Zeitschrift: Werk, Bauen + Wohnen

Herausgeber: Bund Schweizer Architekten

Band: 104 (2017)

Heft: 3: Preiswert wohnen : Mehrwert der Knappheit

Rubrik: werk-material

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Befestigter Platz und architektonisches Zeichen in den Saleggi von Losone. Im Hintergrund die Schulanlage von Livio Vacchini und Aurelio Galfetti.

Der Abgang an den Ort der Energieerzeugung ist inszeniert wie der Weg zu einem Heiligtum (Bild rechte Seite).

Heizzentrale in Losone TI von Buzzi studio d'architettura

Linda Stagni Roberto Conte (Bilder)

In Losone, einem Vorort von Ascona, entwirft der Tessiner Architekt Francesco Buzzi eine unterirdisch angelegte Heizzentrale. Damit kann der an der Oberfläche frei bleibende Raum von der Stadt – oder besser der Agglomeration – genutzt werden. Trotz einiger Änderungen und Abstriche büsst das Projekt während seiner Rea-

lisierung zwischen 2014 und 2015 nichts von seiner ursprünglichen Idee ein. Die gesamte Technik, also Kessel, Brenner, Speicher, Brennstofflagerraum, Steuerung etc., ist unterirdisch in einem kreisrunden Zylinder aus Stahlbeton untergebracht und bleibt der Umgebung verborgen. Sichtbar ist einzig ein mächtiger Kamin.

«Geschenkter» Raum

Es passiert nicht alle Tage, dass man sich von der Agglomeration und ihren Gesetzmässigkeiten faszinieren lässt, ihren städtebaulichen Wert zustimmend annimmt und sogar hervorstreicht. So erinnert etwa gleich neben der Heizzentrale Livio Vacchinis und Aurelio Galfettis

¹ Liedzeile aus dem Song *Space Oddity* von David

Schulhaus aus dem Jahr 1975 daran, dass es sich bei der dreieckigen Parzelle um ein besonderes Stück Peripherie handelt, auch wenn die gegenüberliegende Front aus Industrie- und Dienstleistungsgebäuden beliebig aussieht.

Eine Heizzentrale, die als Platz angelegt ist, mag als ein befremdliches oder zumindest ausgefallenes architektonisches Konzept erscheinen. Tatsächlich aber präsentiert sie sich in der Gesamtheit in wohl überlegter Ausgewogenheit zu ihrem Umfeld. Der Ort - die Agglomeration - bestimmt den Charakter des Projekts. Und diesem Ort wird ein öffentlicher Raum «geschenkt», indem gegraben, geneigt, erhöht und experimentiert wurde. Der Entwurf geht nicht von einer Typologie a priori aus, sondern erschafft das Werk im hier und jetzt. Um das zu erreichen, verzichtet Francesco Buzzi auf eine geschlossene Einheit und konzipiert die Heizzentrale als ein Zusammenspiel einzelner skulpturaler Elemente, die nicht nur je eine Funktion erfüllen, sondern auch auf Vorbilder und ihr alter ego verweisen.

Lockere Ironie

Der Turm des Kamins ist mit seinen 21 Metern Höhe das Leitobjekt des Projekts und sucht den Bezug zur umgebenden Landschaft - kein dominantes, aber durchaus ein präsentes Zeichen. Er ist mit Stahlprofilen verkleidet, die längs geknickt sind und sich daher um sich selbst zu drehen scheinen, was den Turm verschlankt. Mit dem Einbruch der Dunkelheit bringen ihn verschiedenfarbige LED-Streifen zum Leuchten und spielen mit lockerer Ironie mit der Monumentalität: Der Körper scheint sich nahezu aufzulösen, gleichzeitig macht er sich dabei ein typisches Element der Agglomeration zu eigen - die Leuchtreklame!

Der Platz selbst, also das Dach der Zentrale (das mit vorgefertigten Betonplatten verlegt ist, um für den Austausch eines Aggregats geöffnet werden zu können), besteht aus einer geneigten Oberfläche aus schwarzem Asphalt, die sich vom Boden durch ihre erhöhten Ränder absetzt. Der Platz zeichnet die Geometrie eines Kreises nach, ähnlich einem Verkehrskreisel, nicht zuletzt aufgrund funktionaler Erfordernisse (die Lastwagen fahren vor, entladen die Holzschnitzel über Falltüren auf der Plattform und fahren wieder ab). Die Neigung wie auch die erhöhten Ränder lassen den Platz ein sichtbares wie plastisches Zeichen werden. An seinem höchsten Punkt schneidet er die Linie der dahinterliegenden Anhöhe und verwandelt sich so in ein Mobiliar des öffentlichen Raums: Man kann sich auf seine Ränder wie auf eine normale Bank setzen und zum Beispiel aus erhöhter Position dem Fussballspiel gegenüber zuschauen.

