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OPTIMALE BEWIRTSCHAFTUNG VON SPEICHERSEEN

Daniel Vischer und Manfred Spreafico

Speicherseen sind Bestandteile von wasserwirtschaftlichen
Anlagen; sie dienen der Abstimmung eines gegebenen
Wasserdargebots auf einen bestimmten Wasserbedarf. lhre
Erstellung bedingt den Bau einer Talsperre und bindet da-
durch einen meist erheblichen Anteil der Anlagekosten. Es
ist deshalb besonders wichtig, Speicherseen optimal aus-
zulegen und zu betreiben.

Selbstverstandlich bedarf diese Optimierung konkreter
Zielvorstellungen (fiir Speicherseen von Hochdruckkraft-
werken muss beispielsweise deren Rolle innerhalb des
Energiemarktes definiert werden). Dabei sind im wesent-
lichen zwei Falle zu unterscheiden:

a) Die Speicherseen sind noch nicht erstellt. Ihre Opti-
mierung muss sich somit auf eine Prognose zukiinftiger
Gegebenheiten stiitzen, was ihre Aussagekraft schma-
lert. Dafiir kann sie sich sowohl auf die Auslegung der
Speicherseen als auch auf deren Betrieb beziehen.

b) Die Speicherseen sind bereits vorhanden. Die Optimie-
rung lasst sich deshalb angesichts bekannter — weil
gegenwartiger — Gegebenheiten vornehmen. Wenn von
Umbauten abgesehen wird, muss sie sich aber auf die
Ermittlung des glinstigsten Betriebsprogrammes be-
schranken.

Der vorliegende Aufsatz befasst sich mit dem zweiten
Fall. Von der Methodik ausgehend, die der sogenannten
Systemanalyse eigen ist, wird auf gewisse Optimierungs-
ansétze des Operations Research hingewiesen.

1. Einige Begriffe

1.1 DAS WESEN DER SYSTEMANALYSE

Das Fachgebiet der Systemanalyse ist noch zu jung, um
lUber allgemein anerkannte Begriffe zu verfiigen. In Ueber-
einstimmung mit [1] sei aber folgendes festgehalten:

Um aus vielen méglichen Lésungen einer bestimmten
Aufgabe die beste auszuwihlen, bedarf es eines entspre-
chenden Vorgehens. Dieses bildet im technischen Bereich
Gegenstand des sogenannten Systems Engineering'.

Systems Engineering umfasst also gewissermassen die
Kunst und die Wissenschaft der Auswahl. Diese
Kunst ist wohl so alt wie die Menschheit selbst. Denn
schon immer mussten alternative Méglichkeiten an den
Zielen der Entscheidungsinstanzen gemessen werden un-
ter Berlicksichtigung der natirlichen, moralischen, gesetz-
lichen, wirtschaftlichen, politischen usw. Einschrankungen.
Hingegen ist die zugehorige Wissenschaft verhaltnismassig

Umgebung

kontrolliert erwunscht

. teilweise
Ein- kontrolliert

I Aus-
wirkungen

wirkungen

neutral

unkontrolliert unerwiinscht

Bild 1 Schematische Darstellung eines Systems.

[11 ... [6] Literaturhinweise am Ende des Berichtes.
' Eine befriedigende deutsche Uebersetzung existiert nicht.

DK 627.810

jung; sie tritt praktisch erst seit 10 bis 20 Jahren in Er-
scheinung und wird als Systemanalyse bezeichnet.

Ein System (Bild 1) ist ein Verband von zusammenwir-
kenden Teilen (Subsystemen) und kann definiert werden,
indem festgelegt wird:

a) welche Teile zum System und welche zu dessen Um-
gebung gehéren (Systemgrenzen);

b) wie die Einwirkungen der Umgebung auf das System
sind und umgekehrt;

¢) wie die Wechselwirkungen zwischen den Teilen des
Systems sowie den Ein- und Auswirkungen sind (ein-
schliesslich Rickkoppelungseffekte).

Die voll oder nur teilweise kontrollierbaren Einwirkun-
gen werden Entscheidungsgréssen genannt. Jede Wahl-
kombination derselben entspricht einem bestimmten Plan.
Doch verringern die vorhandenen Einschrankungen (Restrik-
tionen) die Zahl der méglichen Plane auf die zulassigen.

lhre Bewertung hinsichtlich der erwiinschten und un-
erwinschten Auswirkungen des Systems setzt ein Krite-
rium voraus, ein Ziel. Dieses besteht im allgemeinen
aus mehreren Teilzielen, von denen einige quantifizierbar
sind und andere nicht. Und unter den ersteren gibt es
solche, die in vergleichbaren Einheiten erfasst und darum
auf «einen Nenner» gebracht werden kénnen; bei an-
dern gelingt dies nicht. Auch bei den zu beriicksichtigen-
den Einschrankungen lassen sich quantifizierbare und nicht-
quantifizierbare unterscheiden.

1.2 DIE AUSRICHTUNG DES OPERATIONS RESEARCH

Im Operations Research! wird nun davon ausgegangen,
dass die Teilziele, die Einschrankungen und Systemeigen-
schaften quantifiziert werden kénnen. Ferner wird im Sinne
einer bewussten Vereinfachung vorausgesetzt, dass sich
die Teilziele entweder in vergleichbaren Einheiten ausge-
drickt zu einer einzigen Zielgrosse zusammensetzen oder
dann unabhé&ngig voneinander einzeln betrachten lassen?.

