| Zeitschrift: | Bulletin für angewandte Geologie                                                                                       |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| Herausgeber: | Schweizerische Vereinigung der Petroleum-Geologen und –Ingenieure;<br>Schweizerische Fachgruppe für Ingenieur-Geologie |
| Band:        | 1 (1996)                                                                                                               |
| Heft:        | 1                                                                                                                      |
| Artikel:     | Abschätzung der Gebirgsfestigkeit für Bruchprobleme in Festgesteinen                                                   |
| Autor:       | Locher, Hans Georg                                                                                                     |
| DOI:         | https://doi.org/10.5169/seals-219178                                                                                   |

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

#### Download PDF: 31.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

| Bull, angew, Geol. | Vol. 1 | Nr. 1 | S. 21-36 | Juni 1996 |
|--------------------|--------|-------|----------|-----------|
|                    | · on i |       | 0        |           |

# Abschätzung der Gebirgsfestigkeit für Bruchprobleme in Festgesteinen

mit 2 Figuren und 5 Tabellen

HANS GEORG LOCHER\*

| 1.  | Einleitung                                                 | 21 |
|-----|------------------------------------------------------------|----|
| 2.  | Ingenieurmässige Klassierung des Gebirges nach Barton      | 22 |
| 3.  | Die Festigkeit von Fels und Gebirge nach Hoek              | 25 |
| 4.  | Abschätzung der Genauigkeit mit probabilistischen Methoden | 28 |
| 5.  | Beispiele                                                  | 30 |
| 6.  | Zusammenfassung und Schlussfolgerungen                     | 34 |
| Lit | teratur                                                    | 36 |

# 1. Einleitung

In der Boden- und Felsmechanik treten eine ganze Anzahl von Bruchproblemen auf, zu deren zahlenmässiger Abschätzung der Geotechniker Werte für die Scherparameter und das Raumgewicht des Bodens oder des Gebirges benötigt:

- Stabilität von Böschungen oder Baugrubenwänden
- Tragfähigkeit von Fundamenten
- Erd-resp. Gebirgsdrücke auf Wände
- Stabilität und Gebirgsdrücke von Tunneln.

In der *Bodenmechanik* sind die Methoden zur experimentellen Ermittlung der Scherparameter - im allgemeinen Fall der Kohäsion c' und des Reibungswinkels  $\Phi$ ' in Bezug auf Effektivspannungen - bekannt und meist für die praktischen Bedürfnisse der Grundbauer genügend genau (s. z.B. Lang / Huder 1982, Kap. 6 und Kap. 9).

In der *Felsmechanik* dagegen sind die Modellvorstellungen ganz wesentlich komplizierter (s. z.B. Wittke 1984, Teil D), und die sehr zahlreichen Parameter sind schlecht bekannt sowie mit vielen Annahmen behaftet. Nur die Raumgewichte können einfach bestimmt oder geschätzt werden.

Im allgemeinen stehen uns bei Felsproblemen folgende Unterlagen zur Verfügung: – die einaxiale Druckfestigkeit von intakten Gesteinsproben, z.B. von Bohrker-

nen. Darüber besteht ein grosser Schatz von Erfahrungen und Messungen.

- Aufnahme und visuelle Beurteilung der Schichtung und Klüftung (Kluftfamilien, Richtung, Kluftbeläge, Verwitterung etc).
- Angaben über die Grund- resp. Kluftwasserverhältnisse sowie die Spannungsverhältnisse im Gebirge.

<sup>\*</sup> Geotechnische Beratungen, Gumpisbühlweg 17, 3067 Boll

Im vorliegenden Artikel wird systematisch unterschieden zwischen

- Eigenschaften des intakten Felsens (intact rock material, Index i)

- Eigenschaften des Gebirges (rock mass, Index m).

Es wird eine Methode gezeigt, welche aus den oben aufgezählten zur Verfügung stehenden Unterlagen Scherparameter des Gebirges, nämlich eine durchschnittliche Kohäsion  $c_m$  und einen durchschnittlichen Reibungswinkel  $\Phi_m$  abzuschätzen erlauben. Diese durchschnittlichen Scherparameter berücksichtigen sowohl die Festigkeit des Grundgesteins wie auch den abmindernden Einfluss von Schichtung und Klüftung. Sie wurden auf halbempirischem Weg gefunden, indem mehrere zusätzliche Parameter in ein bekanntes Bruchkriterium eingefügt wurden, deren Wert an praktischen Beispielen bestimmt werden konnte.

