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OPTIMALE BEWIRTSCHAFTUNG VON SPEICHERSEEN

Daniel Vi scher und Manfred Spreafico DK 627.310

Speicherseen sind Bestandteile von wasserwirtschaftlichen
Anlagen; sie dienen der Abstimmung eines gegebenen
Wasserdargebots auf einen bestimmten Wasserbedarf. Ihre
Erstellung bedingt den Bau einer Talsperre und bindet
dadurch einen meist erheblichen Anteil der Anlagekosten. Es
ist deshalb besonders wichtig, Speicherseen optimal
auszulegen und zu betreiben.

Selbstverständlich bedarf diese Optimierung konkreter
Zielvorstellungen (für Speicherseen von Hochdruckkraftwerken

muss beispielsweise deren Rolle innerhalb des
Energiemarktes definiert werden). Dabei sind im wesentlichen

zwei Fälle zu unterscheiden:

a) Die Speicherseen sind noch nicht erstellt. Ihre Opti¬
mierung muss sich somit auf eine Prognose zukünftiger
Gegebenheiten stützen, was ihre Aussagekraft schmälert.

Dafür kann sie sich sowohl auf die Auslegung der
Speicherseen als auch auf deren Betrieb beziehen.

b) Die Speicherseen sind bereits vorhanden. Die Optimie¬
rung lässt sich deshalb angesichts bekannter — weil
gegenwärtiger — Gegebenheiten vornehmen. Wenn von
Umbauten abgesehen wird, muss sie sich aber auf die
Ermittlung des günstigsten Betriebsprogrammes
beschränken.

Der vorliegende Aufsatz befasst sich mit dem zweiten
Fall. Von der Methodik ausgehend, die der sogenannten
Systemanalyse eigen ist, wird auf gewisse Optimierungsansätze

des Operations Research hingewiesen.

1- Einige Begriffe

1.1 DAS WESEN DER SYSTEMANALYSE

Das Fachgebiet der Systemanalyse ist noch zu jung, um
über allgemein anerkannte Begriffe zu verfügen. In Ueber-
einstimmung mit [1] sei aberfolgendes festgehalten:

Um aus vielen möglichen Lösungen einer bestimmten
Aufgabe die beste auszuwählen, bedarf es eines
entsprechenden Vorgehens. Dieses bildet im technischen Bereich
Gegenstand des sogenannten Systems Engineering1.

Systems Engineering umfasst also gewissermassen die
Kunst und die Wissenschaft der Auswahl. Diese
Kunst ist wohl so alt wie die Menschheit selbst. Denn
schon immer mussten alternative Möglichkeiten an den
Zielen der Entscheidungsinstanzen gemessen werden unter

Berücksichtigung der natürlichen, moralischen, gesetzlichen,

wirtschaftlichen, politischen usw. Einschränkungen.
Hingegen ist die zugehörige Wissenschaft verhältnismässig

Umgebung

kontrolliert erwünscht

Einwirkungen

Bild 1 Schematische Darstellung eines Systems.

Auswirkungen

jung; sie tritt praktisch erst seit 10 bis 20 Jahren in

Erscheinung und wird als Systemanalyse bezeichnet.
Ein System (Bild 1) ist ein Verband von zusammenwirkenden

Teilen (Subsystemen) und kann definiert werden,
indem festgelegt wird:

a) welche Teile zum System und welche zu dessen
Umgebung gehören (Systemgrenzen);

b) wie die Einwirkungen der Umgebung auf das System
sind und umgekehrt;

c) wie die Wechselwirkungen zwischen den Teilen des
Systems sowie den Ein- und Auswirkungen sind
(einschliesslich Rückkoppelungseffekte).
Die voll oder nur teilweise kontrollierbaren Einwirkungen

werden Entscheidungsgrössen genannt. Jede
Wahlkombination derselben entspricht einem bestimmten Plan.
Doch verringern die vorhandenen Einschränkungen (Restriktionen)

die Zahl der möglichen Pläne auf die zulässigen.
Ihre Bewertung hinsichtlich der erwünschten und

unerwünschten Auswirkungen des Systems setzt ein Kriterium

voraus, ein Ziel. Dieses besteht im allgemeinen
aus mehreren Teilzielen, von denen einige quantifizierbar
sind und andere nicht. Und unter den ersteren gibt es
solche, die in vergleichbaren Einheiten erfasst und darum
auf «einen Nenner» gebracht werden können; bei
andern gelingt dies nicht. Auch bei den zu berücksichtigenden

Einschränkungen lassen sich quantifizierbare und nicht-
quantifizierbare unterscheiden.

1.2 DIE AUSRICHTUNG DES OPERATIONS RESEARCH

Im Operations Research1 wird nun davon ausgegangen,
dass die Teilziele, die Einschränkungen und Systemeigenschaften

quantifiziert werden können. Ferner wird im Sinne
einer bewussten Vereinfachung vorausgesetzt, dass sich
die Teilziele entweder in vergleichbaren Einheiten ausgedrückt

zu einer einzigen Zielgrösse zusammensetzen oder
dann unabhängig voneinander einzeln betrachten lassen2.

