Zeitschrift: Werk, Bauen + Wohnen

Herausgeber: Bund Schweizer Architekten

Band: 105 (2018)

Heft: 11: Lernlandschaften : neue Typologien für die Schule

Rubrik: werk-material

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

werk-material 02.02/722 Primar- und Sekundarschulen

Standort

Weidenstrasse 9, 8645 Jona Bauherrschaft

Stadt Rapperswil-Jona

Architektur

Karamuk Kuo Architects, Zürich Mitarbeit: Jeannette Kuo, Ünal Karamuk, Gilbert Berthold (Projektleiter), Brian Jordan, Philipp Macke, Philipp Grossenbacher, Carla Häni, Christos Chontos, Philipp Klostermann, Markus Krieger, Adrien Comte, Nicola Schürch, Zofia Roguska, Luc Carpinelli Bauingenieur Tragwerk

Kartec Engineering GmbH, Zollikerberg, Ergun Karamuk

Bauingenieur Holztragwerk Pirmin Jung Ingenieure AG, Sargans, Lukas Wolf

Baumanagement und Realisation HSSP AG, Zürich, Rolf Schläfli (Gesamtleiter), Ina Haase (Projektleiterin), Catharina Weis, Mirjana Vejnović-Petrović,

Thomas Reichelt, Fabian Studer Spezialisten

Landschaftsarchitekt: atelier tp, Rapperswil, Iris Tijssen, Tilo Preller Bauphysik / Akustik: Pirmin Jung Ingenieure AG, Rain, Daniel Müller HLKS-Planer: Wirkungsgrad Ingenieure GmbH, Rapperswil-Jona, Nermin Prasovic Elektroplaner: Mettler+Partner AG, Zürich, Rasim Abdagic

Lichtplaner: Mettler+Partner Licht AG, St. Gallen, Marc Dietrich

Auftragsart

Selektiver Projektwettbewerb Auftraggeberin

Stadt Rapperswil-Jona

Projektorganisation

Projektierung: Einzelplanermodell Realisierung: Einzelleistungsträger

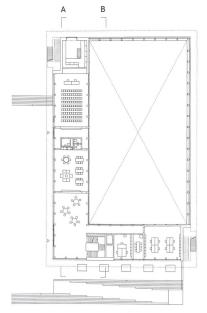
Wettbewerb

Oktober 2013 Planungsbeginn Dezember 2013 Baubeginn März 2016 Bezug September 2017

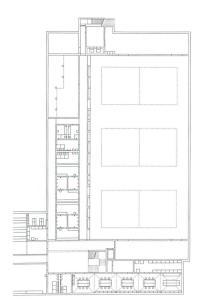
Bauzeit

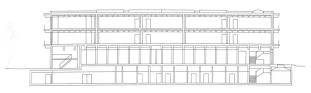
18 Monate

Oberstufenschule Weiden Rapperswil-Jona SG


Umlaufende Laubengänge ermöglichen gesicherte Fluchtwege aus allen Zimmern und eine uneingeschränkte Nutzung der innenliegenden Lernlandschaften. Bild oben: Mikael Olsson

Die fast klassizistische Struktur ist aussen. in der Eingangs- und in der Turnhalle das leitende Motiv und öffnet den Bau zu Pausenplatz und bestehenden Bauten. Bild unten: Karin Gauch & Fabien Schwartz


2. Obergeschoss



Erdgeschoss

Schnitt A

Untergeschoss

Schnitt B

1 Dachaufbau begrüntes Flachdach

- Extensive Dachbegrünung verdichtet 100 mm
- Trennvlies 10 mm
- Schutzvlies 20 mm
- Bituminöse Abdichtung 2-lagig
- EPS Dämmung im Gefälle 180-300 mm
- Bauzeitabdichtung
- 3-Schicht Massivholzplatte, mit SPK auf Rippen geklebt 60 mm
- Holzrippen Brettschichtholz
 200 × 500 mm
- Abgehängte Akustikdecke, MDF lackiert (zw. Holzrippen) 100 mm

