Zeitschrift: Werk, Bauen + Wohnen

Herausgeber: Bund Schweizer Architekten

Band: 67 (1980)

Heft: 10: Bauen mit Holz

Artikel: Holzbau heute, Tendenzen und Beispiele

Autor: Natterer, J. / Winter, W.

DOI: https://doi.org/10.5169/seals-51522

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

J. Natterer, W. Winter Lehrstuhl für Holzkonstruktion ETH Lausanne

Holzbau heute, Tendenzen und Beispiele

Constructions en bois dans le contexte actuel, tendances et exemples

Timber construction in contemporary architecture, trends and examples

Der Holzbau ist eine der traditionsreichsten Bauweisen in Mitteleuropa. Er kann auch im Rahmen des heutigen Baugeschehens auf eine Reihe von Vorzügen verweisen.

Der Holzbau verfügt über eine Fülle erprobter, teilweise hochentwickelter Techniken und Detaillösungen, die von einer immer noch vorhandenen handwerklichen Tradition getragen und weiterentwickelt werden.

Der Holzbau ist in der baugeschichtlichen Tradition verankert, dies vereinfacht wesentlich die Einpassung moderner Holzbauten in alte, gewachsene bauliche Strukturen. Die geschichtlich und kulturell bedingte Verbundenheit der Menschen mit dem Baustoff Holz prädestiniert den Holzbau für Bauaufgaben, die besondere Anforderungen an die emotionalen und ästhetischen Wirkungen auf Betrachter und Nutzer stellen.

Und nicht zuletzt ist Holz der einzige Baustoff, der von selbst «nachwächst», der relativ leicht und in Europa fast überall gewonnen werden kann und der ohne grossen zusätzlichen Energieaufwand direkt zum Bauen verwendet werden kann.

Die in der Architektur der letzten Jahre stärker gewordenen Strömungen hin zu mehr Gestaltung und mehr Ausdruck, weg von gleichförmigen Massenbauten und von kostenmässig «totoptimierten» Phantasielosbauten und speziell das wachsende Energie- und Ökologiebewusstsein haben dem modernen Holzbau die Möglichkeit verschafft, bei einer wachsenden Anzahl von Bauaufgaben

seine Leistungsfähigkeit unter Beweis stellen zu können.

Realistisch gesehen ist jedoch der Anteil des Holzbaues am gesamten Hochbau unbedeutend. Er konnte sich zwar in einigen «Nischen» einrichten, die für die «anderen» wegen der Komplexität der Bauaufgaben und wegen des geringen Leistungsumfangs uninteressant waren; doch eigentlich ist der ernsthafte Kampf um Marktanteile noch gar nicht eröffnet.

Der Holzbau hat hier sicherlich keine schlechten Chancen, wenn die Architektenschaft sich in breiterem Umfang bewusst wird, dass mit Holz nicht nur Sonderprobleme gelöst werden können, sondern auch alltägliche Bauaufgaben.

Die hier gezeigten, mit Holzkonstruktionen gelösten Projekte stammen aus dem angesprochenen Bereich der «Sonderaufgaben». Sie wurden von verschiedenen Architekten konzipiert und in enger Zusammenarbeit mit der PNP* statistisch-konstruktiv bearbeitet. Diese Zusammenarbeit begann bereits beim Vorentwurf und beinhaltete sowohl die Entwicklung von architektonischen und konstruktiv-statischen Alternativen als auch die Detailbearbeitung.

Aufgrund der Beteiligung am gesamten Planungsablauf sind uns die jeweiligen Randbedingungen, Entscheidungskriterien und deren Wertigkeiten genau bekannt. Wir halten es deshalb für gerechtfertigt, wenn wir als Beispiele für die eingangs formulierte Grundthese lediglich Projekte aus der eigenen Werkstatt anführen. Dies soll jedoch nicht heissen, dass dies die einzigen erwähnenswerten Beispiele für Holzkonstruktionen sind.