Gleich neben dem Platz betont der wie ein Halbmond gebogene Zuschnitt der Treppe, die zur Zentrale hinunterführt, nochmals das Motiv des Kreises. Ein Abstieg in präzisen Betonlinien, eine skulpturale Spalte - fast schon im Stil eines James Turrell -, die einen noch während man hinabsteigt vergessen lässt, was oben gewesen ist und was unten kommen wird. Es ist ein Raum in der Schwebe, den man passiert, bevor man zum Kraftwerk selbst gelangt, sauber und warm trotz der Betonstruktur und des Stahls der Maschinen. Das letzte Objekt, das den Platz ziert, ist ein kreisrundes Betonmäuerchen, das Treppenhaus des Notausgangs, das als Negativbild das Gegengewicht zur Präsenz des Turms bildet.

Glauben an den Stadtraum

Die Heizzentrale von Losone führt uns die Tatsache vor Augen, dass Architektur und Energie alle angeht. Mit Leichtigkeit und Klugheit wird dank eines meisterlich gelungenen Experiments eine öffentliche Infrastruktur zu einer *machine à vivre* für alle. Die Zeit der Technikbegeisterung ist vorbei, man darf die Maschine unter die Erde verlegen; das, was man heute zeigen will, ist der öffentliche Raum. Mit Professionalität, aber auch einem gehörigen

Schuss Selbstironie stellt Francesco Buzzi eine Komposition auf die Beine, die ihre Motivation im Glauben an den Stadtraum in seiner Gesamtheit findet.

Sich von der Agglomeration und ihrem Raum faszinieren zu lassen und die ihr innewohnende Logik erfassen zu wollen, ist nicht jedermanns Sache. Dem Entwurf des Heizwerks gelingt zwischen Mimesis und Erfindung genau dies, ohne dabei irgendwelche Klischees zu bedienen. Wenn nicht der feine Geruch des Holzes aus dem Untergeschoss strömen würde, könnte man das Ganze schlicht nur für einen Platz mit einem Turm halten. Weiter nichts Auffälliges. In anderen Worten: «You've really made the grade».¹—

Linda Stagni (1982), Architekturstudium am Politecnico di Milano und der TU Stuttgart. Praxis in Architekturbüros in Mailand sowie auch in der Forschungsgruppe Gizmo. 2014–16 MAS Geschichte und Theorie der Architektur an der ETH Zürich. 2015 Redakteurin bei trans. Seit 2012 Mitarbeit bei Jüngling und Hagmann Architekten.

Aus dem Italienischen von Dorothea Deschermeier

Energiegeladener Monolith

Energiezentrale Torfeld in Aarau von Frei Architekten

Philipp Schallnau
Daniel Erne (Bilder)

Oft werden der Architekt als «Kunstverständiger» und der Ingenieur als «Technikverständiger» als gegensätzliches Paar angesehen, das zu einer Zusammenarbeit an einem Bauwerk gezwungen ist. Arbeiten beide jedoch im Dialog, dann besteht die Chance, dass ein Bauwerk entsteht, das über technische und ökonomische

Einschränkungen hinausgeht und zu einem architektonischen Objekt mit inhaltlicher Tiefe wird.

So im Fall der Energiezentrale Torfeld in Aarau. Sie ist das Herzstück des Wärme-Kälteverbunds Torfeld, des derzeit grössten Fernwärmenetzes der Kantonshauptstadt. Entstanden im Zusammenhang mit einem kommunalen Energieplan, der die Reduzierung der fossilen Anteile bei der Energiegewinnung festschrieb, ist die Anlage Ende 2015 fertiggestellt worden. Seitdem erzeugt sie ganzjährig Wärme und Kälte ökologisch nachhaltig auf Grundwasserbasis, womit etwa zehn Prozent des Wärmebedarfs der Stadt Aarau abgedeckt sind.

Keine Dämmung nötig

Die skulpturale Gestalt, die unmittelbar am Gleisfeld der Bahnstrecke Zürich-Olten kurz vor der Einfahrt zum Bahnhof Aarau steht, möchte man als Resultat eines gestalterischen Prozesses betrachten. Doch nicht ein Entwurf der Architekten stand bei diesem Objekt am Anfang, sondern die Vorgaben der Anlageningenieure. Sie entwickelten zunächst einen Raumplan, mit dem die zweckmässigste Aufstellung von Wärmepumpen, Energiespeichern, Rückkühler, gasbetriebenen Spitzenlastkesseln und einem Kamin vorgegeben wurde. Die daraus resultierende Volumetrie wurde anschliessend durch Frei Architekten aus Aarau im Dialog mit den Ingenieuren gestalterisch weiterbearbeitet, wodurch aus einem Nutzbau eine Architektur mit eigenständigem Charakter wurde.