Mit den so erhaltenen durchschnittlichen Scherparametern  $c_m$  und  $\Phi_m$  können felsmechanische Bruchprobleme näherungsweise mit denselben Berechnungsmethoden abgeschätzt werden, wie sie für Bodenprobleme gebräuchlich sind, und man kann dazu dieselben Rechenprogramme verwenden.

Zur Abschätzung der Gebirgsfestigkeit werden folgende vier aus der Literatur bekannte Ansätze miteinander kombiniert:

- 1. Nach Deere (1963) wird die *Rock Quality Designation RQD* bestimmt oder abgeschätzt. RQD ist der prozentuale Anteil von Bohrkernstücken grösser als 10 cm in der untersuchten Schicht einer Bohrung.
- 2. Nach Barton et al. (1974) wird aus dem RQD und den Angaben über die Klüftung, die Kluftwasser- und Spannungsverhältnisse die *Rock Mass Quality Q*, eine Masszahl für die Qualität des Gebirges bestimmt.
- 3. Aus der Rock Mass Quality Q des Gebirges und der einaxialen Druckfestigkeit  $\sigma_{ci}$  des intakten Gesteins können nach Hoek (1994) die *durchschnittlichen Scherparameter des Gebirges*, nämlich der Reibungswinkel  $\Phi_m$  und die Kohäsion  $c_m$  des Gebirges abgeschätzt werden.
- 4. Alle bei diesen Abschätzungen verwendeten Grössen weisen eine beträchtliche Streuung auf. Mit Hilfe von probabilistischen Überlegungen werden daraus Angaben über die zu erwartende Streuung der Scherparameter abgeleitet (Harr 1987, Locher 1983, 1985). Damit kann die Zuverlässigkeit der erhaltenen Resultate beurteilt werden. Auf Grund der erhaltenen Streuungen ist es möglich, auf eine systematischere Art Parameterstudien auszuführen, in denen für die Scherparameter des Gebirges statistisch begründbare obere und untere Werte eingesetzt werden.

# 2. Ingenieurmässige Klassierung des Gebirges nach Barton

Im Jahr 1974 hat das Norwegische Geotechnische Institut in seiner Publikation Nr. 106 (Barton et al. 1974) ein Klassifizierungssystem für das Gebirge entwickelt, welches vorab für Tunnel gedacht war, aber mit der nötigen Erfahrung auch für andere Gebirgsprobleme verwendet werden kann. Das System beruht auf der Analyse von ca. 200 Untersuchungen für Tunnelbauten und ergab einen nützlichen Zusammenhang zwischen den Verbaumassnahmen und einer Masszahl für die Gebirgsqualität Q. Diese Masszahl wird aus 6 Parametern errechnet, welche vorwiegend die Eigenschaften von Schichtung und Klüftung beschreiben und auf Grund der visuellen Beurteilung als skalierte Leitziffern (ratings) festgelegt werden. Folgende Leitziffern wurden verwendet: (s. Tabellen 1 und 2)