In der Bundesrepublik, der Schweiz, in Frankreich und in Skandinavien z.B. wurden in den letzten Jahren architektonisch sehr interessante Holzbauten realisiert, die in den hier besprochenen Zusammenhang gehören würden. Die hier angeführten Beispiele können grob fünf Typen von Bauaufgaben zugeordnet werden:

- 1. «Bauten für den Menschen» (Wohnen, Freizeit, Gemeinschaftsbauten etc.), bei denen besondere Anforderungen an das Raumklima und an die psychologische Wirkung von Innen- und Aussenräumen gestellt werden. Kurz, Bauten mit hohem architektonischem Anspruch.
- 2. «Bauaufgaben mit speziellen nutzungsbedingten Anforderungen», z.B. durch aggressive Innenraumklimata bei Industriebauten, Lagerhallen der chemischen Industrie, in Mineralbädern etc. oder durch besondere Anforderungen an Lichtraumprofil, Belichtungssituation, Installationsführung etc., die durch die Anpassbarkeit und «Formbarkeit» von Holztragwerken besonders gut erfüllt werden können.
- 3. Bauten mit hohen Anforderungen an Anpassung und Verträglichkeit mit bestehender Bausubstanz und der natürlichen Umgebung.
- 4. «Bauaufgaben mit grossen Spannweiten», die durch Holzkonstruktionen aufgrund der Vorteile im Eigengewichts-Festigkeits-Verhältnis, im Brandverhalten, in der Verarbeit- und Montierbarkeit wirtschaftlich gelöst werden können.
- 5. Ingenieurbauten mit besonderen Anforderungen bezüglich Gestaltung, z.B. Brücken, Aussichtstürme etc.

Zusammenfassend: Die Chancen des Holzbaues liegen auf vielen Gebieten. Besonders wichtig scheint jedoch für die Zukunft des Holzbaues die sogenannte «massgeschneiderte» Individualarchitektur. Derartige Bauaufgaben wirtschaftlich zu realisieren könnte eine Zukunftssicherung für die mittelständisch strukturierte Holzbauindustrie sein.

^{*} PNP Planungsgesellschaft Natterer + Partner mbH, Ingenieurbüro für Konstruktion und Statik, München

Segelsportanlage in Diessen

Segelsportanlage in Diessen am Ammer-see mit Bootslager, Clubhaus, Regattaturm.

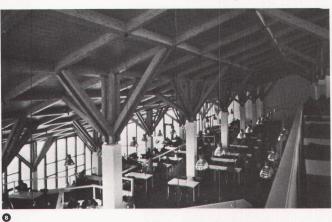
taturm.

Es wurde versucht, die Formensprache der bestehenden Fischerhütten aufzunehmen und für die moderne Nutzung umzusetzen. Reiner Holzskelettbau auf Stahlbetonpfählen, die Kopfbänder werden zum wichtigen Gestaltungsmerkmal.

Das Bauwerk erhielt den Holzpreis Bayern 1090

1980.

Architekt: Lübs+Hintermeier, Diessen Konstruktion und Statik: PNP, München



66

Büropavillon in München
Der Holzskelettpavillon ist zur Erweiterung des Raumprogramms an eine restaurierte, unter Denkmalschutz stehende Jugendstilvilla angebunden. Das Gebäude steht auf Stützen, so dass im Untergeschoss 22 PKW-Abstellplätze geschaffen werden konnten. Die Konstruktion wurde so angelegt, dass der Pavillon sowohl durch Aufsetzen eines Obergeschosses als auch durch den Einbau einer Fassade in den Gartenbereich zu einem «Gartenschloss» erweiterbar ist – baurechtlich mögliche Verdreifachung der Nutzfläche. Diese Holzskelettkonstruktion erfüllt als Diese Holzskelettkonstruktion erfüllt als eines der ersten Holzbauwerke in der Bun-desrepublik die Forderung der Feuer-widerstandsklasse F90 B. Das Stützenachs-mass beträgt 4,80×13,20 m.

