) Schweröl Flockungsmittel (Polyelektrolyt)			kWh/Tag kg/Tag t/Tag kg/Tag
Dampfproduktion (Stand Nov. 1975) Sattdampf, 13 atü		6,5	t/h
Bedienung (Vierschicht-Betrieb)		11	Mann

Zusammenstellung der Investitionskosten	Tabelle 6		
Mechanisch-chemische Abwasserreinigungsanlage, MEKA	7 400 000 Fr.		
Biologische Abwasserreinigungsanlage, BIKA Entwässerungs- und Verbrennungsanlage, EVA	15 800 000 Fr. 9 600 000 Fr.		
Gesamte Investitionskosten für die Restabwasser- behandlung und Schlammbeseitigung	32 800 000 Fr.		

Einige allgemeine Daten für BIKA und EVA		Tabelle 5
Ausmasse der Gesamtanlage (BIKA und EVA) Länge Breite	260 45	m m
Umbauter Raum BIKA, mit Zusatzbauwerk für Entwässerung (Schlammstapel) EVA und Oeltankanlage Ueberbaute Fläche, netto	51 000 17 000 12 000	m³ m³ m²
Verbrennungsgebäude Stahlkonstruktion mit Eternitverkleidung Gebäudeabmessungen: Länge Breite Höhe Umbauter Raum (nach SIA)		m 2 m 4 m m³
«Verbautes» Material Beton Schalungen Armierungen Erdbewegungen	15 000 42 000 720 48 000	m³ m² t m³
Baufortschritt Spatenstich BIKA Betriebsbereitschaft Bauzeit BIKA Baubeginn EVA Inbetriebnahme BIKA Inbetriebnahme der Gesamtanlage (BIKA und EVA)	12. 12. 16. 7. 1 ² / ₃ Jal 20. 5. 16. 10.	1974 hre 1974 1974

Schweröl benötigt. Zum Anfahren des Ofens (nach Stillständen) wird Leichtöl verwendet. Die zur Verbrennung notwendigen Luftmengen werden durch das Verbrennungsluft-Gebläse geliefert. Der Wärmeinhalt der Rauchgase wird im nachgeschalteten Abhitzekessel weitgehend ausgenützt zur Herstellung von Sattdampf mit 13 atü, welcher in das Dampfnetz des Werkes eingespeist wird. Ein nachgeschalteter Elektrofilter sorgt für die Reinigung der Abgase.

Die im System abgeschiedene Verbrennungsasche wird in einem Aschesilo gestapelt, von Zeit zu Zeit ausgetragen und auf Deponie gefahren.

Verfahrenstechnik, mechanisch-maschinelle Anlagen und Rohrleitungsbau: Cellulose Attisholz AG, Dept. ARA, Abwasserreinigungsanlagen.

Totalunternehmer der baulichen Anlagen einschliesslich Bauprojektierung, Bauleitung und Baumeisterarbeiten: Locher & Cie. AG, Bauingenieure und Bauunternehmer, Zürich.

Die Abwassersanierung der Cellulose Attisholz aus behördlicher Sicht

DK 628.3

Ludwig Looser1)

¹ Ansprache anlässlich der Einweihung der Umweltschutzanlagen Attisholz vom 20. November 1975.

Der Abschluss der in den letzten Jahren mit hohem personellem und materiellem Aufwand erstellten Gewässerschutzanlagen in Attisholz gibt auch den Behörden Anlass zu grosser Befriedigung und darf als ein Markstein von nationaler Bedeutung auf dem Wege zur Gesundung unserer Gewässer bezeichnet werden.

Es kann vereinfachend gesagt werden, dass die Abwässer des Werkes der Belastung einer Grossstadt entsprechen. Schwere Auswirkungen auf den Vorfluter waren die unvermeidliche Folge. In einem Schreiben vom 18. August 1971 an die Regierungen der Kantone Bern und Solothurn stellte der Bundesrat fest:

«Der heutige Zustand der Aare von Solothurn abwärts muss als schlecht bezeichnet werden. Die zu hohen Konzentrationen an Abwasserinhaltstoffen bilden zudem überall dort eine latente Gefahr für das Grundwasser, wo Aarewasser — meistens aus Stauhaltungen — ins Grundwasser infiltriert.» . . . «Zweifellos verursachen die Abwässer der Cellulosefabrik Attisholz einen wesentlichen Teil der Aareverschmutzung. Es hiesse jedoch die tatsächlichen Verhältnisse verkennen, wollte man die Dringlichkeit von Sanierungsmassnahmen auf diesen Betrieb beschränken.»

Und er fügte die Mahnung bei:

«Wir bitten Euch deshalb dringend, alle Anstrengungen zu unternehmen, dass im Aareeinzugsgebiet Eurer Kantone unterhalb des Bielersees das Abwasser so rasch als möglich, spätestens aber bis 1975, in zentralen Kläranlagen mechanisch-biologisch gereinigt wird.»