|         | N. Barton, K. Lich                                                                                                                                                | , and J. Lunde:                                                                                                | Engineering Classifica                                                                                                 | HOLI OF NOCK WITSESS                                   | IOI INC DESIGN                                  | hoddine radium tilto                                                                                          |          |                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|
|         | Table 1. Descriptions and Ratings fo                                                                                                                              | r the Parameters RQD, Jn, and Jr                                                                               |                                                                                                                        | Table 2. Cont                                          | nued                                            |                                                                                                               |          | Table 3. I                                                                            |
|         | ROCK QUALITY DESIGNATION (RQD                                                                                                                                     |                                                                                                                | E. Softening or low frictio                                                                                            | n clay 4.0                                             | (8°16°)                                         |                                                                                                               | ف ا      | STRESS REDUC                                                                          |
| ₹¤ΰ     | Very poor<br>Poor<br>Fair 50-7                                                                                                                                    | <ul> <li>Note:</li> <li>Note:</li> <li>Where RQD is reported or</li> <li>measured as ≤10 (including</li> </ul> | mineral coatings, i.e. k<br>mica. Also chlorie, talo<br>and graphite etc., and s<br>quantities of swelling c           | aoinite,<br>, gypsum<br>mall<br>avs.                   |                                                 |                                                                                                               |          | (a) Weakness zon<br>which may cause<br>when tunnel is ex                              |
| сы      | Good                                                                                                                                                              | 0 0) a nominal value of 10 is<br>used to evaluate Q in Eq. (1)<br>(ii) RQD intervals of 3, i.e. 100,           | (Discontinuous coating<br>or less in thickness)<br>(b) Rock wall contact                                               | , 1—2 mm<br>refore                                     |                                                 |                                                                                                               | Υ.       | Multiple occurren<br>containing clay oi<br>rock, very loose s                         |
| 2.      | JOINT SET NUMBER                                                                                                                                                  | 20, 20, cic. arc sumicianuy<br>accurate                                                                        | 10 cms shear<br>F. Sandy particles, clay-fre                                                                           | e dis- 4.0                                             | (250-300)                                       |                                                                                                               | В.       | Single weakness z<br>chemically disinte                                               |
| ≺miUa   | Massive, no or few joints 0.5-1<br>One joint set                                                                                                                  | 0                                                                                                              | G. Strongly over-consolida<br>Strongly over-consolida<br>softening clay mineral f<br>(Continuous, < 5 mm ii            | ted, non- 6.0<br>Illings<br>1 thickness)               | (16°24°)                                        |                                                                                                               | Ċ        | excavation ≥ 30 n<br>Single weakness z<br>chemically disinte<br>cavation > 50 m)      |
| ว่มแข่ว | T wo joint sets                                                                                                                                                   | Note:<br>IN East State                                                                                         | <ul> <li>Medium or low over-cc<br/>tion, softening, clay mir<br/>fillings. (Continuous, &lt;<br/>thickness)</li> </ul> | nsolida- 8.0<br>icral<br>5 mm in                       | (12°16°)                                        |                                                                                                               | йĎ       | Multiple shear zo<br>(clay free), loose s<br>Single shear zones                       |
| ć       | rour or mote Joint sets, anoun,<br>Lasvily jointed, "stgar cube", etc. 15<br>Crushed rock, earthlike                                                              | (i) For intersections use $(5.0 \times J_n)$<br>(ii) For portals use $(2.0 \times J_n)$                        | <ol> <li>Swelling clay fillings, i.<br/>morillonite (Continuous<br/>in thickness), Value of</li> </ol>                 | e. mont- 8.0—12.0<br>, < 5 mm<br>, depends             | (60-120)                                        |                                                                                                               | й.<br>Ю  | free) (depth of exo<br>Single shear zones<br>free) (depth of exo<br>Loose open joints |
| è.      | JOINT ROUGHNESS NUNIBER Ur)<br>(a) Rock wall contact and<br>(b) Rock wall contact before                                                                          |                                                                                                                | on percent of swelling of<br>particles, and access to<br>(c) No rock wall conta-<br>tuber of horred                    | ia)-size<br>water eic.<br>オ                            |                                                 | *                                                                                                             |          | cube" etc. (any de<br>(b) Competent ro                                                |
| ₹miúα   | 10 cms arear<br>Discontinuous joints                                                                                                                              | Note:<br>(i) Add 1.0 if the mean spacing<br>of the relevant joint set is                                       | K.L. Zones or bands of disin<br>M. or crushed rock and cla<br>H. J for description of dition                           | regrated 6.0, 8.0<br>v (see G, or<br>lay con- 8.0-12.0 | (9 °                                            |                                                                                                               | цЧХ      | Low stress, near s<br>Medium stress<br>High stress, very t                            |
| ப்பட்டு | Nickensotes, unoutaning<br>Rough or irregular, planar<br>Smooth, planar<br>Slickensided, planar                                                                   | greater than 2 m<br>(ii) Jr=0.5 can be used for<br>planar slickensided joints                                  | <ul> <li>N. Zones or bands of silty-<br/>clay, small clay fraction<br/>(non-softening)</li> </ul>                      | or sandy 5.0                                           |                                                 |                                                                                                               |          | structure (Usually<br>favourable to stab<br>may be unfavoura                          |
| 2       | (c) No rock wall contact<br>when sheared<br>7                                                                                                                     | having lineations, provided<br>the lineations are favourably<br>orientated                                     | O.P. Thick, continuous zone<br>R. of clay (see G, H, J for<br>tion of clay condition)                                  | or bands 10 0, 13.0<br>descrip- or 13 0-20             | 0 (6°-24°)                                      |                                                                                                               | M L      | Mild rock burst<br>(massive rock)<br>Heavy rock burst                                 |
| ć 🚽     | Lone containing cay minerals inck<br>enough to prevent rock wall contact 1.0 (n<br>sandy, gravely or crushed zone<br>thick enough to prevent rock wall<br>contact | ominal)<br>ominal)                                                                                             | 5. JOINT WATER REDU<br>FACTOR                                                                                          | CTION (J.w)                                            | Approx. wa<br>pressure<br>(kg/cm <sup>2</sup> ) | Ler.                                                                                                          |          | (massive rock)<br>(c) Squeeving rock<br>incompetent rock                              |
|         | Table 2. Descriptions and Ratings                                                                                                                                 | for the Parameters Ja and Ju                                                                                   | <ul> <li>A. Dry excavations or min<br/>i. e. &lt; 5 l/min. locally<br/>R Medium inflow or pres</li> </ul>              | or inflow, 1.0<br>ure 0.66                             | <1<br>1.0- 2.5                                  | Note:<br>(i) Factors C to F are<br>crude estimates. In-                                                       | ż ö      | Mild squeezing roo<br>Heavy squeezing r                                               |
| 4       | JOINT ALTERATION NUMBER (Ja)                                                                                                                                      | gr (approx.)                                                                                                   | occasional outwash of j<br>fillings                                                                                    | oint                                                   |                                                 | crease Jur if drainage<br>measures are installed                                                              |          | (d) Swelling rock;<br>activity depending                                              |
| Υ.      | (a) Kock wall contact<br>Tightly healed, hard, non-soften-<br>ing, impermeable filling i. e.                                                                      | () Note:<br>(i) Values of (g), are in-                                                                         | <ul> <li>Large inflow or high pr<br/>competent rock with un<br/>joints</li> </ul>                                      | essure in 0.5<br>filled                                | 2.5-10.0                                        | <ul> <li>(ii) Special problems</li> <li>caused by ice formation are not con-<br/>tion are not con-</li> </ul> | ч.<br>Ж. | Mild swelling rock<br>Heavy swelling ro                                               |
| в.      | quarts of epidote<br>Unaltered joint walls, surface 1.0<br>staining only                                                                                          | (25°-35°) mate guide to the<br>mineralogical proper-                                                           | D. Large inflow or high pr<br>considerable out wash o<br>fillings                                                      | essure, 0.53<br>joint                                  | 2.5-10.0                                        | אותבובת                                                                                                       |          |                                                                                       |
| J       | Slightly altered joint walls. Non- 2.0<br>softening mineral coatings, sandy<br>particles, clay-free disintegrated                                                 | (25°-30°) tics of the alteration products, if present                                                          | E. Exceptionally high inflo<br>water pressure at blasti<br>caying with time                                            | w or 0.2-0.1<br>15, de-                                | > 10.0                                          |                                                                                                               |          |                                                                                       |
| Ċ.      | rock etc.<br>Silty-, or sandy-clay coatings, small 3.0<br>clay-fraction (non-softening)                                                                           | (200-250)                                                                                                      | F. Exceptionally high infic<br>water pressure continui<br>noriceable decay                                             | w or 0.1                                               | > 10.0                                          |                                                                                                               |          |                                                                                       |