Der Losungsgang eines Operations Research-Problems
umfasst deshalb im wesentlichen folgende Schritte:

a) Quantifizierung der Systemeigenschaften durch die
Systemparameter s;,S;83...5;...

b) Bezeichnung der Entscheidungsgréssen durch die
Entscheidungsvariablen X, Xp, X3...Xj...

c) Quantifizierung der Einschrankungen durch die Ein-
schrankungsfunktionen
Om = 9m (X5, 8) <0;01,92,93--- Oy - - -
d) Formulierung des Ziels als Zielfunktion
Z=1Z7Z(xs)
e) L6 sung der Zielfunktion
Z = max Z (xj, s;)
oder
Z = min Z (x;, sj)
unter Einhaltung der Einschrankungen
9m (X 8) <0

zur (quantitativen) Bestimmung der Entscheidungsva-
riablen x;.

? Operations Research-Methoden zur Erreichung inkommensurabler
Teilziele werden erst in jiingster Zeit diskutiert.

.
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Die Schritte a) bis d) umreissen die Aufgabe (Problem-
definition) und Schritt e) l6st diese. Anders geschrieben

bedeutet Schritt e):
Bestimme x; derart, dass Z maximal

minimal und g, <0eingehalten wird!

bzw.

Fiir solche Optimierungsaufgaben steht eine Fille von
Lésungsverfahren zur Verfligung. Im Zusammenhang mit
der Aufgabe einer optimalen Speicherbewirtschaftung seien
insbesondere erwéahnt:

— die Differentialrechnung

— die lineare Programmierung

— die nichtlineare Programmierung
— die dynamische Programmierung
— die Simulation

Es hangt einerseits von der Art der Ziel- und Ein-
schrankungsfunktionen und anderseits von den verfiigba-
ren Hilfsmitteln (Datenverarbeitungsanlagen) ab, welches
Verfahren sich am besten eignet. Im Rahmen dieses Auf-
satzes ist es selbstverstandlich nicht maéglich, alle denk-
baren Falle aufzuzeigen. Deshalb werden nur zwei bis drei
Beispiele herausgegriffen, die eine Veranschaulichung
zweier haufig verwendeter Verfahren ermoglichen: der
linearen Programmierung und der dynami-
schen Programmierung. Ueber die weiteren Ver-
fahren zur Behandlung speicherwirtschaftlicher Probleme
wird nur eine grobe Uebersicht vermittelt.

2. Lineare Programmierung

2.1 DAS VERFAHREN

Ergibt die Problemdefinition, dass die Zielfunktion und die
Einschrankungsfunktionen linear von den (nicht negativen)
Entscheidungsvariablen abhangig sind, kann die Problem-
I6sung mit dem Verfahren der linearen Program-
mierung gefunden werden. Das Problem présentiert
sich also wie folgt:

Maximiere die Zielgrésse

Z=C] X1 +02x2+...+cixi...-l-cnxn
unter Berlicksichtigung der Einschréankungen

an Xp +a]2X2+...+a-|anSb-|
a21x]+a22x2+...+a2nxn§b2

an1 X1 T amaXo + ...+ an, X, < by,

und der Nichtnegativitat der Entscheidungsvariablen

X3 =0
X220

Xi>0

X, =0

(Beim entsprechenden Minimierungsproblem weisen die
Einschrankungsfunktionen umgekehrte Ungleichheitszeichen
auf.)

Die Ungleichungen umreissen in einem n-dimensionalen
Raum den sogenannten Ldsungsraum, in welchem jedes
zulassige Zahlenspiel der Entscheidungsvariablen liegen
muss. Zufolge der Linearitat weist dieser Losungsraum aber
gewissermassen Ecken auf, von denen eine dem opti-
malen Zahlenspiel entspricht. Das Lésungsverfahren kann
sich folglich darauf beschranken, die «richtige» Ecke zu
finden.

Tatsachlich wurden fiir die lineare Programmierung ver-
schiedene Algorithmen entwickelt, die es erlauben, sich
mit den Mitteln der linearen Algebra an die optimale Ecke
des Ldésungsproblems «heranzutasten». Voraussetzung ist
allerdings, dass der Lésungsraum konvex ist. Der bekann-
teste unter diesen Algorithmen ist der sogenannte Simplex-
Algorithmus [2], auf dessen Beschreibung hier aber nicht
eingegangen wird; der Simplex-Algorithmus steht heute ja
als Standardprogramm in jedem Rechenzentrum zur Ver-
figung und kann dort ohne Schwierigkeiten verwendet
werden.

Der Vorteil der linearen Programmierung liegt also dar-
in, dass sie ein festumrissenes Ldsungsverfahren anbietet.
Sowohl die Problemdefinition wie die Problemlésung sind
klar und Ubersichtlich. Deshalb wird die lineare Program-
mierung oft auch dort angewendet, wo die Zielfunktion und
die Einschrankungsfunktionen nur naherungsweise lineari-
siert werden kénnen. Allerdings sind dann die Ergebnisse
entsprechend sorgféltig zu interpretieren. Gerade Speicher-
bewirtschaftungsprobleme erheischen diesbezliglich beson-
dere Aufmerksamkeit.