Die Tragkonstruktion ist wesentlicher Be-standteil des Innenausbaus und gibt dem Grossraumbüro eine besondere Atmo-

spnare. Architekten: Fahr+Partner, München Konstruktion und Statik: PNP, München

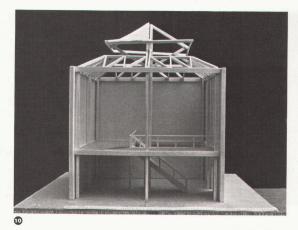
0-9

Mensagebäude in Weihenstephan
Unabhängiges Mensagebäude für die
Technische Universität in München-Weihenstephan.

henstephan. Als Stützenraster für die Dachkonstruktion waren 7,20×7,20 m aus dem Unterbau vorgegeben. Es wurde versucht, bei der sichtbar zu belassenden Holzdachkonstruktion das quadratische Planungsraster struktion das quadratische Planungsfaster zu berücksichtigen. Entsprechend wurde ein in der schrägen Dachebene liegender Trägertost gewählt, der zur Verringerung der Trägerdimensionen durch räumliche Kopfbänder unterstützt wird.

Das Stabbündel der räumlichen Abstre-

Das Stabbundei der raumichen Abstre-bungen wurde mehrteilig konstruiert. Da-durch konnten verschiedene Probleme, z.B. im Eck, am Rand oder bei Durchdrin-gungen von Wänden oder Fassadenteilen, geschickt gelöst werden.

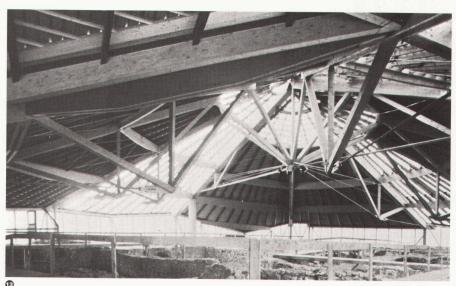

Architekten: Geierstanger, Burianik, Universitätsbauamt Weihenstephan Konstruktion und Statik: PNP, München

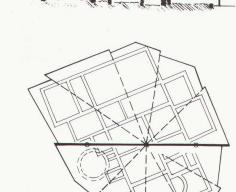
In der Praxis sind diese Bauaufgaben gekennzeichnet durch besonders «knifflige» Aufgabenstellungen bzw. Anforderungen an die Tragkonstruktion, sei es bezüglich der Grundstücksituation, der vorhandenen Umgebung, der Spannweite, der Bauzeit, der Bauphysik oder nicht zuletzt der Gestaltung. Hier hat der Holzbau seine Anpassungsfähigkeit und seine vielseitige Einsetzbarkeit bereits bewiesen - wie die Beispiele zeigen -, ohne dass dabei wesentliche architektonische Belange zu kurz gekommen wären.

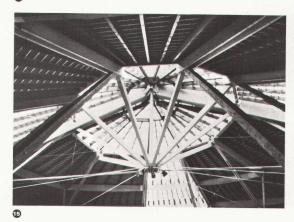
Der Holzbau hat es verdient, dass die Architekten sich ihm wieder verstärkt zuwenden. Er ermöglicht eine eigenständige architektonische Formensprache, und wie kein anderer Baustoff ermöglicht er eine Einheit von Innenraum und Fassade, von Tragwerk und Ausbau, von Bauwerk und Umgebung.

Diese Möglichkeiten sollten Architekten und Ingenieure mit verstärkten gemeinsamen Anstrengungen nutzen.

J. N., W. W.



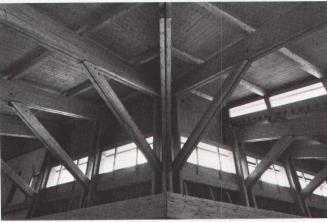


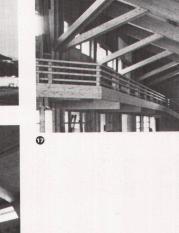


Schule in Starnberg
Die Holzkonstruktion überdacht einen mehrgeschossigen Innenhof, der als Pausenbereich und Cafeteria einer Rechtspfle-

senbereich und Cafeteria einer Rechtspfle-gerschule in Starnberg dient.
Das schirmförmige Dach wird von einer zentralen Stütze getragen und durch schrägliegende Fachwerkträger gestützt. Die gesamte Holzkonstruktion einschliess-lich der Empore ist vom umgebenden Stahlbetonbau abgesetzt und wirkt be-wusst als Bestandteil des Innenausbaus. Konstruktion und Statik: PNP, München