-11

# $\begin{array}{rcl} \sigma_{f}(\sigma_{1} & \sigma_{f}/\sigma_{1} \\ \text{surface} & > 200 & > 13 & 2.5 \\ 200-10 & 13-0.66 & 1.0 \\ \text{tight} & 10-5 & 0.66-0.33 & 0.5-2.0 \end{array}$ 5-2.5 0.33-0.16 5-10 2015 some in competent rock some sin competent rock (any depth) 5 ne sin competent rock (aly 5 servision \$50 m) (aly 2 recipic competent rock (alay 2 recipic some some some some some some some strik, heavily jointed or "sugar 5 depth) 11 tences of weakness zones or chemically disintegrated a surrounding rock (any depth) a zones containing clay, or a zones containing clay, or a regrated rock (depth of m) nes intersecting excavation, loosening of rock mass veavated zones containing clay, or grated rock (depth of ex-< 2.5 < 0.16 ck, rock stress problems t; chemical swelling g on presence of water ck pressure ock pressure ck; plastic flow of k under the influence isures TION FACTOR ock pressure rock pressure oiliry,

<u>2.5</u> 5.0

7.5

(ii) For strongly anisotropic stress field (if measured): when S ≤ 0/0 ≤ 0. set when 0/03 ≤ 0.0. set and 0, to 0.8 e, and 0.8 e, and 0.8 to 0.8 e, and 0

10-20

5—10 10—20

5-10 10-15

N. Barton, R. Lien, and J. Lunde:

Descriptions and Ratings for the Parameter SRF

(SRF)