2 Dachaufbau Böden Innenhöfe über FG

- Betonbodenplatten 50 mm
- Stelzlager auf Gummischrotmatte
- Luftraum 50-140 mm
- Abdichtung 2-lagig,
- PUR Dämmung im Gefälle 140-220 mm
- Bauzeitabdichtung
- Ortbetondecke 290 mm
- Abgehängte Akustikdecke, Holzwolle (zw. Betonträger) 80 mm

3 Wandaufbau Sturz Klassenzimmer 1.OG / 2.OG

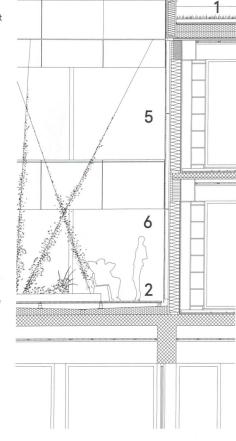
- Holzlattung Weisstanne N1, rift/ halbrift, gestrichen 24 mm
- Unterkonstruktion / Hinterlüftung
 144 mm
- Dämmung 95 mm
- Randträger, Brettschichtholz
 200 mm
- Gipskarton gespachtelt 30 mm

4 Wandaufbau Fenster Klassenzimmer 1. OG / 2. OG

- Fensterzarge aussen, Vollholz Eiche geölt 114 mm
- Führungsschiene Vertikalmarkisen, BWB Colinal 70 mm
- Holzfenster, Eiche geölt 74 mm
- Fensterlaibungen innen, Gipskarton gespachtelt 318 mm

5 Wandaufbau Innenhof zu Klassenzimmer 1. OG / 2. OG

- Eternitverkleidung, verdeckt gehängt 8 mm
- Unterkonstruktion /
- Hinterlüftung 100 mm


 Holzelementwand gedämmt
- Schrankwand in Klassenzimmer, MDF lackiert 600 mm

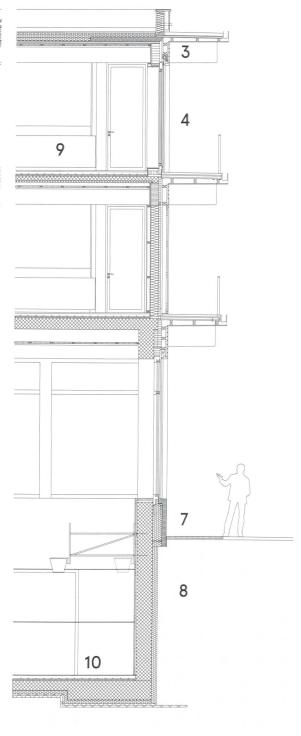
6 Wandaufbau Fenster Innenhof 1. OG / 2. OG

- Verkleidung Fenstersturz,
 Eternit verdeckt gehängt 8 mm
- Unterkonstruktion / Hinterlüftung 80 mm
- Weichfaserplatte 40 mm
- Mineralwolldämmung 60 mm
- Holz-Metallfenster, Fichte lackiert / Alu natureloxiert 76-84 mm

7 Wandaufbau Turnhalle Sockel

- Betonelement vorfabriziert 180mm
- Stahlkonsole mit Neoprenunterlage
- Perimeterdämmung 175 mm
- Bitumenanstrich
- Ortbetonwand/-stütze 400 mm
- Seekiefersperrholz lackiert, inkl. UK Holzlattung 70 mm

8 Wandaufbau Turnhalle gegen Erdreich


- XPS Perimeterdämmung 140 mm
 Betonverbundfolie, gelbe Wanne
- Ortbetonwand 400 mm
- Seekiefersperrholz lackiert, inkl. UK Holzlattung 70 mm

9 Bodenaufbau 1.OG/EG/UG Gussasphalt

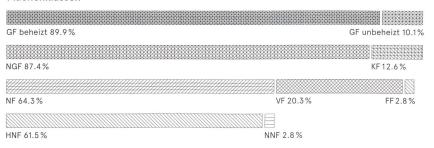
- Gussasphalt mit Terrazzoschliff, versiegelt 30 mm
- Trennlage
- Zementunterlagsboden mit Bodenheizung 70 mm
- Trennlage, Swisspor PE-Abdeckfolie
- Trittschall- und Wärmedämmung 50 mm
- Ortbeton var.