Zentral war der Entscheid der Architekten, das gesamte Bauwerk konsequent als Sichtbetonbau zu konzipieren, der mit seinem gestaffelten Volumen einen informellen Ausdruck hat. Damit erinnert er an typische Industriebauten, deren eigenwillige Gestalt meist ein Abbild der inneren technischen Gegebenheiten ist. Gleichzeitig unterscheidet sich das Gebäude von diesen durch seine monolithische Erscheinung, die durch die grossen Sichtbeton-

Prägnante Marke am Gleisfeld in Aarau. Die Kubatur bildet das von den Ingenieuren vorgegebene Innenleben ab.

Sichtbeton und funktionale Details kleiden die Technik (rechts).

flächen mit nur wenigen Fassadenöffnungen hervorgerufen wird. Sie sind zahlreicher als man zunächst wahrnimmt – und geschickt vor dem Auge des Betrachters verborgen: Dunkle Metallgitter kaschieren auf der Nordostseite die Türen der Transformatorenräume, was die geschlossene Erscheinung der Gebäudehülle unterstützt. Aufgrund der Abwärme der Anlagen wird keine Wärmedämmung benötigt, womit das Bauwerk nicht nur optisch, sondern auch konstruktiv einem Monolithen entspricht.

Abstrakte Komposition

Der massige Ausdruck, den die geschlossene Volumetrie hervorruft, wird durch die schwarze Pigmentierung des Sichtbetons noch gesteigert. Sie ist funktional betrachtet ein Schutz vor dem Flugrost der unmittelbar am Gebäude vorbeifahrenden Züge. Die kohleartige Materialisierung der Gebäudehülle kann aber ebenso als atmosphärisches Moment gedeutet werden, mit dem an die von Transport, Umschlag und Verbrauch von fossilen Energieträgern geprägte Geschichte des Quartiers erinnert wird.

Als Skulptur betrachtet hat das Gebäude seine Schauseite südlich, der Bahn zugewandt, hier entwickelt sich aus dem gestaffelten Volumen der fast 28 Meter hohe Kamin, was dem Bauwerk den Ausdruck einer abstrakten Komposition verleiht. Während am Äusseren alle Teile durch die monochrome Behandlung zu einem Ganzen zusammengefasst werden, wird im Inneren der Ausbau vom Gebäudekörper optisch unterschieden. Raumabschliessende Bauteile wie Türen und Gitter sind dunkel gehalten, demgegenüber sind Ausbauelemente wie Kabeltrassen und Steuerungsgeräte unbehandelt. Die einzelnen Medienkreisläufe werden durch den schwarzen Hintergrund in ihren verschiedenen Farben hervorgehoben, was sie für die Techniker leichter nachvollziehbar macht, für den anlagentechnisch unbescholtenen Besucher hingegen wie ein expressionistisches Kunstwerk wirken lässt.

Mit wenigen Mitteln gelingt es Frei Architekten, aus den technischen Vorgaben der Ingenieure ein im Ausdruck vielschichtiges Bauwerk zu entwickeln. Was oft vergessen geht, wurde hier bedacht: dass auch Infrastrukturbauten eine gestalterische Lösung verdient haben. Mit ihren markanten Volumen besitzen sie oft eine landschaftliche oder städtebauliche Relevanz, weshalb ihre sorgfältige Gestaltung von Bedeutung ist. So auch die Energiezentrale, welche die Bürgerschaft der Stadt Aarau und den Energieversorger in der Öffentlichkeit repräsentiert. Darüber hinaus ist das Gebäude ein städtebaulicher

Akzent, der einerseits mit seinen assoziativen und atmosphärischen Momenten an die Geschichte des Orts zu erinnern vermag, anderseits durch seine abstrakte Gestalt eine ihm eigene Gegenwärtigkeit erzeugt. —

Philipp Schallnau (1980) ist Architekt und Kritiker. Derzeit lebt und arbeitet er in Basel.