Der Lösungsgang eines Operations Research-Problems
umfasst deshalb im wesentlichen folgende Schritte:

a) Quantifizierung der Systemeigenschaften durch die
S y s t e m p a r a m e t e r sj, s2, s3 Sj...

b) Bezeichnung der Entscheidungsgrössen durch die

Entscheidungsvariablen x1,x2, x3...Xj...
c) Quantifizierung der Einschränkungen durch die

Einschränkungsfunktionen
9m 9m (Xj, s:) < 0; g,, g2, g3 gm

d) Formulierung des Ziels als Zielfunktion
Z Z (X;, Sj)

e) Lösung der Zielfunktion
Z max Z (Xj, s,)

oder
Z min Z (Xj, Sj)

unter Einhaltung der Einschränkungen
gm (Xj, s,) < 0

zur (quantitativen) Bestimmung der Entscheidungsvariablen

X:.

11] [6] Literaturhinweise am Ende des Berichtes.
1 Eine befriedigende deutsche Uebersetzung existiert nicht.

' Operations Research-Methoden zur Erreichung inkommensurabler
Teilziele werden erst in jüngster Zeit diskutiert.

Wasser- und Energiewirtschaft 66. Jahrgang Nr. 3 1974 97



Die Schritte a) bis d) umreissen die Aufgabe
(Problemdefinition) und Schritt e) löst diese. Anders geschrieben
bedeutet Schritt e):

Bestimme Xj derart, dass Z maximal bzw.
minimal und gm < 0 eingehalten wird!

Für solche Optimierungsaufgaben steht eine Fülle von
Lösungsverfahren zur Verfügung. Im Zusammenhang mit
der Aufgabe einer optimalen Speicherbewirtschaftung seien
insbesondere erwähnt:

— die Differentialrechnung
— die lineare Programmierung
— die nichtlineare Programmierung
— die dynamische Programmierung
— die Simulation

Es hängt einerseits von der Art der Ziel- und

Einschränkungsfunktionen und anderseits von den verfügbaren

Hilfsmitteln (Datenverarbeitungsanlagen) ab, welches
Verfahren sich am besten eignet. Im Rahmen dieses
Aufsatzes ist es selbstverständlich nicht möglich, alle
denkbaren Fälle aufzuzeigen. Deshalb werden nur zwei bis drei

Beispiele herausgegriffen, die eine Veranschaulichung
zweier häufig verwendeter Verfahren ermöglichen: der

linearen Programmierung und der dynamischen

Programmierung. Ueber die weiteren
Verfahren zur Behandlung speicherwirtschaftlicher Probleme
wird nur eine grobe Uebersicht vermittelt.

2. Lineare Programmierung

2.1 DAS VERFAHREN

Ergibt die Problemdefinition, dass die Zielfunktion und die

Einschränkungsfunktionen linear von den (nicht negativen)
Entscheidungsvariablen abhängig sind, kann die Problemlösung

mit dem Verfahren der linearen Programmierung

gefunden werden. Das Problem präsentiert
sich also wie folgt:
Maximiere die Zielgrösse

Z C, X, + C2 X2 + + C| Xj + cn xn

unter Berücksichtigung der Einschränkungen

a,, x, + a,2x2 + + alnxn < b,

a2i x, + a22 x2 + + a2n xn < b2

aml X, + am2 X2 ' : amn xn —

und der Nichtnegativität der Entscheidungsvariablen

x, > 0

x2 > 0

X, > 0

xn > 0

(Beim entsprechenden Minimierungsproblem weisen die
Einschränkungsfunktionen umgekehrte Ungleichheitszeichen
auf.)

Die Ungleichungen umreissen in einem n-dimensionalen
Raum den sogenannten Lösungsraum, in welchem jedes
zulässige Zahlenspiel der Entscheidungsvariablen liegen
muss. Zufolge der Linearität weist dieser Lösungsraum aber
gewissermassen Ecken auf, von denen eine dem
optimalen Zahlenspiel entspricht. Das Lösungsverfahren kann
sich folglich darauf beschränken, die «richtige» Ecke zu
finden.

Tatsächlich wurden für die lineare Programmierung
verschiedene Algorithmen entwickelt, die es erlauben, sich
mit den Mitteln der linearen Algebra an die optimale Ecke
des Lösungsproblems «heranzutasten». Voraussetzung ist
allerdings, dass der Lösungsraum konvex ist. Der bekannteste

unter diesen Algorithmen ist der sogenannte Simplex-
Algorithmus [2], auf dessen Beschreibung hier aber nicht
eingegangen wird; der Simplex-Algorithmus steht heute ja
als Standardprogramm in jedem Rechenzentrum zur
Verfügung und kann dort ohne Schwierigkeiten verwendet
werden.

Der Vorteil der linearen Programmierung liegt also darin,

dass sie ein festumrissenes Lösungsverfahren anbietet.
Sowohl die Problemdefinition wie die Problemlösung sind
klar und übersichtlich. Deshalb wird die lineare Programmierung

oft auch dort angewendet, wo die Zielfunktion und
die Einschränkungsfunktionen nur näherungsweise lineari-
siert werden können. Allerdings sind dann die Ergebnisse
entsprechend sorgfältig zu interpretieren. Gerade
Speicherbewirtschaftungsprobleme erheischen diesbezüglich besondere

Aufmerksamkeit.