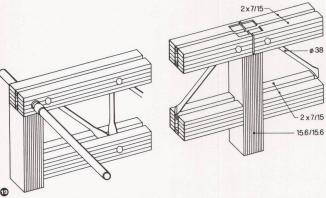
B-B


Überdachung in Weissenburg Überdachung der Ruinen eines erst 1979 im Rahmen der Baumassnahmen für ein


Reihenhauswohngebiet freigelegten römischen Bades in Weissenburg, Bayern.
Der stark unregelmässige Gebäudeumriss folgt genau den freigelegten Mauerresten, die Dachform versucht sich der Hangsituation und der umgebenden Bebauung anzu-

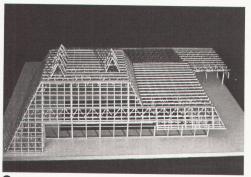
passen. Im Ruinenbereich konnten nur zwei Stahlbetonstützen angeordnet werden. Diese kürzeste Spannweite wird für den Hauptträger genutzt, in den sich die radial ange-ordneten, unterschiedlich langen Neben-träger einhängen. Die Konstruktion ver-sucht durch die Betonung des Zentral-punktes und durch die räumliche Nabe aus Abstrebungen der Vielfalt von Geome-

Architekt: Wörrlein, Nürnberg
Konstruktion und Statik: PNP, München



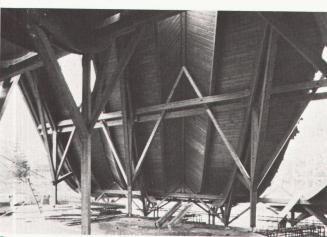
16-18 Gemeindezentrum in Fussach

Gemeindezentrum in Fussach
Kirche mit Gemeindezentrum als Dorfmitelpunkt in Fussach, Vorarlberg,
Besondere Anforderungen an Baukörper
und Dachlandschaft aus der bestehenden
Bausubstanz und der städtebaulichen Situation, insbesondere aus dem zu erhaltenden Turm der alten Kirche.
Das Grundelement der Tragstruktur, zwei
ineinandergestellte Halbrahmen aus Brettschichtholz, ermöglicht eine Höhenstufung
des Baukörpers und den statisch einwandfreien Einbau der Galerie. Das Problem
des im Grundriss um 45° abgeknickten
Baukörpers, mit den entsprechend gewindes im Grundriss um 45° abgeknickten Baukörpers, mit den entsprechend gewin-kelten Dachflächen, wird in der sichtbaren Tragstruktur durch Y-förmige Gabelung der Riegel des Eckrahmens elegant gelöst. Architekten: Ostertag, Stuttgart, Kauf-mann, Dornbirn Konstruktion und Statik: PNP, München


19-21

Kindergarten Erdweg
Der Grundgedanke bei diesem Kindergartengebäude in Erdweg war die Vorstellung eines grossen Daches, unter dem die Räume, ohne Bindungen an die Konstruktion, frei angeordnet werden können. Die zurückgesetzte Fassade ermöglicht einen gedeckten Umgang als Übergangszone zwischen Innen und Aussen.
Die Fachwerkträger mit den gequetschten Stahlrohren als Diagonalen und Pfosten liegen alle 2,40 m. Dadurch wird eine Sparrenlage unötig, und die dicht liegenden Filigranträger bestimmen, zusammen mit den gekreuzten Windverbänden aus

Rundstahl, Innen- und Aussenansicht des Gebäudes wesentlich mit. Architekt: Steidle, München Konstruktion und Statik: PNP, München