Impressum 104. / 71. Jahrgang ISSN 0257-9332 werk, bauen + wohnen erscheint zehnmal jährlich

Verlag und Redaktion Verlag Werk AG werk, bauen + wohnen Talstrasse 39 CH-8001 Zürich T+41 44 218 14 30 redaktion@wbw.ch www.wbw.ch

Verband BSA/FAS Bund Schweizer Architekten Fédération des Architectes Suisses www.architekten-bsa.ch

Redaktion Daniel Kurz (dk) Chefredaktor Tibor Joanelly (tj) Caspar Schärer (cs) Roland Züger (rz)

Geschäftsführung Katrin Zbinden (zb)

Anzeigenkoordination Cécile Knüsel (ck)

Grafische Gestaltung Art Direction Elektrosmog, Zürich Marco Walser, Marina Brugger und Adeline Mollard Mitarbeit: Lena Thomaka

Redaktionskommission Astrid Staufer (Präsidentin) Barbara Basting Yves Dreier Anna Jessen Christoph Schläppi Annette Spiro Felix Wettstein

Druckvorstufe / Druck galledia ag, Zürich

Korrespondenten Matthias Ackermann, Basel Silvio Ammann, Verscio Olaf Bartels, Istanbul, Berlin Xavier Bustos, Barcelona Markus Bogensberger, Graz Anneke Bokern, Amsterdam Francesco Collotti, Milano Rosamund Diamond, London Yves Dreier, Lausanne Mathias Frey, Basel Paolo Fumagalli, Lugano Tadej Glažar, Ljubljana Momoyo Kaijima, Tokyo Gerold Kunz, Luzern Sylvain Malfroy, Neuchâtel Raphaël Nussbaumer, Genf Susanne Schindler, New York Christoph Schläppi, Bern Paul Vermeulen, Gent Klaus Dieter Weiss, Hannover Anne Wermeille, Porto

Regelmässig Mitarbeitende Recht: Dominik Bachmann, Patrick Middendorf

Impressum

Wettbewerbe: Tania Reimer Kolumne: Daniel Klos

Übersetzungen J. Roderick O'Donovan Eva Gerber

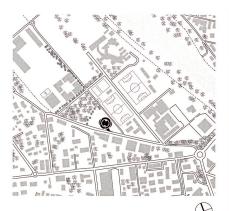
Anzeigen print-ad kretz gmbh Tramstrasse 11 Postfach CH-8708 Männedorf T +41 44 924 20 70 F +41 44 924 20 79 inserate@wbw.ch

Abonnemente galledia verlag ag Burgauerstrasse 50 CH-9230 Flawil T+41 58 344 95 28 F +41 58 344 97 83 abo.wbw@galledia.ch

Preise Einzelhefte: CHF 27.-Jahresabonnement: CHF 215.-Studentenabonnement: CHF 140.-(inkl. Versand)

Bezugsbedinungen Ausland auf Anfrage

Das Abonnement ist jederzeit auf das bezahlte Laufzeitende kündbar. Die Kündigung kann schriftlich sowie telefonisch erfolgen. Eine vorzeitige Auflösung mit Rückzahlung ist nicht möglich.


Seit über 15 Jahren herrscht in der Schweiz Hochkonjunktur, die enorme Bautätigkeit stellt vertraute Quartier- und Landschaftsbilder auf den Kopf. Dagegen regt sich Widerstand in Form von Rekursen und Volksinitiativen. Der Ruf nach dem «guten Städtebau» ist nicht zu überhören, doch wie soll dieser aussehen? Ein Blick ins Gesetzbuch zeigt: Wichtig ist die Eigentumseinheit, Parzelle, Baufeld, Areal – das Private. Der öffentliche Raum findet kaum Beachtung. Doch gerade das Dazwischen ist die eigentliche Domäne des Städtebaus. Auf die Schnittstellen vom gebauten zum freien Raum bis hin zur Verkehrsinfrastruktur fokussiert unser Heft.

Espaces urbains

La haute conjoncture règne en Suisse depuis plus de 15 ans et l'énorme activité dans le secteur de la construction a chamboulé des quartiers et des paysages familiers. La résistance là-contre s'exprime sous la forme de recours et d'initiatives populaires. On ne peut plus ignorer l'appel pour un «bon urbanisme», mais à quoi doit-il ressembler? Un coup d'œil sur le cadre légal qui s'y rapporte nous le montre: Ce qui importe, c'est l'unité de propriété, parcelle, terrain à bâtir, zone, bref le domaine privé. L'espace public n'est presque pas pris en considération. Et pourtant, ce sont justement les entre-deux qui sont le domaine de l'urbanisme. Notre cahier se focalisera sur l'interface entre l'espace construit et l'espace libre, en passant par les infrastructures de transport.

