Zeitschrift: Werk, Bauen + Wohnen

Herausgeber: Bund Schweizer Architekten

Band: 86 (1999)

Heft: 6: Prototypen : zur Arbeit von Richard Buckminster Fuller (1895-1983)

Artikel: Nichts im Lot : Brücke "Val Tgiplat" bei Scheid GR, 1997-1998 :

Ingenieur Walter Bieler

Autor: Affentranger, Christoph

DOI: https://doi.org/10.5169/seals-64588

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

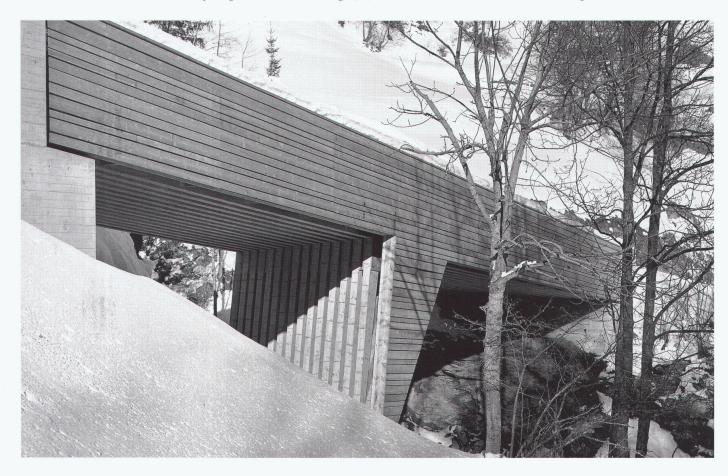
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

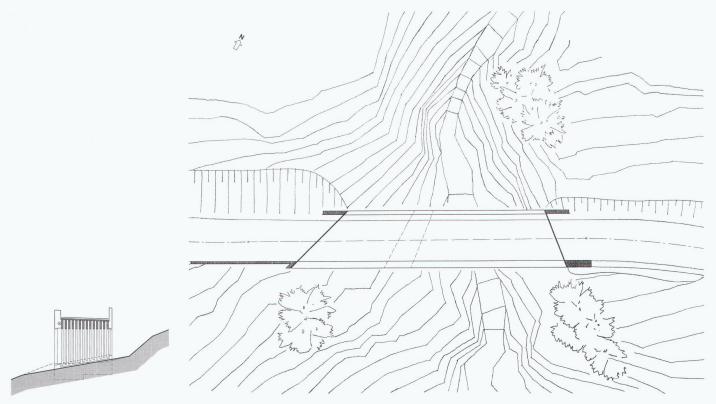
Nichts im Lot

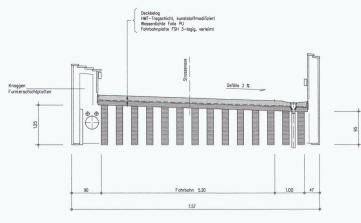

Brücke «Val Tgiplat» bei Scheid GR, 1997-1998

Ingenieur: Walter Bieler Mitarbeiter: Marcus Schmid Beratender Architekt: Reto Zindel Mit der Brücke über das Val Tgiplat beweist der Ingenieur Walter Bieler, dass auch im «Alltag» der Tiefbauten Holz ein finanziell und konstruktiv konkurrenzfähiges Baumaterial darstellt: dieser Holzkörper genügt vollauf den Anforderungen an sogenannt unbeschränkte Lasten für Brücken gemäss den Normen, wie sie zum Beispiel auch für Autobahnbrücken gelten.

Eine alte und kurvenreiche Strasse führt von der Talsohle des Domleschg hinauf ins kleine Dorf Scheid. Der schlechte Zustand, die mangelnde Wintersicherheit und die engen, den Anforderungen an den heutigen Verkehr nicht mehr gerecht werdenden Verhältnisse haben den Kanton dazu bewogen, die alte Verbindung zwischen Tomils und Scheid zu ersetzen. So entstand in den letzten zehn Jahren eine komplett neue Strasse mit zahlreichen Kunstbauten, Tunnels und Brücken in diesem topographisch anspruchsvollen Gelände. Die neue Verbindung sollte nicht nur Einsparungen im Unterhalt bringen, sondern auch ein Beitrag sein zur Verringerung der Abwanderung aus den hochgelegenen Bergdörfern. Der Kanton und die Dörfer Scheid und Feldis erhoffen sich dank der schnelleren Verbindung mit dem Tal Mehreinnahmen im Tourismus und das Verbleiben des einen oder anderen Bewohners, der unten im Tal eine Arbeitstelle gefunden hat.