2.2 DIE OPTIMALE BEWIRTSCHAFTUNG EINES EIN-
ZWECKSPEICHERSEES BEI SAISONABHÄNGIGEN
PREISEN

Im Sinne eines grundsätzlichen Beispiels für eine mögliche
Anwendung der linearen Programmierung sei das in [3]
beschriebene Problem wiedergegeben:

Aus einem Speichersee mit dem Fassungsvermögen
Vmax und bekannten monatlichen Zuflüssen I, wird Wasser
an einen Verbraucher (z. B. an ein Kraftwerk) abgegeben.
Dieser ist bereit, der Saison entsprechende Wasserpreise
Pj zu bezahlen. Für den Betreiber des Speichersees stellt
sich folglich die Frage, wie er die monatlichen Abflüsse O,

wählen soll, um den grösstmöglichen Ertrag zu erzielen
(Bild 2). Der entsprechende Aufwand sei monatlich
konstant, weshalb er aus dem Problem ausgeklammert werden
kann. Zudem sei angenommen, dass der Speichersee am

Anfang des Jahres einen Inhalt von Va aufweise und nie
Wasser verliere (durch Verdunstung, Versickerung usw.).

Dem in Abschnitt 2.1 angeführten Lösungsgang folgend
kann nun festgehalten werden:

a) Systemparameter
— Monatliche Zuflüsse in den Speicher I,, l2 I,2

— Preis der monatlichen Abflüsse P,, P2 P12

— Anfangsinhalt Va

— Fassungsvermögen des Speichers Vmox
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b) Entscheidungsvariable
— Monatliche Abflüsse 02 012

c) Einschränkungsfunktionen
— Der Abfluss darf den Zufluss vermehrt um den An¬

fangsinhalt nicht übersteigen (Einhaltung des
Absenkziels)

Nach dem 1. Monat gilt O] < Ij + Va

Nach dem 2. Monat gilt Oj + 02 < I] + l2 + Va

Nach dem 3. Monat gilt
O] -F 02 + O3 I; I3 V,,

Vn +O -r M -r i2 + 13 — U!0, — o2 —O, < V

a) Systemparameter
— Sommerzuflüsse

Winterzuflüsse
— Preis der Sommerabflüsse4

Preis der Winterabflüsse4

— Anfangsinhalt
— Fassungsvermögen

ls 100 Mio m3

lw 35 Mio m3

Ps 0,05 Fr./m3
Pw 0,20 Fr./m3
Va 20 Mio m3

Vmr,v 80 Mio m3

4 Dies entspricht den bei Hochdruckkraftwerken erzielbaren Wasserpreisen

(Grössenordnung).

12 12
Nach dem 12. Monat gilt 2 °i ^ 2 lj + Va

i=1 i=1
Die gespeicherte Wasserfracht darf nie grösser werden

als das Fassungsvermögen des Speichersees
(Einhaltung des Stauziels):

Nach dem 1. Monat gilt Va + I-, — < Vmax

Nach dem 2. Monat gilt
Va + h + l2-01-02<Vmax

Nach dem 3. Monat gilt

b) Entscheidungsvariable
— Sommerabflüsse Os

Winterabflüsse Ow

c) Einschränkungsfunktionen
— Einhaltung des Absenkziels

Os < ls + Va

also Os < 120 Mio m3

0S + Ow < I, + lw + va
also Os + Ow < 155 Mio m3

— Einhaltung des Stauziels

Va+ ls-Os<Vmax

Mio m3

Mio m3

3 — max

also
Va +

also
— Nichtnegativität

Os > 0 Mio m3

Ow > 0 Mio m3

Os > 40 Mio m3

Os —Ow < Vmax

0„ + 0,„ > 75 Mio m3

12
Nach dem 12. Monat gilt Va + 2' (I; — O;) <

i 1

— Die Abflüsse dürfen nicht negativ sein

O, > 0

02 > 0

O3>0

0]2 '0
d) Zielfunktion

— Der Jahresertrag des Betreibers soll maximal werden

12

Z- 2 Pj O;
i 1

e) Lösung
— Da sowohl die Zielfunktion wie die 36 Einschrän¬

kungsfunktionen linear sind, führt die Anwendung
des Simplex-Algorithmus zur Lösung, das heisst zum
optimalen Zahlenspiel der Entscheidungsvariablen
Ol, o2,... o12

Das gleiche Problem kann selbstverständlich auch
für kürzere Intervalle als 1 Monat und über längere
Perioden als 1 Jahr formuliert werden.

2.3 DIDAKTISCHES ZAHLENBEISPIEL

Der besseren Uebersicht halber wird das oben beschriebene

Beispiel stark vereinfacht, indem das Jahr nicht in 12

Monate, sondern in ein Sommer- und in ein Winterhalbjahr
aufgeteilt wird. Dann lässt sich das Verfahren der linearen
Programmierung nämlich graphisch darstellen und erläutern.

d) Zielfunktion
— Maximiere den Jahresertrag

Z Ps Os 4- PwOw
also Z 0,05 Os + 0,2 Ow Mio Fr.

e) Lösung
Weil nur zwei Entscheidungsvariable vorhanden sind, um-
fasst der Raum der möglichen Lösungen die in Bild 3

dargestellte Ebene. In dieser grenzen die Einschränkungsfunktionen

den Bereich der zulässigen Lösungen, also den

Lösungsraum ein. Es handelt sich dabei um ein Vieleck
ohne einspringende Ecken (konvexer Lösungsraum).