Urban Spaces

There has been an economic boom in Switzerland for more than the past 15 years and the enormous amount of building activity is completely changing familiar images of districts and landscape. Resistance to this development is taking the form of objections and public initiatives. The call for "good urban planning" is impossible to ignore, but what should such planning look like? A glance at the statute books shows that urban planning is not a theme there. The privately owned unit is important, plot, building site, land—the private aspects. Public space is given hardly any attention. But it is precisely the spaces in-between that are the actual domain of urban planning. Our issue focuses on the interface between built and unbuilt space and the transportation infrastructure.

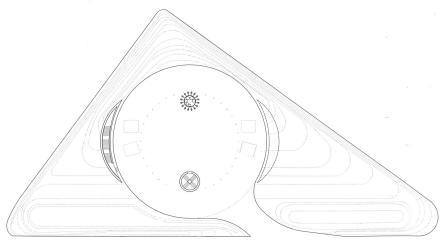
Luogo
Via dei Patrizi 2, 6616 Losone
Committente
Energie Rinnovabili Losone SA, Losone
Architetto
Buzzi studio d'architettura, Locarno
Collaborazione: Luca Nocerino, Marta
Comaschi, Matteo Inches, Davide Scardua
Ingegnere civile
Anastasi & Partners SA, Locarno
Specialisti
Direzione Lavori:
Anastasi & Partners SA, Locarno;
Visani Rusconi Talleri SA, Lugano
Ingegnere RCVS:
SPED De Lorenzi SA, Locarno
Fisico costruzioni: Ecocontrol SA, Locarno
Geologo: Dr. Baumer SA, Losone
Specialisti: SealPlan GmbH, Feuerthalen

Mandato

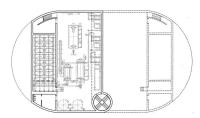
Concorso d'architettura ad invito

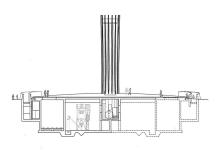
Organizzazione del progetto convenzionale

Concorso
2010
Inizio pianificazione
2012
Inizio costruzione
2014
Cessione
2015
Durata di costruzione
12 mesi

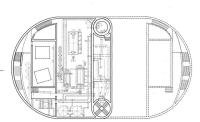


Col calare della notte la torre illuminata della ciminiera domina la piazza. Essa dialoga col la cortina edilizia della periferia circostante, a carattere terziario e residenziale.


Al piano ipogeo si trovano le macchine che lavorano alla produzione di energia. L'acciaio e il cemento che caratterizzano lo spazio, si contrappongono al calore e al profumo del legno che qui viene bruciato. Immagini: Roberto Conte



Livello 0


Sezione

Livello -1

Livello -2

1 Torre

- Tubo in acciaio, sp. 6 mm, per canne fumarie, dim. 3100 mm, verniciate a spruzzo NCS S 1500-N
 Flange a L in acciaio sp. 6 mm, saldate con appositi fori di fissaggio per lame di rivestimento, verniciate a spruzzo NCS S 1500-N
- Flange di connessione in acciaio sp.15 mm, tra tubo portante e rivestimento a regolazione inclinazione delle lame di rivestimento, verniciate a spruzzo IGP90060 matt - Lame di rivestimento sp. 8 mm, composte da due
- elementi in acciaio distinti uniti tramite fissaggio bullonato M12 comprensivo di distanziatore, verniciate a spruzzo IGP90060 matt
- Sistema di illuminazione a LED fissata all'interno della lama

2 Pavimentazione soletta centrale

- Strato di asfalto finitura AC11 S 40 mm
- Strato di asfalto grezzo ACT22 S 90 mm
- Misto granulare 0/15 UF3 70 mm - Stuoia di protezione 5 mm
- Impermeabilizzazione guaina fluida 5 mm
- Getto di completamento in cemento armato 70 mm
- Lastre alveolare 250 mm
- Isolazione termica, FibraRoc tipo 3, 30/50 mm

3 Pavimentazione circolazione

- Strato di asfalto finitura AC11 S 40 mm
- Strato di asfalto grezzo ACT22 S 90 mm
- Misto granulare 0/45 UF3

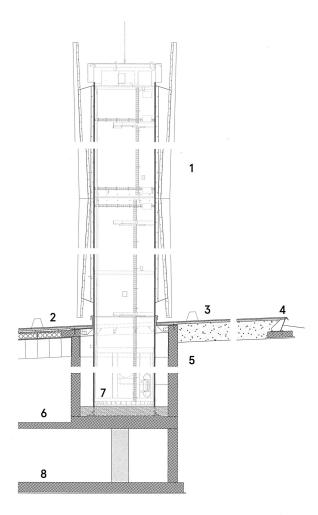
4 Bordo di contenimento

- Bordura in acciaio sp. 14 mm, con fazzoletti di rinforzo fissata meccanicamente alla fondazione
- Illuminazione a LED
- Malta di cemento 30 mm
- Fondazione in cemento armato 300 mm - Magrone di sottofondo 50 mm