Note: (1) Reduce these values of *RR* by 25–50% if the relevant shear zones only influence but do not inter-sect the exervation

10.0 5.0 2.5

|   | RQD           |          | Leitz | iffern für:                   |         |   |                               |     |          |                              |        |     |                          |          |            |        |                               |         | Т |
|---|---------------|----------|-------|-------------------------------|---------|---|-------------------------------|-----|----------|------------------------------|--------|-----|--------------------------|----------|------------|--------|-------------------------------|---------|---|
|   |               | %        |       | Kluftsysteme                  | ٩L      |   | Kluftrauhigkeit               | Jr  |          | Kluftverwitterung            | Ja     |     | Wasserfaktor             | Druck m  | wſ         |        | Spannungsfaktor               | SRF     |   |
|   |               |          |       |                               |         | _ | (a) (b) mit Felskontakt       |     |          | a) (b) mit Felskontakt       |        |     |                          |          |            | 9      | a) Schwächezonen              |         |   |
| A | sehr schlecht | 0-25     | A     | massiv, nur weinige Klüfte    | 0.5 - 1 | A | Klüfte nicht zusammenhängend  | 4   | A        | Jüfte verheilt               | 0,75   | A   | Aushub praktisch trocken | < 10     | ٦          | A vi   | iele Schwächezonen mit Ton    | 10      | 1 |
| 8 | schlecht      | 25-50    | 8     | eine Kluftschar               | 2       | 8 | rauh, unregelmässig, gewellt  | Э   | 8        | nverwittert                  | -      | 8   | mittlerer Zufluss        | 10 - 25  | 0,66       | B      | inzelne Schwächezonen mit Ton | 5       | 1 |
| J | mittel        | 50 - 75  | U     | eine Kluftschar + zufällige   | 3       | ပ | glatt, gewellt                | 2   | 0        | eicht angewittert, ohne Ton  | 2      | C,D | grosser Zufluss          | 25 - 100 | 0.33 - 0.5 | ×<br>v | vie B, aber Tiefe > 50 m      | 2,5     | 1 |
| ٥ | gut           | 75-90    |       | zwei Kluftscharen             | 4       | ٥ | mit Rutschharnischen, gewellt | 1,5 | 0        | Uuftbelag sittig-sandig      | 3      | E,F | extrem grosser Zufluss   | > 100    | 0.05 - 0.2 | E      | nehrere Scherzonen ohne Ton   | 7,5     | 1 |
| ш | sehr gut      | 90 - 100 | ш     | zwei Kluftscharen + zufällige | 9       | ш | rauh, eben                    | 1,5 | ш        | luftbelag dünn, wenig aktive |        |     |                          |          |            | E      | inzelne Scherzonen ohne Ton   | 5       | 1 |
|   |               |          | ш     | drei Kluftscharen             | 6       | Ŀ | glatt, eben                   | ۰   | -        | one, Chlorit, Talk, Gips     | 4      |     |                          |          |            | ×<br>× | vie E, aber Tiefe > 50 m      | 2,5     | 1 |
|   |               |          | U     | drei Kluftscharen + zufällige | 12      | U | mit Rutschharnischen, eben    | 0,5 | L.       | duftfüllung dünn, Sand       | 4      |     |                          |          |            | G      | otal zerbrochener Fels        | 5       | 1 |
|   |               |          | т     | vier Kluftscharen oder mehr   | 15      |   | (c) ohne Felskontakt          |     | <u>ن</u> | tark überkonsolidierte Tone  | 9      |     |                          |          |            | )      | b) Spannungsprobleme          |         | 1 |
|   |               |          | 7     | total zerbrochener Fels       | 20      | т | mit tonigem Kluftbelag        | F   | Т        | /enig überkonsolidierte Tone | 8      |     |                          |          |            | л<br>П | pannung gering                | 2,5     | 1 |
|   |               |          |       |                               |         | ~ | mit sandigem oder kiesiger    |     | <u>ر</u> | uellende Tone, z.B.          |        |     |                          |          |            | л<br>S | pannung mittel                | -       | 1 |
|   |               |          |       |                               |         |   | Kluftfüllung                  | -   |          | Montmorillonit               | 8 - 12 |     |                          |          |            | X      | pannung hoch                  | 0.5-2   |   |
|   |               |          |       |                               |         |   |                               |     |          | c) ohne Felskontakt          |        |     |                          |          |            | L<br>V | renig Bergschlag              | 5 - 10  |   |
| - |               |          |       |                               |         |   |                               |     | z        | icke Zonen, Sand             | 5      |     |                          |          |            | M st   | tarker Bergschlag             | 10-20   |   |
|   |               |          |       |                               |         |   |                               |     | K,O      | tark überkonsolidierte Tone  | 6 - 10 |     |                          |          |            | )      | c) Drückendes Gebirge         |         | 1 |
|   |               |          |       |                               |         |   |                               |     | L,P      | renig überkonsolidierte Tone | 8 - 13 |     |                          |          |            | ō<br>Z | eringer Druck                 | 5 - 10  |   |
|   |               |          |       |                               |         |   |                               |     | M,R      | uellende Tone, z.B.          |        |     |                          |          |            | 0 st   | tarker Druck                  | 10 - 20 | 1 |
|   |               |          |       |                               |         |   |                               |     |          | Montmorillonit               | 12-20  |     |                          |          |            | )      | d) Quellendes Gebirge         |         | 1 |
| - |               |          |       |                               |         |   |                               |     |          |                              |        |     |                          |          |            | ۍ<br>م | eringer Quelldruck            | 5 - 10  |   |
|   |               |          |       |                               |         |   |                               |     |          |                              |        |     |                          |          |            | R<br>R | oher Quelldruck               | 10 - 15 |   |
|   | -             |          |       | -                             |         |   |                               |     |          |                              |        |     |                          |          |            |        |                               |         | 1 |