0,= 120

I40 Ow[m/sec]

Bild 3 Graphische Lösung eines linearen Optimierungsproblems
(didaktisches Beispiel: saisonweise Bewirtschaftung eines
Einzweckspeichers).
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Zeichnet man in die Ebene anhand der Zielfunktion eine
Schar von Geraden mit

Z konstant,

also gewissermassen die Linien gleichen Ertrags (Isoquanten)

ein, so erkennt man sofort, dass die Ecke L des

Lösungsraums dem optimalen Wertepaar von Os, Ow
entspricht. Denn es gibt keinen Punkt des Lösungsraums, der
auf einer höherwertigen Linie liegt.

Der Betreiber des Speichersees muss folglich dem
Verbraucher im Sommer Os 40 Mio m3 und im Winter Ow
115 Mio m3 Wasser abgeben, wenn er den maximal
möglichen Ertrag von 25 Mio Fr. erzielen will.

3. Dynamische Programmierung

3.1 DAS VERFAHREN

Die dynamische Programmierung [4] ist nicht ein direktes
Optimierungsverfahren — wie etwa die lineare Programmierung

—, sondern eine Lösungsstrategie. Diese zielt darauf
ab, ein Optimierungsproblem mit vielen Entscheidungsvariablen

auf eine ganz bestimmte Art in viele Teilprobleme

mit weniger Entscheidungsvariablen zu zerlegen. Die

Teilprobleme sollen dann anhand bekannter Optimierungsverfahren

behandelt und die entsprechenden Teillösungen
zur Gesamtlösung zusammengesetzt werden.

Der Arbeitsaufwand für die dynamische Programmierung

hängt stark von der Verknüpfung der Teilprobleme ab.
Die folgenden Ausführungen setzen voraus, dass

a) die Teilprobleme fortlaufende Entscheidungsstufen des
Problems darstellen;

b) jedes Teilproblem nur vom Zustand der vorangehenden
Entscheidungsstufe abhängt (kein langes Gedächtnis);

c) eine Lösung der Teilprobleme möglich ist.

Nicht zu den Voraussetzungen gehören aber Bedingungen

betreffend Kontinuität oder gar Linearität der Ziel- und

Einschränkungsfunktionen und Konvexität des Lösungsraums.

Hierin und in der übersichtlichen Darstellung
umfangreicher Aufgaben liegt die Stärke der dynamischen
Programmierung.

3.2 DIE OPTIMALE BEWIRTSCHAFTUNG EINES EIN¬

ZWECKSPEICHERS BEI SAISON- UND
MENGENABHÄNGIGEN PREISEN

Zur Verdeutlichung der dynamischen Programmierung wird
nochmals das in Abschnitt 2.2 geschilderte Optimierungsproblem

behandelt. Dabei wird allerdings angenommen,
dass die Wasserpreise nicht nur vom Zeitpunkt der Wasserabgabe

abhängen, sondern auch vom Umfang derselben.
Gewöhnlich sinken ja die Preise mit zunehmendem
Angebot.

Die Definition des Optimierungsproblems hinsichtlich
Systemparameter, Entscheidungsvariablen, Einschränkungsfunktionen

und Zielfunktion bleibt sich formal gleich. Nur
ist zu ergänzen, dass die Wasserpreise Funktionen der
Abflüsse sind und die Zielfunktion nichtlinear ist:

— Preis der monatlichen Abflüsse
Pi Pi (Oj) mit 1 < i < 12 Fr./m3

Anfangszustand
^ vorwärts

Endzustand
rückwärts ^

— Zielfunktion Z S P; Oj Fr.
12
S

i 1

Bild 4 Optimierungsschema für einen Einzweckspeicher.

chend den 12 Monaten des betrachteten Jahres in 12

Teilprobleme zerlegt werden, wobei jedes Teilproblem den

monatlichen Betrieb des Speichers betrifft und somit eine

Entscheidungsstufe in einem fortlaufenden Entscheidungs-
prozess darstellt.

Um die Verknüpfung der Teilprobleme zu verdeutlichen,
kann in Anlehnung an [5] folgender Kunstgriff eingeführt
werden: Der Jahresspeicher mit den 12 monatlichen
Abflüssen wird gemäss Bild 4 in 12 aneinandergereihte
Monatsspeicher mit je einem monatlichen Abfluss zerlegt.
Jeder Monatsspeicher wird gleichsam durch den Restbestand

des vorangeschalteten Monatsspeichers und durch
den Monatszufluss gespeist. Dieser Restbestand des
vorangeschalteten Monatsspeichers ist selbstverständlich identisch

mit dem Anfangsinhalt des betrachteten Monatsspeichers;

er wird deshalb als Zustandsgrösse oder Zustands-
variable dieses Speichers bezeichnet.

Betrachtet man nun beispielsweise den i-ten
Monatsspeicher, so ergibt die Wasserbilanz am Ende des Monats

VM V; + I; —Oj
Diese Gleichung — die sogenannte Zustandstransforma-

tionsgleichung — zeigt die Verknüpfung der Zustandsva-
riablen des Teilproblems i—1 mit der Zustands- und der
Entscheidungsvariablen des Teilproblems i.