5 Pareti

- Pareti in cemento armato 450 mm

6 Piano -1


- Resina epossidica 5 mm
- Soletta in cemento armato 500 mm

- 7 Piede Torre

 Soletta in cemento armato 600 mm
- Getto di completamento in cemento con fissaggi per torre camini 50 mm

8 Piano -2 (platea)

- Resina epossidica 5 mm
- Soletta in cemento armato 500 mm
- Magrone di sottofondo 50 mm

Informazioni sul progetto

Il complesso per la produzione di energia si trova in una zona di cerniera paesaggistica e funzionale dell'agglomerato suburbano a Losone. La sua forma circolare si rapporta con le differenti geometrie territoriali, le tipologie e volumetrie del quartiere mantenendo la sua autonomia e presenza. Il suo carattere pubblico è sottolineato da una forma universale, storicamente utilizzata per edifici pubblici e monumenti che dialogano con la terra e il cielo.

Progetto

Il complesso circolare si pone in asse col vuoto del complesso scolastico di Vacchini-Galfetti e ne riprende lo schema tipologico, con un anello esterno e un vuoto all'interno.

Il piano terra assume la forma di un'infrastruttura viaria: i camion circolano come in una rotonda veicolare alimentando di legna la centrale ipogea attraverso le botole a filo strada.

La parte tecnica della centrale è stata interrata sia per mantenere la visibilità delle scuole medie che per preservare il luogo da un ulteriore capannone.

Del volume interrato si percepisce unicamente la piazza rotonda: una piattaforma leggermente sollevata dal terreno naturale e raccordata con esso con un prato inclinato.

La creazione sul tetto della centrale di uno spazio pubblico aperto e flessibile che diventa agibile per tutta la popolazione, in particolare per i vicini utenti della scuola e delle fabbriche rende questo luogo parte viva e integrata del quartiere.

Il bordo della piazza è staccato dal terreno così da formare una seduta. Il prato inclinato permette un utilizzo come arena: un parco dove ci si può distendere e seguire lo svolgersi delle attività sportive sui campi sportivi adiacenti.

La torre è l'unico elemento verticale visibile dal territorio, un totem che caratterizza il quartiere e dialoga con il complesso scolastico. La cui espressione s'ispira a una colonna romana, segnala l'accesso della via pubblica fungendo da porta al quartiere. Il suo rivestimento con profili in acciaio illuminerà di notte la piazza.

Costruzione

La forma rotonda si ispira alla forma più essenziale di uno scavo. L'unico materiale utilizzato è il cemento armato.

La torre è costituita da un cilindro portante centrale in acciaio a cui sono state applicate delle lamiere, anch'esse in acciaio piegato che contengono l'illuminazione.

Tecnica

L'edificio ha la funzione di centrale termica di quartiere (impianto industriale), quindi lo stesso non è riscaldato. La centrale ha il compito di alimentare la rete teletermica ad acqua calda della lunghezza complessiva di circa 4 km con la combustione di cippato. La fornitura di calore raggiunge circa 70 utenti privati e dell'ente pubblico.

Classe di superfici

SUP 48.2%

SE

SP riscaldata 100.0 %

SN 63.7 %

SC 36.3 %

SU 57.6 %

SCIR 6.1 %

SUS 9.4%

Superfici e volumi secondo SIA 416 (2003) SN 504 416

Superficie del fondo

Superficie edificata

0_	ouper nere cumenta	010111	
SLE	Superficie libera esterna	3 3 2 3 m ²	
SLES	Superficie libera esterna sistemata	3 323 m²	
SLEN	Superficie libera esterna non sistemata	0 m²	
	Edificio		
VE	Volume del Edificio SIA 416	6003 m ³	
SP	Seminterrato	1072 m ²	
SP	Superficie di piano totale	1072 m ²	100.0%
SN	Superficie netta	683 m ²	63.7%
SC	Superficie di costruzione	389 m ²	36.3%
SU	Superficie utile totale	618 m ²	57.6%
SCIR	Superficie di circolazione	65 m ²	6.1%
CIID	Superficie utile principale	517 m ²	18 2%