Sportzentrum in Nürnberg
Sportzentrum für die bayerische Bereitschaftspolizei in Nürnberg.
In dem Gebäudekomplex sind untergebracht: Dreifachturnhalle mit Nebenräumen, Judoraum, Schwimmhalle mit Sprungturm und 25-m-Wettkampfbecken. Da sich das Bauwerk in einem nichtöffentlichen Grüngürtel befindet, konnten die Baukörper frei aus den jeweiligen Nutzungen heraus entwickelt werden. Die Tragkonstruktion ist überall sichtbar und passt sich genau den minimal erforderlichen Lichtraumprofilen an. Auf untergehängte Decken wurde verzichtet, die Klimainstallationen werden in der Fachwerksonstruktion geführt. Trotz den unterschiedlichen Nutzungszonen konnte durch die einheitliche Verwendung des Baustoffes Holz für die sichtbaren Tragkonstruktionen die Einheitlichkeit des gesamten Komplexes gewahrt werden.
Architekt: Loew, Landbauamt Nürnberg Konstruktion und Statik: PNP, München

26-28

Freizeithad in Bad Homburg
Freizeithad mit Sauna und Entspannungsräumen inmitten einer alten Parkanlage
Bad Homburgs.
Die unterspannte Binderkonstruktion erfüllt verschiedene Anforderungen. Sie
passt sich bei minimalem umbautem Raum
der terrassierten Gebäudestruktur ideal
an, ergibt eine interessante Dachlandschaft und durch die geschwungenen Obergurte eine dem Freizeitcharakter angemessene Innenraumstruktur. Sie ermöglicht eigurte eine dem Freizeitcharakter angemessene Innenraumstruktur. Sie ermöglicht eine minimale Fassadenfläche, und durch Versetzen der Binder kann das Gebäude gut in den bestehenden Baumbestand eingepasst werden. Die unterspannten, räumlich gespreizten Diagonalstreben werden bei den Nebengebäuden einfach auf Stützen aufgesetzt, so dass die Einheitlichkeit der sichtbaren Tragkonstruktion den unterschiedlichen Nutzungsbereichen ein einheitliches Gepräge gibt.

Architekten: Bauabteilung der Firma W. Wicker

32

29-32

Fussgängerbrücke München
Die überdachte Fussgängerbrücke über die
Isar bei München wurde im Rahmen des
Ausbaus eines Naherholungsgebietes 1979 neu erbaut.

Man lehnte sich dabei gestalterisch bewusst an die Vorbilder alpenländischer Holzbrücken an.

Die Holzverschindelung des Daches und die seitlichen Bretterverschalungen verbergen eine moderne Ingenieurholzkonstruktion aus Brettschichtholz. Die Fachwerkträger mit 4 m Bauhöhe überbrücken eine maximale Spannweite von 52 m. Architekt: Baureferat der Stadt München Konstruktion und Statik: PNP, München

33 63 64

Fussgängerbrücke Ansbach

Bei dieser Fussgängerbrücke am Rande der Ansbacher Altstadt wurde versucht, die Dachformen der kleinteiligen Altstadtbebauung aufzunehmen. Die Stützfachwerke über den Auflagern

verkürzen die freie Spannweite für die Vollwandträger und ergeben gleichzeitig Brückenhäuschen, die als Verweilpunkte und Schutzdächer für die Fussgänger dienen.

Entwurf, Statik und Konstruktion: PNP, München

36 35 36

Die überdachte Fussgängerbrücke befindet sich in der Amberger Altstadt, in unmittelbarer Nähe einer alten, noch bestehenden Holzbrücke.
Die 24 m überspannende Brücke wird von zwei schräggestellten Leimträgern in der Dachebene getragen. Die Gehbahn ist von

diesem tragenden Faltwerk abgehängt, so dass die Brücke sehr leicht wirkt. Dies war in der engen Altstadtsituation ein wichtiges Entwurfskriterium. Die sich aus den heutigen Berechnungsvorschriften oft ergebende Massivheit geleimter Balken-brücken konnte hier vermieden werden. Entwurf, Statik und Konstruktion: PNP, München