In Uebereinstimmung mit dem in Abschnitt 1.2 skizzierten

allgemeinen Lösungsgang kann das T e i I p r o b I e m

demnach wie folgt formuliert und gelöst werden:

a) Systemparameter und Zustandsvariable
— Zufluss im Monat i I;

— Preis des Abflusses im Monat i Pj

— Anfangsinhalt V;

— Fassungsvermögen Vmnx

b) Entscheidungsvariable
— Abfluss im Monat i O;

c) Einschränkungsfunktionen
— Einhaltung des Absenkziels Oj < I; + Vj

— Einhaltung des Stauziels Vj < Vmox

— Nichtnegativität Oj > O

Damit ist auch schon klargestellt, dass das

Optimierungsproblem nicht mit linearer Programmierung gelöst
werden kann. Hingegen gehorcht es den Voraussetzungen
der dynamischen Programmierung. So kann es entspre-

d) Zielfunktion
— Maximiere den Ertrag der Monatsspeicher 1 bis i

zi Pi Oj -F Zj_! max (Vj_i)

wobei mit der Zustandstransformationsgleichung

Vj_! Vj + Ij-Oj
erreicht werden kann, dass die Zielfunktion Zj nur
von der Entscheidungsvariablen Oj und derZustands-
variablen Vj abhängt,

z; Zj (Oj, Vj)

Und diese Eigenschaft begründet die Anwendbarkeit
der dynamischen Programmierung.
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e) Losung
— Unter Festhaltung der Zustandsvariablen V, wird die

Zielfunktion anhand eines geeigneten Optimierungsverfahrens

gelöst. Das Ergebnis ist ein optimaler
Wert für den Ausfluss O; und ein maximaler Wert
der Zielfunktion z, in Abhängigkeit der Zustandsvariablen

V;.

0| opt Oj opt (V;)

zi max zi max (Vj)

Der Lösungsgang des Teilproblems i steht für den
Lösungsgang aller Teilprobleme, denn diese sind ja
gleichartig.
Für die dynamische Programmierung ist nun
kennzeichnend, dass die Berechnung an einem der beiden

Enden der Reihe der Teilprobleme beginnt,
zum andern führt und von dort wieder umkehrt. Dabei

hängt es von der Problemstellung ab, ob vom
Anfangs- oder vom Endzustand ausgegangen wird;
in gewissen Fällen sind auch beide Berechnungsabläufe

möglich. Im vorliegenden Beispiel wird, wie
die Numerierung der Monatsspeicher im Bild 4
andeutet, vom Endzustand aus rückwärts bis zum
Anfangszustand, und dann wieder vorwärts bis zum
Endzustand gerechnet.

1. Rückwärtsrechnung

Die Teilfunktion des ersten Teilproblems und die zugehörigen

Restriktionen lauten:

Z1 h o,
O, < I, + V,
V1 < vmax
O, >0
Die Lösung wird nach irgendeinem Optimierungsverfahren
gefunden und liefert

°i opt O, opt (V,)
Z1 max Z1 max (Vf)

Dann wird das zweite Teilproblem mit der Zielfunktion

z2 p2 02 + z, max (V,)

behandelt. Diese Zielfunktion wird zuerst anhand der Zu-
standstransformationsgleichung
V, V2 + l2 — 02

transformiert in

z2 P2 °2 + Z1 max (V2> °2)
und anschliessend unter Berücksichtigung der Restriktionen

analog zum Teilproblem 1 gelöst. Das Ergebnis ist

°2 opt °2 opt (V2)

Z2 max z2 max (V2)-

Auf ähnliche Weise werden auch die folgenden Teilprobleme

gelöst bis man für das zwölfte Teilproblem erhält

V,, V12 + l12— 012
^12 opt ~ ^12 opt (V,2)
z12 max — z12 max (V12)

Nun ist aber V12 als Anfangszustand bekannt. Es gilt
V12 Va>

so dass sowohl der optimale Entscheid 012opt wie das
Maximum der Zielfunktion des 12. Teilproblems bestimmt
werden können. Und dieses Maximum ist definitionsge-
mäss identisch mit dem Maximum der Zielfunktion des
Gesamtproblems

^max z12 max

2. Vorwärtsrechnung

In der Vorwärtsrechnung interessieren nur noch die Werte
der übrigen optimalen Entscheide. Die Maxima der übrigen
Zielfunktionen sind irrelevant. Mit den bekannten Werten
V12 und 012opt des 12. Teilproblems ermittelt man

— anhand der Zustandstransformationsgleichung

vll V12 + '12 — °12 opt

— auf einfache Weise den Zustand V,, des 11. Teiipro-
blems und aus diesem den optimalen Entscheid O,, op,
usw. Schliesslich bestimmt man den Zustand V, und
den optimalen Entscheid O, opt des ersten Teilproblems
und erreicht den Endzustand

V V, + 1,-0, opt

Damit ist die Lösung des Gesamtproblems — bestehend

aus den optimalen monatlichen Ausflüssen (Abgaben
an den Verbraucher) und dem entsprechenden maximalen
Ertrag — gefunden:

— Optimale monatliche Ausflüsse O, opt, 02 opt... 0,2 op,
— Maximaler Ertrag Zmax

3.3 DIDAKTISCHES ZAHLENBEISPIEL

Die Methodik der dynamischen Programmierung erscheint
noch einleuchtender, wenn folgendes Zahlenbeispiel
behandelt wird:

Grundsätzlich wird der gleiche Einzweckspeicher
betrachtet wie im vorangehenden Abschnitt. Vereinfachend
wird aber angenommen, dass der Betrieb nur quartalsweise
interessiere und bloss fünf Abgabemöglichkeiten umfasse,
nämlich eine Ausnützung der Abflusskapazität (begrenzt
durch die Ausbaugrösse der Anlagen) zu 0, 25, 50, 75 oder
100%. Im übrigen sei das Optimierungsproblem — wie es
sich für ein Hochdruckspeicherwerk stellen könnte — konkret

definiert durch

a) Systemparameter
(es wird ein Jahr betrachtet, das am 1. April beginnt)

— Quartalszuflüsse
I, =65 l2 40 l3 20 l4 10 Mio m3

— Ertrag der Quartalsabflüsse (tabellarisch als
Funktion E, E, [O,])

für O, 10 02 20 03 30 ,04 40 Mio m3

1. Quartal E, 0,8 1,2 1,6 1,8 Mio Fr.

2. Quartal E2 1,0 1,5 2 2,5 Mio Fr.

3. Quartal E3 1,6 2,4 3,2 3,7 Mio Fr.

4. Quartal E4 2 3 4 4,6 Mio Fr.

Anfangsinhalt Va 0 Mio m3

Fassungsvermögen vv max 60 Mio m3

Abflusskapazität ®max 40 Mio m3

(pro Quartal ausgedrückt)

b) Entscheidungsvariable
— Quartalsabflüsse (-abgäbe)

O, 02 03 04 Mio m3

c) Einschränkungsfunktionen
— Einhaltung des Absenkziels

nach dem 1. Quartal O, < 65 Mio m3

nach dem 2. Quartal O, + 02 < 105

nach dem 3. Quartal 0, + 02 + 03 < 125

nach dem 4. Quartal O, + 02 + 03 + 04 < 135

— Einhaltung des Stauziels

nach dem 1. Quartal O, > 5 Mio m3

nach dem 2. Quartal O, + 02 > 45

nach dem 3. Quartal O, + 02 + 03 > 65
nach dem 4. Quartal O, + 02 + 03 + 04 > 75
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Bild 5 Graphische Lösung eines mit dynamischer Programmierung behandelten Optimierungsproblems
(didaktisches Beispiel: quartalsweise Bewirtschaftung eines Einzweckspeichers).

— Berücksichtigung der Abflusskapazität
O, < 40 02 < 40 03 < 40 04 < 40 Mio m3

— Nichtnegativität
O, > O 02> O 03 > O 04 > O Mio m3

d) Zielfunktion
Maximiere den Jahresertrag
Z E-| (O,) + E2 (02) + E3 (03) + E4 (04) Mio Fr.

e) Lösung
Entsprechend der eingeführten Vereinfachung können
die Entscheidungsvariablen je die fünf Werte O, 10, 20,
30, 40 Mio m3 annehmen. Diese Werte werden in Bild 5

(untere Hälfte) quartalsweise durch fünf Pfeile dargestellt,

deren Spitzen mit den zugehörigen quartalsweisen

Erträgen angeschrieben sind. Für das 1. Quartal
gilt beispielsweise

• Quartalsabfluss O] 0, 10, 20, 30, 40 Mio m3

• Zugehöriger Ertrag E-| =0, 0.8, 1.2, 1.6, 1.8 Mio Fr.

Und aus diesen fünf Optionen des 1. Quartals ist die
optimale auszuwählen, usw.

Im Sinne der dynamischen Programmierung wird das
Optimierungsproblem also in vier Teilprobleme aufgeteilt:

Zuerst wird nach dem optimalen quartalsweisen
Betrieb gefragt, um dann daraus den optimalen Jahres-
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betrieb zusammenzusetzen. Der Ablauf der Berechnung
kann — in Analogie zu einem Vorschlag von [6] für
ein anderes Problem — graphisch in Bild 5 (obere
Hälfte) verfolgt werden. Diesmal erfolgt die Vorwärtsrechnung

vor der Rückwärtsrechnung.

1. Vorwärtsrechnung

Der Anfangszustand ist mit dem Anfangsinhalt von 0 Mio m3

gegeben und lässt im 1. Quartal grundsätzlich die Wahl
von fünf Optionen offen. Die Beachtung der Einschränkungen

zeigt aber, dass die Option Ot 0 unzulässig ist, weil
sie zu einer Ueberschreitung des Stauziels führt. Demzufolge

sind vier Optionen zulässig, die zu folgenden
(maximalen) Erträgen führen:

V-| 0 Mio m3

O] opt 10, 20, 30, 40 Mio m3

max 0.8, 1.2, 1.6, 1.8 Mio Fr.

Die vier entsprechenden Pfeile in Bild 5 (obere Hälfte)
bezeichnen vier mögliche Anfangszustände — und damit
Zustandsgrössen V — des 2. Quartals. Auf diesen können
grundsätzlich wiederum je fünf Optionen — also insgesamt
20 Optionen — aufgebaut werden. Davon scheiden zehn
aus, weil sie sich mit der Einschränkung betreffend Stauziel

nicht vertragen. Und durch Probieren stellt man fest,
dass unter den verbleibenden zehn nur folgende vier optimal

sind:

V2 10, 20, 30, 40 Mio m3

opt 40, 40, 40, 40 Mio m3

z2max 3.3, 3.7, 4.1, 4.3 Mio Fr.