10 Bodenaufbau UG

- Mischelastischer Sportboden
 PU-Sport-Fliessbelag 17 mm
- Zementunterlagsboden mit Bodenheizung 83 mm
- Trennlage
- Trittschall- und Wärmedämmung 50 mm
- Betonbodenplatte 250-500 mm
- Betonverbundfolie
- XPS Dämmung 100 mm
- Splittbett 40 mm
- Magerbeton 50 mm

Projektinformation

Der Erweiterungsbau für die Oberstufe Weiden – ein kompakter Neubau mit Turnhalle und Schulräumen – liegt im östlichen Teil des Areals zwischen dem bestehenden Oberstufen- und dem Primarschulhaus. Durch die kompakte Form des Neubaus bleiben der parkartige Charakter und die grosszügigen Aussenräume des Areals weitgehend belassen. Der bestehende Pausenplatz wird zum wohldefinierten Zentrum der Anlage. Er wird zum verbindenden Sockelelement zwischen Alt- und Neubau erweitert, welcher neben Klassenzimmern die neuen Spezialzimmer sowie die versenkte Doppelturnhalle beinhaltet und über grosszügige Treppenanlagen allseitig zugänglich ist.


Raumprogramm

Im öffentlichen Erdgeschoss ermöglicht das direkte Nebeneinander von Turnhalle, Konferenzraum und Lehrdiensträumen vielfältige Ein- und Durchblicke. Über der Turnhalle vereinen zwei in Holzbauweise erstellte Geschosse sämtliche Klassenräume unter einem Dach. Ein Ring von Klassenzimmern umgibt jeweils eine innere Halle, welche über vier Höfe natürlich belichtet wird und als flexible Lernlandschaft dient. Durch die konsequente Entfluchtung der Klassenräume über eine aussenliegende Balkonschicht können die Lernlandschaften beliebig möbliert und genutzt werden. Die begehbaren Höfe werden mit robusten Rankpflanzen ausgestattet, welche sich in die Höhe winden und in beiden Geschossen erlebbar werden.

Konstruktion

Das neue Schulhaus ist in Mischbauweise erstellt. Über dem UG und EG aus Stahlbeton wird der Baukörper als zweigeschossiger Holzbau fortgesetzt. Dabei binden Rippendecken aus Beton und Holz die unterschiedlichen Geschosse konsequent zur architektonischen Einheit zusammen. Die Decke der Turnhalle mit 24 m Spannweite wird als durchlaufende Rippendecke über die Konferenzräume und die Eingangshalle im EG weitergeführt. In den Rippen einbetonierte Blechträger wirken mit dem Beton der Rippen und der Deckenplatte als Stahl-Beton-Verbundträger. Diese Decke über dem EG bildet das «Fundament» des Holzbaus darüber und wird so dessen strengen Anforderungen an die Durchbiegung gerecht. Die Wände in den Obergeschossen bestehen aus vorgefertigten Rahmenbaukonstruktionen, während die weit gespannten Decken als Holz-Beton-Verbund Rippendecken ausgeführt sind. Auskragende Holzrippen tragen die umlaufenden Fluchtbalkone. Sie verleihen der grau lasierten Holzfassade eine differenzierte Gliederung und lassen den Baukörper trotz seiner Grösse leicht erscheinen.

Flächenklassen

Grundmengen nach SIA 416 (2003) SN 504 416

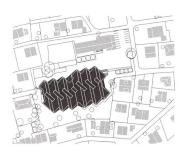
Grundstück

	Grunastuck		
GSF	Grundstücksfläche	25 740 m ²	
GGF	Gebäudegrundfläche	1745 m ²	
UF	Umgebungsfläche	23 995 m ²	
BUF		8 950 m ²	
	Umgebungsfläche		
UUF	Unbearbeitete	15 045 m ²	
	Umgebungsfläche		
	Gebäude		
GV	Gebäudevolumen SIA 416	33 645 m ³	
GF	UG	2615 m ²	
	EG	715 m ²	
	1.OG	1610 m ²	
	2.OG	1610 m ²	
GF	Geschossfläche total	6 550 m ²	100.0%
	Geschossfläche beheizt	5890 m ²	89.9%
NGF	Nettogeschossfläche	5725 m ²	87.4%
KF	Konstruktionsfläche	825 m ²	12.6%
NF	Nutzfläche total	4 212 m ²	64.3%
VF	Verkehrsfläche	1330 m ²	20.3%
FF	Funktionsfläche	183 m²	2.8%
HNF	Hauptnutzfläche	4027 m ²	61.5%
NNF	Nebennutzfläche	185 m²	2.8%