2.2 DIE OPTIMALE BEWIRTSCHAFTUNG EINES EIN-
ZWECKSPEICHERSEES BEI SAISONABHANGIGEN
PREISEN

Im Sinne eines grundsatzlichen Beispiels fiir eine mogliche
Anwendung der linearen Programmierung sei das in [3]
beschriebene Problem wiedergegeben:

Aus einem Speichersee mit dem Fassungsvermdgen
Vmax Und bekannten monatlichen Zufliissen |; wird Wasser
an einen Verbraucher (z. B. an ein Kraftwerk) abgegeben.
Dieser ist bereit, der Saison entsprechende Wasserprefse
P; zu bezahlen. Fiir den Betreiber des Speichersees stellt
sich folglich die Frage, wie er die monatlichen Abfliisse O;
wahlen soll, um den grésstmdéglichen Ertrag zu erzielen
(Bild 2). Der entsprechende Aufwand sei monatlich kon-
stant, weshalb er aus dem Problem ausgeklammert werden
kann. Zudem sei angenommen, dass der Speichersee am
Anfang des Jahres einen Inhalt von V., aufweise und nie
Wasser verliere (durch Verdunstung, Versickerung usw.).

Dem in Abschnitt 2.1 angefiihrten Losungsgang folgend
kann nun festgehalten werden:

a) Systemparameter
— Monatliche Zufliisse in den Speicher Iy, Iy ... Iy
— Preis der monatlichen Abflisse Py, Py ... Py
— Anfangsinhalt V,
— Fassungsvermdégen des Speichers V.

Abfluss O

Zufluss [; Verbraucher

Bild 2 Schema eines Einzweckspeichers.
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b) Entscheidungsvariable
— Monatliche Abfliisse Oy, O, ... Oy,

C) Einschrankungsfunktionen

— Der Abfluss darf den Zufluss vermehrt um den An-
fangsinhalt nicht Ubersteigen (Einhaltung des Ab-
senkziels)

Nach dem 1. Monat gilt 0, < +V,

Nach dem 2. Monat gilt O + Oy < I} + Iy + V,
Nach dem 3. Monat gilt

O+ 07+ 034 I;+ 13+ V,

12 12

> 0= ¥ L +4v

i=1 i=1

— Die gespeicherte Wasserfracht darf nie grosser wer-
den als das Fassungsvermogen des Speichersees
(Einhaltung des Stauziels):

Nach dem 12. Monat gilt

a

Nach dem 1. Monat gilt Vo +1h—0, 5V

max
Nach dem 2. Monat gilt
Vo+ h +1,—0,—0,<V
Nach dem 3. Monat gilt
Vo+ i+l +13—0;—0,— 03V

max

max

max

Nach dem 12. Monat gilt V,+ 2 (,—0;) <V,
i=1

— Die Abflisse durfen nicht negativ sein
0, >0
0,>0
O3>0

d) Zielfunktion

— Der Jahresertrag des Betreibers soll maximal werden
12
Z = .}7 Pi O;
i=1

e) Léosung

— Da sowohl die Zielfunktion wie die 36 Einschran-
kungsfunktionen linear sind, fiihrt die Anwendung
des Simplex-Algorithmus zur Lésung, das heisst zum
optimalen Zahlenspiel der Entscheidungsvariablen
O], 02, & W O]z

Das gleiche Problem kann selbstverstandlich auch
fur kirzere Intervalle als 1 Monat und Uber ldngere
Perioden als 1 Jahr formuliert werden.

2.3 DIDAKTISCHES ZAHLENBEISPIEL

Der besseren Uebersicht halber wird das oben beschrie-
bene Beispiel stark vereinfacht, indem das Jahr nicht in 12
Monate, sondern in ein Sommer- und in ein Winterhalbjahr
aufgeteilt wird. Dann lasst sich das Verfahren der linearen
Programmierung namlich graphisch darstellen und erlau-
tern.

a) Systemparameter
— Sommerzuflisse I, = 100 Mio m3
Winterzuflisse l, = 35Miom?3
— Preis der Sommerabflisse* P, = 0,05 Fr./m?
Preis der Winterabfliisse* P, = 0,20 Fr./m3
— Anfangsinhalt Vq = 20 Mio m?
— Fassungsvermégen Viax = 80 Mio m?

4 Dies entspricht den bei Hochdruckkraftwerken erzielbaren Wasser-
preisen (Gréssenordnung).

b) Entscheidungsvariable
— Sommerabflisse O, Miom?
Winterabflisse O,, Miom?
c) Einschrankungsfunktionen
— Einhaltung des Absenkziels

0, <1, + V,

also Og < 120 Mio m?
O, +0, < I+ 1, +V,
also Og + O, < 155 Mio m?

— Einhaltung des Stauziels
Vot li— 0, <V

max

also O = 40 Mio m?

Va + Is + lw_os_ow < Vmux
also O, + O,, = 75 Mio m?
— Nichtnegativitat

O, = 0 Mio m?

O,, > 0 Mio m?

d) Zielfunktion

— Maximiere den Jahresertrag
Z=P,0O,+P,0O,
also Z=10,060, + 0,20,, Mio Fr.

e) Losung

Weil nur zwei Entscheidungsvariable vorhanden sind, um-
fasst der Raum der moglichen Lésungen die in Bild 3 dar-
gestellte Ebene. In dieser grenzen die Einschrankungsfunk-
tionen den Bereich der zuldssigen Ldsungen, also den
Loésungsraum ein. Es handelt sich dabei um ein Vieleck
ohne einspringende Ecken (konvexer Lésungsraum).

!