Die vier entsprechenden Pfeile bezeichnen wiederum
vier mögliche Anfangszustände des 3. Quartals. Von diesen
ausgehend lassen sich auf analoge Weise sechs optimale
Optionen finden:

V3 50, 60, 70, 80 Mio m3

O3opt 20, 30, 40, 40, 40, 40 Mio m3

z3 max 5.7, 6.5, 7.0, 7.4, 7.8, 8.0 Mio Fr.

Schliesslich erhält man für das 4. Quartal die sechs
optimalen Optionen, die zum Endergebnis führen:

V4 70, 80, 80, 90 Mio m3

°4opt 10. 20, 30, 30, 40, 40 Mio m3

z4 max 7-7> 3-7. 9.7,10.5,11.1,11.6 Mio Fr.

Definitionsgemäss stellt das Maximum dieses letzten
Teilproblems auch dasjenige des gesamten Problems dar.
Der maximal erzielbare Jahresertrag ist

7max z4 max 11,6 Mio Fr.

2. Rückwärtsrechnung

Bild 5 (obere Hälfte) zeigt nun unmittelbar, wie die optimalen

Abflüsse — und damit die Entscheide — in den vier
Quartalen gefunden werden können. Es geht einfach darum,

die zum Erfolg führenden Pfeile vom Endzustand zum

Anfangszustand zurückzuverfolgen :

°4 opt 40, 03 opt 40, 02 opt 40, O, opt 10 Mio m3

Würden die eingangs angenommenen Vereinfachungen
weggelassen, so könnte das Optimierungsproblem — bei

entsprechend grösserem Aufwand — in analoger Weise
gelöst werden. Anstelle des quartalsweisen Betriebs Messe

sich beispielsweise der wöchentliche berücksichtigen und
anstelle der fünf Abgabemöglichkeiten, deren 50 (oder eine
kontinuierliche Abgabefunktion). Die graphische Verfolgung
des Lösungsganges gemäss Bild 5 wäre grundsätzlich
immer noch möglich; die eigentliche Problemlösung müsste

aber aus Zeitgründen auf einem Computer vorgenommen
werden.

Die Darstellung von Bild 5 (obere Hälfte) ist insofern
interessant, als sie die Speicherbewirtschaftung anhand
der — allen Praktikern vertrauten — Summenkurven
erhellt. Die das Absenkziel markierende Linie ist nämlich
nichts anderes als die Summenkurve der gegebenen
Zuflüsse (einschliesslich dem Anfangsvolumen), und die
Sequenz der zum Erfolg führenden Pfeile, die Summenkurve
der optimalen Abflüsse. Der grösste Abstand dieser
Summenkurven entspricht dabei dem benötigten Speicherinhalt
— im vorliegenden Beispiel von Bild 5 also 55 Mio m3.

Und dieser Speicherinhalt darf selbstverständlich nicht grösser

sein, als der verfügbare Speicherinhalt (Fassungsvermögen)

— das heisst 60 Mio m3 —, was die das Stauziel
markierende Linie veranschaulicht.

3.4 WEITERE BEISPIELE

Um das Wesen der dynamischen Programmierung
aufzuzeigen, werden in den Abschnitten 3.2 und 3.3 besonders
einfache Optimierungsprobleme betrachtet. Mit der dynamischen

Programmierung lassen sich jedoch auch wesentlich

kompliziertere Speicherbewirtschaftungsprobleme
lösen.

So können bei den Systemparametern und Zustandsgrössen

beispielsweise ausser den zeitlich schwankenden
Zuflüssen noch die Verdunstungs- und Versickerungsver-
luste im Speichersee berücksichtigt werden. Oder es können

anstelle deterministischer hydrologischer Grössen sto-
chastische in Betracht gezogen werden. Ebenso ist es möglich,

neben den bereits erwähnten Einschränkungen noch
eine ganze Reihe von weiteren betreffend Niedrigwassergarantie

und Hochwasserschutz usw. einzuführen. Und
schliesslich braucht das System nicht auf einen Einzweckspeicher

beschränkt zu bleiben, sondern kann auf einen
Verbund von mehreren Mehrzweckspeichern ausgedehnt
werden. Dementsprechend sind dann selbstverständlich
kombinierte Zielfunktionen zu verwenden.

An der Versuchsanstalt für Wasserbau, Hydrologie und

Glaziologie der ETHZ (VAW) wurde beispielsweise ein

Computerprogramm für folgendes Optimierungsproblem
entwickelt: An zwei parallelen Flüssen besteht je ein
Speichersee, dessen Ausfluss zuerst in einer Wasserkraftanlage
und dann in einem Siedlungsgebiet (Trink-, Brauch- und

Kühlwasserversorgung, Bewässerung) genutzt wird. Unterwegs

soll dieser Ausfluss einen minimalen Wert nicht
unterschreiten (Niedrigwassergarantie, Pflichtwasser) und
einen maximalen Wert nicht überschreiten (Hochwasserschutz).