3838 m²

515 m²

101 m²

0 m²

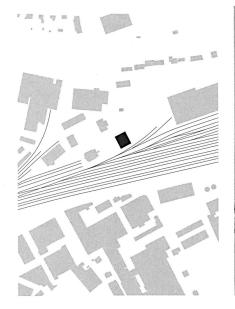
9 4%

0.0%

Costo di costruzione secondo CCC (1997) SN 506 500 (inclusa IVA 8 %) in CHF

	CCC		
2	Edificio	4863000	53.9%
3	Attrezzature d'esercizio	3602000	39.9%
4	Lavori esterni	559000	6.2%
1-9	Costo totale	9024000	100.0%
2	Edificio	4863000	100.0%
20	Fossa	410000	8.4%
21	Costruzione grezza 1	2357000	48.5%
22	Costruzione grezza 2	52000	1.1%
23	Impianti elettrici	91000	1.9%
27	Finiture 1	103000	2.1%
28	Finiture 2	90000	1.9%
29	Onorari	1760000	36.2%

Parametri di costi in CHF


SUS Superficie utile secondaria

Superficie delle installazioni

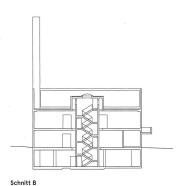
1	Costo dell'edificio	810
	CCC 2 / m³ VE SIA 416	010.
2	Costo dell'edificio	4536
	CCC 2/m ² SP SIA 416	
3	Costo sistemazione	168
	CCC 4/m ² SLES SIA 416	
4	Indice del costo di costruzione	102.3
	Zurigo (4/2010=100)	

werk-material 05.01/689 Heizzentralen, Fernwärmeanlagen

Energiezentrale Torfeld Nord, Aarau

Rohrerstrasse 92, 5000 Aarau Bauherrschaft IBAarau Wärme AG, Aarau Architekt Frei Architekten AG, Aarau Mitarbeit: Christian Frei, Peter Frei, Katharina Galuska Bauingenieur Wilhelm + Wahlen Bauingenieure AG, Aarau Spezialisten Generalplaner: Erb + Partner AG, Pratteln Elektroplaner: IBAarau Elektro AG, Aarau Gebäudetechnikplaner: Erb + Partner AG, Pratteln

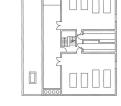
Auftragsart Direktauftrag


Projektorganisation Auftragsart für Architekt: Direktauftrag Projektorganisation: Generalplaner

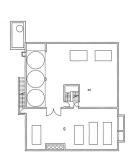
Planungsbeginn November 2012 Baubeginn März 2014 Bezug Dezember 2015 Bauzeit 20 Monate

Funktionaler Minimalismus mit fast sakralem Ausdruck: Die Hülle für die Technik folgt der durch die Ingenieure vorgegebenen Logik.

Die betonierte Struktur fasst die Apparaturen wie ein Massanzug. Bilder: Daniel Erne

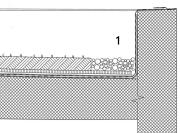


Heizzentralen, Fernwärmeanlagen


Dachgeschoss

Obergeschoss

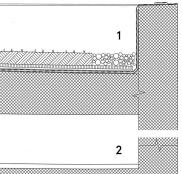
Erdgeschoss

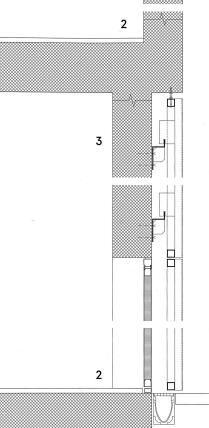

A L

Untergeschoss

Schnitt A

0 10




3 WandaufbauStahlbeton 250 mm - Lamellenkonstruktion 200 mm

2 Bodenaufbau - Hartbeton 30 mm - Stahlbeton 320 mm

Dachaufbau
 extensive Begrünung
 Einschichtsubstrat verdichtet 80 mm
 Speichermatte 20 mm

Speichermatte 20 mm
 Gummigranulatschutzmatte 10 mm
 Abdichtung 2-lagig 20 mm
 Stahlbetondecke im Gefälle
 280 – 320 mm

Projektinformation

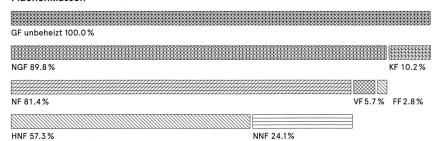
Die Energiezentrale Torfeld befindet sich in der Spezialzone Torfeld Nord direkt angrenzend an die Bahnstrecke Zürich-Aarau-Bern. Die Energiezentrale nimmt an dieser Stelle eine wichtige Torfunktion für Aarau ein, da es sich von Osten um das erste grössere, direkt an die Bahngleise angrenzende Gebäude handelt. Die expressive Volumetrie des Gebäudes, die sich aus den funktionalen Anforderungen der Energiezentrale ergibt, trägt dieser anspruchsvollen Lage Rechnung und schafft eine unverwechselbare Landmarke.