Als Novum im Verbindungsstrassenbau des Kantons Graubünden wurde auf dieser Strecke eine der fünf Brücken aus Holz errichtet. Der Boom im Holzbau hat zwar in den vergangenen Jahren in der gesamten Alpenregion und in Skandinavien zu zahlreichen Holzbrücken geführt, doch sind die allermeisten davon entweder auf geringe Lasten ausgelegt (für Fussgänger und/oder Fahrradfahrer), oder sie sind Teile von Nebenstrassen (auf beschränkte Lasten ausgelegt).


Der Grundgedanke des Entwurfes bestand für Walter Bieler in der Idee, die Brücke perfekt an die topographischen Verhältnisse anzupassen. Da das kleine Tal, das es zu queren galt, sich genau am Punkt des Brückenschlages talseitig trichterförmig öffnet, leitete der Ingenieur zusammen mit dem beratenden Architekten Reto Zindel aus den Gegebenheiten einen trapezförmigen Grundriss ab. Durch diese



Terrainanpassung Zwischenpfeiler

Fotos: Ralph Feiner, Chur

Querschnitt durch Binderschar

Aufsicht

Verbundkonstruktion Fahrbahnplatte

Anpassung an die Topographie konnten talseitig übermässig hohe Stützmauern respektive bergseitig grosse Felsausbrüche vermieden werden. Der ungleiche Geländeverlauf auf beiden Seiten des Baches ermöglichte eine asymmetrische Zwischenabstützung. Aufgrund der variablen Spannweiten wurde auch der Brückenquerschnitt trapezförmig ausgebildet, sodass Abstützung und Trägerhöhen entsprechend dem Geländeverlauf und der daraus resultierenden statischen Beanspruchung abgestuft werden konnten. Da die Längsträger mit dem Helikopter zur Baustelle transportiert werden mussten, ergab sich eine Gewichtsbeschränkung auf 4,5 Tonnen für die grössten Bauteile. Deshalb wird die Brücke aus einer engen Binderschar als Primärträger unter Verzicht auf Sekundärträger gebildet.

Im Gegensatz zur traditionellen Form der Holzbrücke mit ihrem Überbau und dem Dach zum konstruktiven Schutz des Holzes vor Feuchtigkeit hat Walter Bieler auch bei seinem neusten Werk auf das bewährte Konzept der wasserdichten Fahrbahnplatte als Dach für die darunterliegenden Holzbauteile zurückgegriffen. Diese Fahrbahnplatte besteht aus einer 13,5 Zentimeter starken, dreilagigen, vollflächig verleimten und verschraubten Kerto-Furnierschichtholzplatte, die direkt auf die darunterliegenden Längsträger montiert ist. Die Fahrbahnplatte dient der horizontalen Aussteifung der Brücke und verteilt die Radlasten auf 2 bis 3 Längsträger. Zudem ist sie mit den Randträgern zu einem Verbundquerschnitt verleimt, was die Deformation am Brückenrand verringert. Der aufgebrachte Belag ist 17 cm stark. Die Wasserisolation bildet eine Folie zwischen der Kertoplatte und dem Belag. Die seitliche Geländerkonstruktion ist auf die erforderlichen Anpralllasten bemessen. Sie ist als Verschleissteil auswechselbar kon-

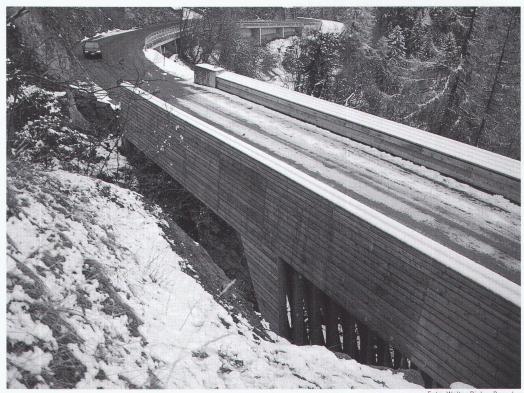


Foto: Walter Bieler, Bonaduz

zipiert und mit einer Lärchenholzschalung verkleidet. Talseitig und von der Fahrbahn her zugänglich, verbergen sich in der Geländerkonstruktion zudem die Werkleitungen (Abwasser und Stromversorgung von Scheid).

Nur eine Brüstung aus Holz verrät dem Reisenden, dass diese Brücke nicht ist wie all die anderen. Von der Strasse sonst nicht einsehbar, entfaltet die Konstruktion erst bei der Begehung im steilen Terrain ihre formale Kraft. Nichts ist hier im Lot, nicht einmal die Brückenplatte selbst mit ihrem Längsgefälle von 10% und Quergefälle von 3%. Und doch schliessen sich die einzelnen Konstruktionselemente dank Addition zu Volumen. Dieser Raum zwischen Gelände und Bauwerk, bringt die Polarität von Vertikalität und Horizontalität, wie es die Absicht der Entwerfer war, zur Geltung.

Christoph Affentranger