Die Verquickung der beiden Speicherseen ist
insofern gegeben, als ihre Wasserkraftanlagen das gleiche
Stromversorgungsgebiet bedienen (Bild 6). Gefragt ist nach
der gemeinsamen Bewirtschaftung dieser Speicherseen zur

Ol Kraft¬
werk

1

Grenzhochwasser Siedlungs¬
gebiet

1Dotierwasser

Strom

Speicher
2

Stromversorgungs-

gebiet

o2 Kraft¬
werk

2

Grenzhochwasser Siedlungs¬
gebiet

2Dotierwasser

Bild 6 Schema zweier paralleler Mehrzweckspeicher.
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Ërzielung eines maximalen Ertrages aus dem Stromverkauf
bei gegebenem Wasserverbrauch auch im Siedlungsgebiet.
Die Optimierung erfolgt anhand der Methode der dynamischen

Programmierung.

4. Weitere Verfahren

4.1 ÜBERGANG VON DETERMINISTISCHEN AUF
STOCHASTISCHE MODELLE

In den vorangehenden Abschnitten werden die Speicherseen

durch deterministische Modelle beschrieben. Das

heisst, die Parameter der Speicherbewirtschaftungsprobleme

werden als Grössen behandelt, die eindeutig sind
und folglich einen sicheren Entscheid ermöglichen.

Nun handelt es sich bei diesen Grössen aber unter
anderem um hydrologische Werte, die im Zeitpunkt des

Entscheides teilweise als Messwerte vorliegen und teilweise
vorausgesagt werden müssen. Selbstverständlich sind
sowohl diese Messwerte wie insbesondere die Prognosen
mit gewissen Unsicherheiten behaftet, die sich auf die

Entscheidungssituation übertragen. Aehnliches lässt sich auch
in bezug auf die Grössen sagen, welche die Marktverhältnisse

(Wasserpreise usw.) kennzeichnen.

Um dieser Entscheidungssituation Rechnung zu tragen,
können die Speicherseen durch sogenannte stochastische
Modelle beschrieben werden. Die zugehörigen Parameter
sind dann nicht mehr eindeutige Grössen, sondern stochastische

Variablen. Und zur Lösung der
Speicherbewirtschaftungsprobleme gelangen Optimierungsverfahren zur
Anwendung, die mit der Wahrscheinlichkeitstheorie
verknüpft sind. An solchen stehen etwa die stochastische

lineare Programmierung oder die
stochastische dynamische Programmierung
zur Verfügung, als Anpassungen der in Abschnitt 2.1 und
3.1 beschriebenen Verfahren für stochastische Ziel- und

Einschränkungsfunktionen. Daneben gibt es aber noch
andere Verfahren, die — wie die Lagerhaltungstheo-
r i e und die Warteschlangentheorie — eigens
für die beschriebene Entscheidungssituation entwickelt
wurden.

Die Lagerhaltungstheorie befasst sich
grundsätzlich mit der Frage nach der optimalen Lagerbewirt¬

schaftung bei gegebenen Lager-, Bestell- und Fehlbestandskosten.

Sie behandelt also ein Problem, das mit demjenigen

der Speicherbewirtschaftung eng verwandt ist. Deshalb

lässt sie sich in einigen Fällen nutzbringend anwenden.

Auch die Warteschlangentheorie ermöglicht
einige interessante Einblicke in das Speicherverhalten.
Denn sie behandelt Vorgänge, wie sie bei der Kundenabfertigung

an einem Schalter usw. auftreten. Und es kann
gezeigt werden, dass zwischen dem Warteraum (der auf
Abfertigung wartenden Kunden) und einem Speicher
gewisse Analogien bestehen: Gemäss Bild 7 entsprechen sich

— die zufallsbedingt ankommenden Kunden und die Spei¬
cherzuflüsse

— der Warteraum und der Speicher
— die Warteschiange und die Speicherfüllung
— die Kundenabfertigung (Bedienung) und die Speicher¬

bewirtschaftung
— die abgefertigten (abgehenden) Kunden und die Spei¬

cherabflüsse (Wasserabgabe).

4.2 SIMULATION

Die Simulation eines Systems —• deterministischer oder
stochastischer Natur — dient dazu, dessen Auswirkungen
unter der Voraussetzung konkreter Entscheide zu ermitteln.

Und wenn diese Voraussetzung variiert wird, so
erlaubt der Vergleich der Auswirkungen Rückschlüsse auf
die Entscheide und damit die Optimalität derselben.

Die Simulation ist also nicht ein unmittelbares
Optimierungsverfahren. Denn sie geht in erster Linie von getroffenen

oder angenommenen Entscheiden aus und führt zu den
entsprechenden Folgen, statt umgekehrt.

Beim Problem der Speicherbewirtschaftung bedeutet
dies, dass der Speicherbetrieb unter der Voraussetzung
verschiedener Betriebsweisen simuliert wird, um den damit
erzielbaren Nutzen zu ermitteln. Die Simulation kann dabei
mittels eines Computerprogrammes oder eines geeigneten
Gerätes geschehen. Als Ergebnis fällt eine Reihe voneinander

zugeordneten Betriebsweisen und Nutzen an, aus der
das Optimum ausgewählt werden kann.

Die Simulation entspricht also praktisch einem
Variantenstudium und ist darum jedermann verständlich. Anderseits

bedingt sie bei vielen Entscheidungsvariablen einen
grossen Aufwand, weshalb sie gerade für
Speicherbewirtschaftungsprobleme nur herangezogen wird, wenn die
eigentlichen Optimierungsverfahren versagen.
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