Der knapp 28 m hohe, markante Kamin ist der Bahn zugewandt und gibt dem Bau seine Dominanz. Der Zugang erfolgt über zwei Öffnungen an der Nordseite. Der Zugang zu den Trafos erfolgt von der Ostseite. Die Energiezentrale wird als reiner Betonbau erstellt. Um einerseits die Problematik der Verschmutzung der Fassade durch die Bahnlinie optisch zu minimieren und andererseits die skulpturale Gebäudeform zu stärken, ist der Beton durchgehend schwarz eingefärbt.

Im Endausbau des Wärme-/Kältenetzes deckt die Energiezentrale einen Gesamtleistungsbedarf der Kunden von 17500 kW Wärme und 9500 kW Kälte ab und liefert damit etwa 10% des Wärmebedarfs von Aarau.

Raumprogramm

Untergeschoss: Technikraum, Feuerungsanlage Erdgeschoss: Gasraum, Technikraum, Schaltraum, Wärmepumpe, MSR, WKV, Besprechungsraum, WC Obergeschoss: Technikraum, Wärmepumpe 2/3, Schaltraum WP2/WP3 Attika: Dachfläche/Rückkühler


Konstruktion

Tragstruktur: Stahlbeton Fassade: Reiner Betonbau schwarz eingefärbt

Gebäudetechnik

Das Gebäude wird nicht beheizt

Flächenklassen

Grundmengen nach SIA 416 (2003) SN 504 416

Grundstück

	arunastack		
GSF	Grundstücksfläche	935 m ²	
GGF	Gebäudegrundfläche	471 m ²	
UF	Umgebungsfläche	464 m²	
BUF	Bearbeitete	464 m ²	
	Umgebungsfläche		
UUF	Unbearbeitete	0 m ²	
	Umgebungsfläche		
	Gebäude		
GV	Gebäudevolumen SIA 416	6261 m ³	
GF	UG	494 m ²	
	EG	412 m ²	
	1. OG	349 m ²	
	2. OG	265 m ²	
	3. OG	6 m²	
GF	Geschossfläche total	1 527 m²	100.0
NGF	Nettogeschossfläche	1372 m²	89.8

155 m²

87 m²

42 m²

 $875\,m^2$

368 m²

1243 m²

10.2%

81.4%

5.7%

2.8%

57.3%

24.1%

Erstellungskosten nach BKP (1997) SN 506 500 (inkl. MwSt. 8 %) in CHF

	BKP		
1	Vorbereitungsarbeiten	179000	1.3%
2	Gebäude	2706000	19.9%
3	Betriebseinrichtungen	10414000	76.6%
4	Umgebung	25000	0.2%
5	Baunebenkosten	276000	2.0%
1-9	Erstellungskosten total	13600000	100.0%
2	Gebäude	2706000	100.0%
20	Baugrube	385000	14.2%
21	Rohbau 1	1501000	55.5%
22	Rohbau 2	290000	10.7 %
25	Sanitäranlagen	35000	1.3%
26	Transportanlagen	35000	1.3%
27	Ausbau 1	345000	12.7%
28	Ausbau 2	115000	4.2%
20 21 22 25 26 27	Baugrube Rohbau 1 Rohbau 2 Sanitäranlagen Transportanlagen Ausbau 1	385 000.— 1 501 000.— 290 000.— 35 000.— 35 000.— 345 000.—	14.2 % 55.5 % 10.7 % 1.3 % 1.3 % 12.7 %

Kostenkennwerte in CHF

Konstruktionsfläche

Nutzfläche total

Verkehrsfläche

Funktionsfläche

HNF Hauptnutzfläche

NNF Nebennutzfläche

NF

VF

1	Gebäudekosten/m³	432
	BKP 2/m³ GV SIA 416	
2	Gebäudekosten/m²	1773
	BKP 2/m ² GF SIA 416	
3	Kosten Umgebung	54
	BKP 4/m² BUF SIA 416	
4	Zürcher, resp. Genfer Baukostenin-	102.3
	dex (4/2010=100)	

GIBT DER ARCHITEKTUR IHRE LEICHTIGKEIT

Jansen Bausysteme aus Stahl, Edelstahl und Aluminium erlauben äusserst filigrane Fenster-, Tür- und Fassadenlösungen. Unsere Profile werden immer raffinierter für immer spezifischere Anwendungen. Damit Architektur an Leichtigkeit gewinnt. Bester Beweis ist unsere neue VISS Fassadentüre, die mit ihren bis zu 6 Metern Höhe dennoch leicht von Hand zu öffnen ist!

jansen.com/fassadentuere

talsee,