Energiekennwerte SIA 380/1 SN 520 380/1

Energiebezugsfläche	EBF	5 851 m ²
Gebäudehüllzahl	A/EBF	1.32
Heizwärmebedarf	Qh	36 kWh/m²a
Anteil erneuerbare Energie		75%
Wärmerückgewinnungs-		70-84%
koeffizient Lüftung		
Wärmebedarf Warmwasser	Qww	30 kWh/m²a
Vorlauftemperatur Heizung,		35°
gemessen -8°C		
Stromkennzahl gemäss SIA	Q	162 kWh/m²a
380/4: total		
Stromkennzahl: Wärme	Q	10 kWh/m²a

Erstellungskosten nach BKP (1997) SN 506 500 (inkl. MwSt. 8 %) in CHF


	BKP		
1	Vorbereitungsarbeiten	135000	0.5%
2	Gebäude	21464000	80.1%
4	Umgebung	2033000	7.6%
5	Baunebenkosten	1610000	6.0%
9	Ausstattung	1558000	5.8 %
1-9	Erstellungskosten total	26800000	100.0%
2	Gebäude	21 464 000	100.0%
20	Baugrube	786000	3.7 %
21	Rohbau 1	5578000	26.0%
22	Rohbau 2	2258000	10.5%
23	Elektroanlagen	1824000	8.5%
24	Heizungs-, Lüftungs-	1243000	5.8 %
	und Klimaanlagen		
25	Sanitäranlagen	552000	2.6%
26	Transportanlagen	59000	0.3%
27	Ausbau 1	2622000	12.2%
28	Ausbau 2	2390000	11.1%
29	Honorare	4152000	19.3%

Kostenkennwerte in CHF

1	Gebäudekosten/m³	638
2	BKP 2/m³ GV SIA 416 Gebäudekosten/m²	7.077
_	BKP 2/m² GF SIA 416	3 277.—
3	Kosten Umgebung	227
	BKP 4/m ² BUF SIA 416	
4	Zürcher Baukostenindex	99.2
	(4/2010=100)	

Primarschule werk-material 02.02/723 Port BE Primar- und Sekundar-

Standort

Schulweg 12, 2562 Port

Bauherrschaft

schulen

Einwohnergemeinde Port

Architektur

Skop GmbH, Zürich

Partner: Basil Spiess, Silvia Weibel Hendriksen, Martin Zimmerli Mitarbeit: David Brunner, Angelika