B I 1
anten
[m7sec] b
\m \m \{‘}
L \B ) S
140 2. = \\%
\% \= =2
120 P \ 5 \ 04120
“ \
. b \
100 \ \

2 Losungs-

80

60

.,
&,

‘s
244

40

20

20 40 60 80 100 120 140 0, [m¥sec)

Bild 3 Graphische Losung eines linearen Optimierungsproblems
(didaktisches Beispiel: saisonweise Bewirtschaftung eines Einzweck-
speichers).
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Zeichnet man in die Ebene anhand der Zielfunktion eine
Schar von Geraden mit

Z = konstant,

also gewissermassen die Linien gleichen Ertrags (Isoquan-
ten) ein, so erkennt man sofort, dass die Ecke L des L6-
sungsraums dem optimalen Wertepaar von O,, O, ent-
spricht. Denn es gibt keinen Punkt des Lésungsraums, der
auf einer hoherwertigen Linie liegt.

Der Betreiber des Speichersees muss folglich dem Ver-
braucher im Sommer O; = 40 Mio m? und im Winter O,, =
115 Mio m3 Wasser abgeben, wenn er den maximal még-
lichen Ertrag von 25 Mio Fr. erzielen will.

3. Dynamische Programmierung
3.1 DAS VERFAHREN

Die dynamische Programmierung [4] ist nicht ein direktes
Optimierungsverfahren — wie etwa die lineare Programmie-
rung —, sondern eine Losungsstrategie. Diese zielt darauf
ab, ein Optimierungsproblem mit vielen Entscheidungs-
variablen auf eine ganz bestimmte Art in viele Teilpro-
bleme mit weniger Entscheidungsvariablen zu zerlegen. Die
Teilprobleme sollen dann anhand bekannter Optimierungs-
verfahren behandelt und die entsprechenden Teillésungen
zur Gesamtlésung zusammengesetzt werden.

Der Arbeitsaufwand fiir die dynamische Programmie-
rung hangt stark von der Verkniipfung der Teilprobleme ab.
Die folgenden Ausfiihrungen setzen voraus, dass

a) die Teilprobleme fortlaufende Entscheidungsstufen des
Problems darstellen;

b) jedes Teilproblem nur vom Zustand der vorangehenden
Entscheidungsstufe abhéngt (kein langes Gedachtnis);
c) eine Losung der Teilprobleme moglich ist.

Nicht zu den Voraussetzungen gehdren aber Bedingun-
gen betreffend Kontinuitat oder gar Linearitat der Ziel- und
Einschréankungsfunktionen und Konvexitat des Losungs-
raums. Hierin und in der Ubersichtlichen Darstellung um-
fangreicher Aufgaben liegt die Starke der dynamischen
Programmierung.

3.2 DIE OPTIMALE BEWIRTSCHAFTUNG EINES EIN-
ZWECKSPEICHERS BEI SAISON- UND MENGEN-
ABHANGIGEN PREISEN

Zur Verdeutlichung der dynamischen Programmierung wird
nochmals das in Abschnitt 2.2 geschilderte Optimierungs-
problem behandelt. Dabei wird allerdings angenommen,
dass die Wasserpreise nicht nur vom Zeitpunkt der Wasser-
abgabe abhéngen, sondern auch vom Umfang derselben.
Gewohnlich sinken ja die Preise mit zunehmendem An-
gebot.

Die Definition des Optimierungsproblems hinsichtlich
Systemparameter, Entscheidungsvariablen, Einschrankungs-
funktionen und Zielfunktion bleibt sich formal gleich. Nur
ist zu ergéanzen, dass die Wasserpreise Funktionen der Ab-
flisse sind und die Zielfunktion nichtlinear ist:

— Preis der monatlichen Abfliisse
P;=P; (O) mit1<i<12 Fr./m?

12
— Zielfunktion Z = 2%
i=A

Pi Oi Fr.

Damit ist auch schon klargestellt, dass das Optimie-
rungsproblem nicht mit linearer Programmierung éelést
werden kann. Hingegen gehorcht es den Voraussetzungen
der dynamischen Programmierung. So kann es entspre-

Anfangszustand
—> vorwarts

Endzustand
ruckwarts

Bild 4 Optimierungsschema fiir einen Einzweckspeicher.

chend den 12 Monaten des betrachteten Jahres in 12 Teil-
probleme zerlegt werden, wobei jedes Teilproblem den
monatlichen Betrieb des Speichers betrifft und somit eine
Entscheidungsstufe in einem fortlaufenden Entscheidungs-
prozess darstellt.

Um die Verknupfung der Teilprobleme zu verdeutlichen,
kann in Anlehnung an [5] folgender Kunstgriff eingefihrt
werden: Der Jahresspeicher mit den 12 monatlichen Ab-
flissen wird geméss Bild 4 in 12 aneinandergereihte Mo-
natsspeicher mit je einem monatlichen Abfluss zerlegt.
Jeder Monatsspeicher wird gleichsam durch den Restbe-
stand des vorangeschalteten Monatsspeichers und durch
den Monatszufluss gespeist. Dieser Restbestand des voran-
geschalteten Monatsspeichers ist selbstverstandlich iden-
tisch mit dem Anfangsinhalt des betrachteten Monatsspei-
chers; er wird deshalb als Zustandsgrésse oder Zustands-
variable dieses Speichers bezeichnet.

Betrachtet man nun beispielsweise den i-ten Monats-
speicher, so ergibt die Wasserbilanz am Ende des Monats
Via=Vi+ i —0;

Diese Gleichung — die sogenannte Zustandstransforma-
tionsgleichung — zeigt die Verknipfung der Zustandsva-
riablen des Teilproblems i—1 mit der Zustands- und der
Entscheidungsvariablen des Teilproblems i.

In Uebereinstimmung mit dem in Abschnitt 1.2 skizzier-
ten allgemeinen Losungsgang kann das Teilproblem
demnach wie folgt formuliert und gelést werden:

a) Systemparameterund Zustandsvariable

— Zufluss im Monat i l;
— Preis des Abflusses im Monati P;

— Anfangsinhalt V;
— Fassungsvermégen Vinax

b) Entscheidungsvariable
— Abfluss im Monat i O;

c) Einschrankungsfunktionen

— Einhaltung des Absenkziels Oi< i+ Vs
— Einhaltung des Stauziels Vi € Vimex
— Nichtnegativitat 0, =0

d) Zielfunktion
— Maximiere den Ertrag der Monatsspeicher 1 bis i
z, = P; O; + zi3 max (Vi)
wobei mit der Zustandstransformationsgleichung
Vi, =V, + ;—0;
erreicht werden kann, dass die Zielfunktion z; nur

von der Entscheidungsvariablen O; und der Zustands-
variablen V; abhangt.

z; =z (O; V)
Und diese Eigenschaft begriindet die Anwendbarkeit
der dynamischen Programmierung.
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e) Lésung
— Unter Festhaltung der Zustandsvariablen V; wird die
Zielfunktion anhand eines geeigneten Optimierungs-
verfahrens gelést. Das Ergebnis ist ein optimaler
Wert fiir den Ausfluss O; und ein maximaler Wert
der Zielfunktion z; in Abhé&ngigkeit der Zustands-
variablen V;.

0; opt = 0; opt (Vi)
Zi max = Zi max (Vi)

Der Loésungsgang des Teilproblems i steht flir den
Lésungsgang aller Teilprobleme, denn diese sind ja
gleichartig.

Fir die dynamische Programmierung ist nun kenn-
zeichnend, dass die Berechnung an einem der bei-
den Enden der Reihe der Teilprobleme beginnt,
zum andern fiihrt und von dort wieder umkehrt. Da-
bei hangt es von der Problemstellung ab, ob vom
Anfangs- oder vom Endzustand ausgegangen wird;
in gewissen Fallen sind auch beide Berechnungs-
ablaufe méglich. Im vorliegenden Beispiel wird, wie
die Numerierung der Monatsspeicher im Bild 4 an-
deutet, vom Endzustand aus rlickwarts bis zum An-
fangszustand, und dann wieder vorwarts bis zum
Endzustand gerechnet.

1. Rickwartsrechnung

Die Teilfunktion des ersten Teilproblems und die zugehéri-
gen Restriktionen lauten:

21 =Py O

O <h+V

V] < Vinax

0, =0

Die Lésung wird nach irgendeinem Optimierungsverfahren
gefunden und liefert

01 opt = 0, opt (V)

21 max = Z1 max (V1)

Dann wird das zweite Teilproblem mit der Zielfunktion

23 = Py Oy + 23 oy (V1)

behandelt. Diese Zielfunktion wird zuerst anhand der Zu-
standstransformationsgleichung

V~| = V2 + |2— 02

transformiert in

Zy = P2 02 + 21 ‘max (V2, 02)

und anschliessend unter Berlicksichtigung der Restriktio-
nen analog zum Teilproblem 1 gelést. Das Ergebnis ist
02 opt = 0, opt (V2)

22 max = Z2 max (V2)-

Auf ahnliche Weise werden auch die folgenden Teilpro-
bleme gelést bis man fiir das zwélfte Teilproblem erhalt
Vi = Vig + ijp— Oy

012 opt = O120pt (V12)

212 max = Z12 max (V12)

Nun ist aber V;, als Anfangszustand bekannt. Es gilt

Vip = Var

So dass sowohl der optimale Entscheid Oj,,,; wie das
Maximum der Zielfunktion des 12. Teilproblems bestimmt
werden koénnen. Und dieses Maximum ist definitionsge-
méss identisch mit dem Maximum der Zielfunktion des Ge-
samtproblems

Z

max = 212 max

2. Vorwartsrechnung

In der Vorwartsrechnung interessieren nur noch die Werte
der Ubrigen optimalen Entscheide. Die Maxima der ubrigen
Zielfunktionen sind irrelevant. Mit den bekannten Werten
Viz und Oy o des 12. Teilproblems ermittelt man
— anhand der Zustandstransformationsgleichung
Vi1 = Vig + 12— 012 opt
— auf einfache Weise den Zustand V;; des 11. Teilpro-
blems und aus diesem den optimalen Entscheid Ojq o4
usw. Schliesslich bestimmt man den Zustand V; und
den optimalen Entscheid O; ,; des ersten Teilproblems
und erreicht den Endzustand
V = V] g |'|—O'| opt
Damit ist die Lésung des Gesamtproblems — beste-
hend aus den optimalen monatlichen Ausflissen (Abgaben
an den Verbraucher) und dem entsprechenden maximalen
Ertrag — gefunden:
— Optimale monatliche Ausflisse O7 gp1 Og pt - - - 012 opt
— Maximaler Ertrag

ZmGX

3.3 DIDAKTISCHES ZAHLENBEISPIEL

Die Methodik der dynamischen Programmierung erscheint
noch einleuchtender, wenn folgendes Zahlenbeispiel be-
handelt wird:

Grundsatzlich wird der gleiche Einzweckspeicher be-
trachtet wie im vorangehenden Abschnitt. Vereinfachend
wird aber angenommen, dass der Betrieb nur quartalsweise
interessiere und bloss flinf Abgabemdglichkeiten umfasse,
namlich eine Ausniltzung der Abflusskapazitat (begrenzt
durch die Ausbaugrésse der Anlagen) zu 0, 25, 50, 75 oder
100 %o. Im Ubrigen sei das Optimierungsproblem — wie es
sich fiir ein Hochdruckspeicherwerk stellen kénnte — kon-
kret definiert durch
a) Systemparameter

(es wird ein Jahr betrachtet, das am 1. April beginnt)

— Quartalszufliisse

;=65 l,=40 I3=20 l4=10 Miom?
— Ertrag der Quartalsabflisse (tabellarisch als
Funktion E; = E; [O;])
fur O; =10 0Oy =20 O3 =30 04 =40 Miom?
1. Quartal E; =08 1,2 1,6 1,8 Mio Fr.
2.Quartal E, =10 1,5 2 2,5 Mio Fr.
3.Quartal E3=16 24 3,2 3.7 Mio Fr.
4. Quartal E;j =2 3 4 4,6 Mio Fr.
— Anfangsinhalt Vg =0 Mio m?
— Fassungsvermégen Viax = 60 Mio m3
— Abflusskapazitat Omax = 40 Mio m3
(pro Quartal ausgedriickt)
b) Enischeidungsvariable
— Quartalsabflisse (-abgabe)
O] 02 03 04 Mio m3

c) Einschrankungsfunktionen
— Einhaltung des Absenkziels
nach dem 1. Quartal
nach dem 2. Quartal
nach dem 3. Quartal O+ 0y + 03<125
nach dem 4. Quartal O; + Oy + O3 + Oy < 135
— Einhaltung des Stauziels
nach dem 1. Quartal
nach dem 2. Quartal
nach dem 3. Quartal
nach dem 4. Quartal

0; < 65 Miom?
O; + 0, <105

0, = 5 Miom?
0, +0,>145 =
Oy + Oy, + O3 > 65
O +0y+03+042=>75
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Bild 5 Graphische Losung eines mit dynamischer Programmierung behandelten Optimierungsproblems
(didaktisches Beispiel: quartalsweise Bewirtschaftung eines Einzweckspeichers).

— Berlicksichtigung der Abflusskapazitat

0; <40 0,<40 03<40 0O4<40 Mio m3
— Nichtnegativitat
O]ZO 0220 0320 0420 Mio m3
d) Zielfunktion
Maximiere den Jahresertrag
= E'| (O]) £ E2 (02) + E3 (03) + E4 (04) Mio Fr.

e) Léosung
Entsprechend der eingefiihrten Vereinfachung koénnen
die Entscheidungsvariablen je die finf Werte O, 10, 20,
30, 40 Mio m?® annehmen. Diese Werte werden in Bild 5

(untere Halfte) quartalsweise durch fiinf Pfeile darge-
stellt, deren Spitzen mit den zugehdérigen quartalswei-
sen Ertrdgen angeschrieben sind. Fir das 1. Quartal
gilt beispielsweise

— Quartalsabfluss O, =0, 10, 20, 30,
— Zugehoriger Ertrag E; =0, 0.8, 1.2, 1.,

40 Mio m3
1.8 Mio Fr.

Und aus diesen fiinf Optionen des 1. Quartals ist die
optimale auszuwahlen, usw.

Im Sinne der dynamischen Programmierung wird das
Optimierungsproblem also in vier Teilprobleme aufge-
teilt: Zuerst wird nach dem optimalen quartalsweisen
Betrieb gefragt, um dann daraus den optimalen Jahres-
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betrieb zusammenzusetzen. Der Ablauf der Berechnung
kann — in Analogie zu einem Vorschlag von [6] fir
ein anderes Problem — graphisch in Bild 5 (obere
Halfte) verfolgt werden. Diesmal erfolgt die Vorwaérts-
rechnung vor der Ruckwartsrechnung.

1. Vorwartsrechnung

Der Anfangszustand ist mit dem Anfangsinhalt von 0 Mio m3
gegeben und lasst im 1. Quartal grundsatzlich die Wabhl
von fiinf Optionen offen. Die Beachtung der Einschrankun-
gen zeigt aber, dass die Option O; = 0 unzulassig ist, weil
sie zu einer Ueberschreitung des Stauziels fiihrt. Demzu-
folge sind vier Optionen zuléssig, die zu folgenden (maxi-
malen) Ertragen flhren:

Vi=o0 Mio m3
O1 ot =10, 20, 30, 40 Miom?
Z1 max = 0.8, 1.2, 1.6, 1.8 Mio Fr.
Die vier entsprechenden Pfeile in Bild 5 (obere Halfte)
bezeichnen vier mdgliche Anfangszustdnde — und damit

Zustandsgrossen V — des 2. Quartals. Auf diesen kénnen
grundsétziich wiederum je fiinf Optionen — also insgesamt
20 Optionen — aufgebaut werden. Davon scheiden zehn
aus, weil sie sich mit der Einschrankung betreffend Stau-
ziel nicht vertragen. Und durch Probieren stellt man fest,
dass unter den verbleibenden zehn nur folgende vier opti-
mal sind:

\Z) = 10, 20, 30, 40 Miom?
Ogopt = 40, 40, 40, 40 Miom?
Z)max = 3.3, 3.7, 41, 43 MioFr.