Marxer

Baumanagement Spörri Graf Partner / APP AG, Bern

Landschaftsarchitektur Grand Paysage GmbH, Basel

Holzbauingenieur

Indermühle Bauingenieure GmbH,

Thun

Bauingenieur

Tschopp Ingenieure GmbH, Bern Haustechnik HLS

tp, AG für technische Planungen, Biel Elektroplanung

A. Schlosser AG, Biel

Bauphysik

Pirmin Jung Ingenieure AG, Rain

Spezialisten

Photovoltaik: EnergyOptimizer GmbH,

Pieterlen

Signaletik: superbüro, Barbara Ehrbar,

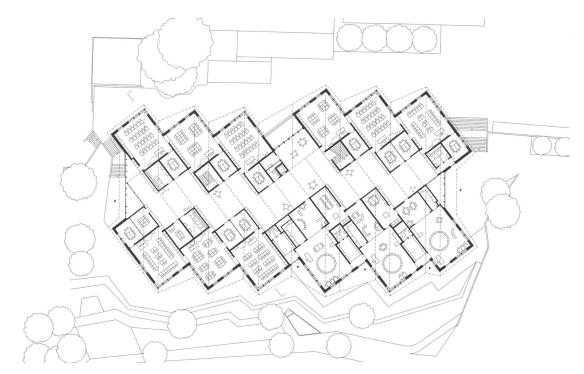
Biel

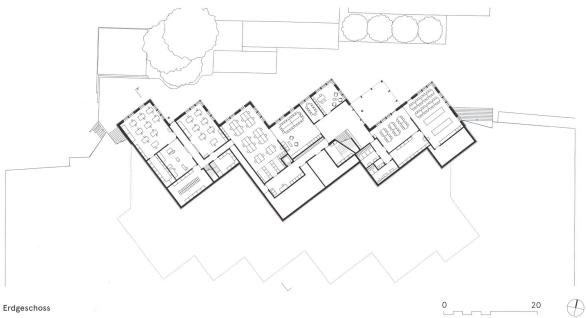
Geologie: Kellerhals + Haefeli AG, Bern

Auftragsart Wettbewerb Auftraggeberin Einwohnergemeinde Port Projektorganisation Einzelunternehmen (Baumanagement als Subplaner der Architekten)

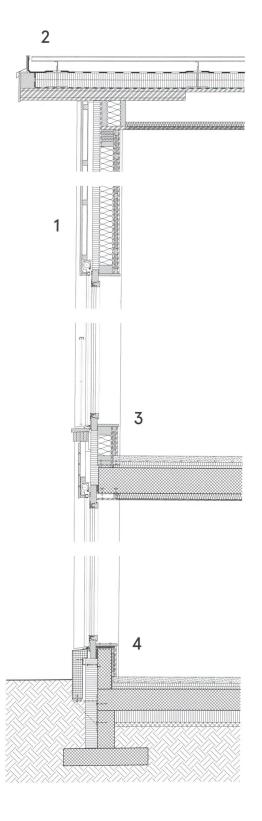
Wettbewerb Juni 2013 Planungsbeginn Februar 2014 Baubeginn August 2015 Bezug August 2017 Bauzeit

24 Monate




Nischen sind das grosse Thema aussen wie innen. Gebildet werden sie alleine durch die vor- und zurückspringenden Module der Klassenzimmer. Dadurch wirkt der Raum in der und um die Schule aktiviert und abwechslungsreich, ohne an Übersichtlichkeit zu verlieren – in der Pause wie im Unterricht. Bilder: Julien Lanoo

Schnitt



1. Obergeschoss

Erdgeschoss

1 Fassadenaufbau

- Vertikalschalung 24 mm, Weisstanne druckimprägniert
- Horizontallattung 30 mm
- Vertikallattung 60 mm
- Fassadenfolie schwarz
- Wärmedämmplatte aus Holzweichfasern 80 mm
- Dämmung aus Mineralfaserplatten 160 mm
- OSB-Platte 15 mm
- Lattung 40 mm
- Dreischichtplatte 19 mm, lasiert

2 Dachaufbau Schrägdach

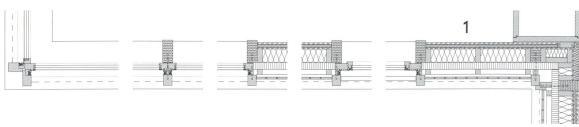
- Photovoltaikelement
- Winkelprofil / Hinterlüftung
- Dichtungsbahn zweilagig, bituminös ca. 10 mm
- Dämmung PUR ALU 180 mm
- Dampfsperre

- Dampisperre Dreischichtplatte 40 mm Rippen 80–180 × 400 mm Hohlraumdämmung, Mineralfaser 50 mm
- Akustikvlies
- Dreischichtplatte 40 mm, mit Akustik-Bohrung

3 Deckenaufbau

- Anhydrit 70 mm, geschliffen und versiegelt
- Trennlage
- Trittschalldämmung Mineralfaser 40 mm
- Ausgleichsschicht EPS 30 mm
- PE-Schutzfolie
- Betondeckenplatte 300 mm, im Fassadenbereich auf Holzstützen lagernd
- Akustikdecke 80 mm

4 Bodenaufbau EG


- Anhydrit 70 mm, geschliffen und versiegelt
- Trennlage
- Trittschalldämmung Mineralfaser 40 mm
- Ausgleichsschicht EPS 30 mm
- Feuchtigkeitssperre
- Betonbodenplatte 250 mm
- PE-Folie (Trennlage)
- Druckfeste Perimeterdämmung XPS
- Magerbeton als Sauberkeitsschicht

Innenwandaufbau

- Gipskartonplatte 15 mm
- Gipsfaserplatte 15 mm
- Ständer, Hohlraum ausgedämmt
- OSB-Platte 15 mm
- Gipskartonplatte 15 mm
- Federbügel / Lattung 27-55 mm,
- Hohlraumdämmung Mineralfaser Gipskartonplatte 15 mm,
- Glattvliestapete gestrichen

Dachaufbau Flachdach (Oberlichter)

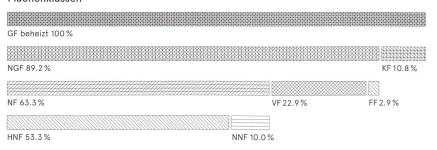
- Rundkies 16/32 50 mm
- Dichtungsbahn zweilagig, bituminös ca. 10 mm
- Dämmung PUR ALU 80 mm
- Gefälledämmung EPS 80-120 mm
- Dampfsperre OSB-Platte 15 mm
- Brettstapel 140 mm
- Rost / Installationsebene 60 mm
- Dreischichtplatte 19 mm, lasiert

Projektinformation

Der Neubau der Schule Port liegt mitten in einem Wohnquartier in unmittelbarer Nähe zur Stadt Biel. Mit seinem charakteristischen, mehrmals gefalteten Dach nimmt der Baukörper Bezug auf den Massstab der giebeldachgekrönten Nachbarhäuser. In die gegen Norden abfallende Hangkante eingebettet, verknüpft das Schulhaus die beiden Ankunftsrichtungen der Schulkinder von Osten und Westen sowohl mit einer aussenals auch mit einer innenräumlichen Verbindungsachse. Die neun Klassenzimmer und drei Kindergarteneinheiten auf dem oberen Niveau profitieren dabei von den räumlichen Eigenheiten des Faltdaches: Jeder Klassenraum erscheint als eigene Hauseinheit und besitzt eine behagliche Lernatmosphäre.

Raumprogramm

Das Raumlayout ist gegenüber den Haupthimmelsrichtungen und den Dachfirsten diagonal organisiert. Die Struktur mit zueinander versetzten Einheiten erlaubt eine grösstmögliche Bespielbarkeit der Innenräume. Die Klassenzimmer besitzen direkte Raumverbindungen zu den Gruppenräumen sowie der Erschliessungszone und sind über fassadenseitige Doppeltüren auch miteinander verbunden. Die weitflächigen Wandpartien der Lernlandschaft wurden mit einer Magnet- und Wandtafelfarbe überzogen und erlauben eine kreative Aneignung durch den Schulbetrieb. Während die Klassenzimmer an den Hauptfassaden aufgrund ihrer Lage über Eck jeweils zweiseitig belichtet werden, versorgen sieben grosse Oberlicht-Dacheinschnitte auch die in der Mittelzone des tiefen Baukörpers liegenden Räumlichkeiten mit Tageslicht.


Konstruktion

Das Schulhaus wurde weitgehend als vorgefertigter Holzelementbau erstellt. Die Dachkonstruktion trägt in Firstrichtung diagonal über die Klassenzimmer, was Spannweiten bis zu 13 m ergibt. Dabei übernehmen die Hohlkastenelemente nebst der Statik auch akustische und lüftungstechnische Funktionen. Um einen einheitlichen Fassadenausdruck zu gewährleisten, wurde die Betonbodenplatte im zweigeschossigen Bereich ebenfalls auf Holzstützen aufgelagert.