Die vier entsprechenden Pfeile bezeichnen wiederum
vier mogliche Anfangszustande des 3. Quartals. Von diesen
ausgehend lassen sich auf analoge Weise sechs optimale
Optionen finden:

V3 = 50, 60, 70, 80 Miom?3
O30pt = 20, 30, 40, 40, 40, 40 Miom?
= 57, 65, 70, 7.4, 7.8, 8.0 MioFr.

23 max

Schliesslich erhalt man fiir das 4. Quartal die sechs
optimalen Optionen, die zum Endergebnis fiihren:

v, = 10, 80, 80, 90 Miom?
O4opt = 10, 20, 30, 30, 40, 40 Miom?
Zymax = 7.7, 87, 97,105, 111, 11.6 Mio Fr.

Definitionsgemass stellt das Maximum dieses letzten
Teilproblems auch dasjenige des gesamten Problems dar.
Der maximal erzielbare Jahresertrag ist

Zivax = Z4 max = 11,6 Mio Fr.

2. Rickwartsrechnung

Bild 5 (obere Halfte) zeigt nun unmittelbar, wie die optima-
len Abflisse — und damit die Entscheide — in den vier
Quartalen gefunden werden kénnen. Es geht einfach dar-
um, die zum Erfolg filhrenden Pfeile vom Endzustand zum

Anfangszustand zurlickzuverfolgen:
O opt = 40, O3 opt = 40, Og oot = 40, O oy = 10 Mio m?

Wiirden die eingangs angenommenen Vereinfachungen
weggelassen, so konnte das Optimierungsproblem — bei
entsprechend grosserem Aufwand — in analoger Weise
gelost werden. Anstelle des quartalsweisen Betriebs liesse
sich beispielsweise der wochentliche berticksichtigen und
anstelle der flinf Abgabemdglichkeiten, deren 50 (oder eine
kontinuierliche Abgabefunktion). Die graphische Verfolgung
des Loésungsganges gemass Bild 5 ware grundsatzlich im-
mer noch mdglich; die eigentliche Problemlésung miisste

aber aus Zeitgriinden auf einem Computer vorgenommen
werden.

Die Darstellung von Bild 5 (obere Halfte) ist insofern
interessant, als sie die Speicherbewirtschaftung anhand
der — allen Praktikern vertrauten — Summenkurven er-
hellt. Die das Absenkziel markierende Linie ist néamlich
nichts anderes als die Summenkurve der gegebenen Zu-
flisse (einschliesslich dem Anfangsvolumen), und die Se-
quenz der zum Erfolg filhrenden Pfeile, die Summenkurve
der optimalen Abflisse. Der grésste Abstand dieser Sum-
menkurven entspricht dabei dem bendétigten Speicherinhalt
— im vorliegenden Beispiel von Bild 5 also 55 Mio m3.
Und dieser Speicherinhalt darf selbstverstandlich nicht grés-
ser sein, als der verfiigbare Speicherinhalt (Fassungsver-
mogen) — das heisst 60 Mio m®* —, was die das Stauziel
markierende Linie veranschaulicht.

3.4 WEITERE BEISPIELE

Um das Wesen der dynamischen Programmierung aufzu-
zeigen, werden in den Abschnitten 3.2 und 3.3 besonders
einfache Optimierungsprobleme betrachtet. Mit der dynami-
schen Programmierung lassen sich jedoch auch wesent-
lich kompliziertere Speicherbewirtschaftungsprobleme 16-
sen.

So kdénnen bei den Systemparametern und Zustands-
gréssen beispielsweise ausser den zeitlich schwankenden
Zuflissen noch die Verdunstungs- und Versickerungsver-
luste im Speichersee beriicksichtigt werden. Oder es kon-
nen anstelle deterministischer hydrologischer Grossen sto-
chastische in Betracht gezogen werden. Ebenso ist es mog-
lich, neben den bereits erwdhnten Einschrankungen noch
eine ganze Reihe von weiteren betreffend Niedrigwasser-
garantie und Hochwasserschutz usw. einzufiihren. Und
schliesslich braucht das System nicht auf einen Einzweck-
speicher beschrénkt zu bleiben, sondern kann auf einen
Verbund von mehreren Mehrzweckspeichern ausgedehnt
werden. Dementsprechend sind dann selbstverstandlich
kombinierte Zielfunktionen zu verwenden.

An der Versuchsanstalt fiir Wasserbau, Hydrologie und
Glaziologie der ETHZ (VAW) wurde beispielsweise ein
Computerprogramm fiir folgendes Optimierungsproblem
entwickelt: An zwei parallelen Flissen besteht je ein Spei-
chersee, dessen Ausfluss zuerst in einer Wasserkraftanlage
und dann in einem Siedlungsgebiet (Trink-, Brauch- und
Kuhlwasserversorgung, Bewaéasserung) genutzt wird. Unter-
wegs soll dieser Ausfluss einen minimalen Wert nicht un-
terschreiten (Niedrigwassergarantie, Pflichtwasser) und ei-
nen maximalen Wert nicht Uberschreiten (Hochwasser-
schutz). Die Verquickung der beiden Speicherseen ist in-
sofern gegeben, als ihre Wasserkraftanlagen das gleiche
Stromversorgungsgebiet bedienen (Bild 6). Gefragt ist nach
der gemeinsamen Bewirtschaftung dieser Speicherseen zur

Iy : 04 Kraft- | Grenzhochwasser | Siedlungs-
Speicher werk gebiet -
! 1 Dotierwasser 1
Strom Stromver-
sorgungs-
gebiet
I2 ] 0, Kraft- | Grenzhochwasser | Siedlungs-
Speicher werk gebiet |
2 2 Dotierwasser 2

Bild 6 Schema zweier paralleler Mehrzweckspeicher.
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Erzielung eines maximalen Ertrages aus dem Stromverkauf
bei gegebenem Wasserverbrauch auch im Siedlungsgebiet.
Die Optimierung erfolgt anhand der Methode der dynami-
schen Programmierung.

4. Weitere Verfahren

41 UBERGANG VON DETERMINISTISCHEN AUF
STOCHASTISCHE MODELLE

In den vorangehenden Abschnitten werden die Speicher-
seen durch deterministische Modelle beschrieben. Das
heisst, die Parameter der Speicherbewirtschaftungspro-
bleme werden als Grdéssen behandelt, die eindeutig sind
und folglich einen sicheren Entscheid ermdglichen.

Nun handelt es sich bei diesen Grdssen aber unter
anderem um hydrologische Werte, die im Zeitpunkt des
Entscheides teilweise als Messwerte vorliegen und teilweise
vorausgesagt werden missen. Selbstversténdlich sind so-
wohl diese Messwerte wie insbesondere die Prognosen
mit gewissen Unsicherheiten behaftet, die sich auf die Ent-
scheidungssituation tUbertragen. Aehnliches lasst sich auch
in bezug auf die Gréssen sagen, welche die Marktverhélt-
nisse (Wasserpreise usw.) kennzeichnen.

Um dieser Entscheidungssituation Rechnung zu tragen,
kénnen die Speicherseen durch sogenannte stochastische
Modelle beschrieben werden. Die zugehdrigen Parameter
sind dann nicht mehr eindeutige Grdssen, sondern stocha-
stische Variablen. Und zur Loésung der Speicherbewirt-
schaftungsprobleme gelangen Optimierungsverfahren zur
Anwendung, die mit der Wahrscheinlichkeitstheorie ver-
knipft sind. An solchen stehen etwa die stochasti-
sche lineare Programmierung oder die sto-
chastische dynamische Programmierung
zur Verfigung, als Anpassungen der in Abschnitt 2.1 und
3.1 beschriebenen Verfahren fiir stochastische Ziel- und
Einschrankungsfunktionen. Daneben gibt es aber noch an-
dere Verfahren, die — wie die Lagerhaltungstheo-
rie und die Warteschlangentheorie — eigens
fur die beschriebene Entscheidungssituation entwickelt
wurden.

Die Lagerhaltungstheorie befasst sich grund-
satzlich mit der Frage nach der optimalen Lagerbewirt-

abgefertigte
iy
Kunden

X|e
c =]
5| x
alo
313
2

3

Ll

b |

o

Ld
Bedienung

Bild 7

Analogie zwischen Warteschlangen- und Speicherproblem.

schaftung bei gegebenen Lager-, Bestell- und Fehlbestands-
kosten. Sie behandelt also ein Problem, das mit demjeni-
gen der Speicherbewirtschaftung eng verwandt ist. Des-
halb lasst sie sich in einigen Fallen nutzbringend anwen-
den.

Auch die Warteschlangentheorie ermoglicht
einige interessante Einblicke in das Speicherverhalten.
Denn sie behandelt Vorgange, wie sie bei der Kundenab-
fertigung an einem Schalter usw. auftreten. Und es kann
gezeigt werden, dass zwischen dem Warteraum (der auf
Abfertigung wartenden Kunden) und einem Speicher ge-
wisse Analogien bestehen: Geméass Bild 7 entsprechen sich

— die zufallsbedingt ankommenden Kunden und die Spei-
cherzuflusse

— der Warteraum und der Speicher

— die Warteschlange und die Speicherfiillung

— die Kundenabfertigung (Bedienung) und die Speicher-
bewirtschaftung

— die abgefertigten (abgehenden) Kunden und die Spei-
cherabflusse (Wasserabgabe).

4.2 SIMULATION

Die Simulation eines Systems — deterministischer oder
stochastischer Natur — dient dazu, dessen Auswirkungen
unter der Voraussetzung konkreter Entscheide zu ermit-
teln. Und wenn diese Voraussetzung variiert wird, so er-
laubt der Vergleich der Auswirkungen Riickschliisse auf
die Entscheide und damit die Optimalitat derselben.

Die Simulation ist also nicht ein unmittelbares Optimie-
rungsverfahren. Denn sie geht in erster Linie von getroffe-
nen oder angenommenen Entscheiden aus und fiihrt zu den
entsprechenden Folgen, statt umgekehrt.

Beim Problem der Speicherbewirtschaftung bedeutet
dies, dass der Speicherbetrieb unter der Voraussetzung
verschiedener Betriebsweisen simuliert wird, um den damit
erzielbaren Nutzen zu ermitteln. Die Simulation kann dabei
mittels eines Computerprogrammes oder eines geeigneten
Gerates geschehen. Als Ergebnis féllt eine Reihe voneinan-
der zugeordneten Betriebsweisen und Nutzen an, aus der
das Optimum ausgewahlt werden kann.

Die Simulation entspricht also praktisch einem Varian-
tenstudium und ist darum jedermann verstandlich. Ander-
seits bedingt sie bei vielen Entscheidungsvariablen einen
grossen Aufwand, weshalb sie gerade fiir Speicherbewirt-
schaftungsprobleme nur herangezogen wird, wenn die ei-
gentlichen Optimierungsverfahren versagen.
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