Gebäudetechnik

Wärme für Heizung und Warmwasser bezieht das Plus-Energie-Gebäude via das Fernheizungsnetz der Müllverwertungsanlage Biel. Sämtliche Räume werden kontrolliert belüftet. Die Beleuchtung wird komplett mit LED abgedeckt. Insgesamt 1100 Photovoltaik-Paneele belegen das Dach und produzieren zusätzlich zur Deckung des Eigenbedarfs Strom für einen Jahresverbrauch von rund 50 Haushalten.

Flächenklassen

Grundmengen nach SIA 416 (2003) SN 504 416

Grundstück Grundstücksfläche 10051 m² GGF Gebäudegrundfläche 2965 m² Neubau 2420 m² Umgebungsfläche 7 086 m² Bearbeitete 6718 m² Umgebungsfläche **UUF** Unbearbeitete 368 m² Umgebungsfläche Gebäude G۷ Gebäudevolumen SIA 416 16941 m³ FG 1 134 m² 1. OG 2 434 m² Geschossfläche total 100.0% 3 568 m² Geschossfläche beheizt 3568 m² 100.0% NGF Nettogeschossfläche 3181 m² 89 2% Konstruktionsfläche 387 m² 10.8% Nutzfläche total 2 258 m² 63.3% Verkehrsfläche $818\,m^2$ 22.9% Funktionsfläche 105 m² 2.9% HNF Hauptnutzfläche 1901 m² 53.3% NNF Nebennutzfläche 357 m² 10.0%

Erstellungskosten nach BKP (1997) SN 506 500 (inkl. MwSt. 8%) in CHF

	BKP		
1	Vorbereitungsarbeiten	920000	5.1%
2	Gebäude	13026000	72.3%
3	Betriebseinrichtungen (kont. Lüftung + PVA + Schulküche)	717 000.—	4.0 %
4	Umgebung	1660000	0 2 %
5	Baunebenkosten	680 000.—	
9	Ausstattung	1003000.	
1-9	<u>v</u>	18 006 000	
2	Gebäude	13026000	100.0%
20	Baugrube	293000	2.2%
21	Rohbau 1	4281000	32.9%
22	Rohbau 2	2063000	15.8%
23	Elektroanlagen	940000	7.2%
24	Heizungs-, Lüftungs- und Klimaanlagen	188000	1.4%
25	Sanitäranlagen	313000	2.4%
26	Transportanlagen	49000	0.4%
27	Ausbau 1	1215000	9.3%
28	Ausbau 2	798000	6.1%
29	Honorare	2886000	22.2%

Energiekennwerte SIA 380/1 SN 520 380/1

Energiebezugsfläche	EBF	3 341 m ²
Gebäudehüllzahl	A/EBF	2.06
Heizwärmebedarf	Qh	38 kWh/m²a
Anteil erneuerbare Energie		100%
Wärmerückgewinnungs-		70%
koeffizient Lüftung		
Wärmebedarf Warmwasser	Qww	7 kWh/m²a
Vorlauftemperatur Heizung,		35 °C
gemessen -8°C		
Stromkennzahl gemäss SIA	Q	19 kWh/m²a
380/4: total		
Anteil Fotovoltaik		100%

Kostenkennwerte in CHF

1	Gebäudekosten/m³	769
	BKP 2/m³ GV SIA 416	
2	Gebäudekosten/m²	3651
	BKP 2/m ² GF SIA 416	
3	Kosten Umgebung	247
	BKP 4/m ² BUF SIA 416	
4	Zürcher Baukostenindex	101.0
	(4/2010=100)	

Architektur überall lesen

Kombi-Abo CHF 235.—/*CHF 150.— *Preisangebot für Studierende Erhältlich für iOS, Android und Web Die Zeitschrift für Architektur und Städtebau: Lesen wo und wann Sie wollen.

www.wbw.ch/abonnieren

werk,

Warum entgeht BIM
das kristalline Leuchten

Leim'scher Mineralfarben?

Weil sich Materialästhetik und Handwerkskunst nicht digitalisieren lassen.

> Keimfarben. Das Original. Seit 1878.

> > KEIMFARBEN AG Wiesgasse 1 CH-9444 Diepoldsau Telefon: 071 737 70 10 info@keim.ch www.keim.ch