| _:                                                                |
|-------------------------------------------------------------------|
| 1                                                                 |
| II                                                                |
| 0e                                                                |
| al                                                                |
| F                                                                 |
| U                                                                 |
| 0                                                                 |
| 00                                                                |
| u                                                                 |
| su                                                                |
| JS                                                                |
| Ifé                                                               |
| G                                                                 |
| ñ                                                                 |
| Ē                                                                 |
| ar                                                                |
| IS                                                                |
| N                                                                 |
| e.                                                                |
| Ite                                                               |
| Cl                                                                |
| fa                                                                |
| in'                                                               |
| e                                                                 |
| eı                                                                |
| 2                                                                 |
| 4                                                                 |
| 6                                                                 |
|                                                                   |
| ıl.                                                               |
| to                                                                |
| e                                                                 |
| n                                                                 |
| tc                                                                |
| ar                                                                |
| B                                                                 |
| Ч                                                                 |
| ac                                                                |
| 7                                                                 |
|                                                                   |
| -                                                                 |
| Q.1                                                               |
| ALQ. N                                                            |
| ahl Q. I                                                          |
| szahl Q. I                                                        |
| ätszahl Q. I                                                      |
| itätszahl Q. I                                                    |
| alitätszahl Q. I                                                  |
| qualitätszahl Q. I                                                |
| squalitätszahl Q. I                                               |
| rgsqualitätszahl Q. I                                             |
| virgsqualitätszahl Q. I                                           |
| ebirgsqualitätszahl Q. I                                          |
| Gebirgsqualitätszahl Q. N                                         |
| r Gebirgsqualitätszahl Q. N                                       |
| der Gebirgsqualitätszahl Q. N                                     |
| g der Gebirgsqualitätszahl Q. I                                   |
| ng der Gebirgsqualitätszahl Q. N                                  |
| nung der Gebirgsqualitätszahl Q. N                                |
| hnung der Gebirgsqualitätszahl Q. N                               |
| schnung der Gebirgsqualitätszahl Q. N                             |
| rechnung der Gebirgsqualitätszahl Q. N                            |
| 3erechnung der Gebirgsqualitätszahl Q. N                          |
| Berechnung der Gebirgsqualitätszahl Q. N                          |
| lie Berechnung der Gebirgsqualitätszahl Q. N                      |
| r die Berechnung der Gebirgsqualitätszahl Q. I                    |
| ür die Berechnung der Gebirgsqualitätszahl Q. I                   |
| ı für die Berechnung der Gebirgsqualitätszahl Q. I                |
| rn für die Berechnung der Gebirgsqualitätszahl Q. I               |
| fern für die Berechnung der Gebirgsqualitätszahl Q. I             |
| iffern für die Berechnung der Gebirgsqualitätszahl Q. I           |
| tziffern für die Berechnung der Gebirgsqualitätszahl Q. I         |
| eitziffern für die Berechnung der Gebirgsqualitätszahl Q. I       |
| Leitziffern für die Berechnung der Gebirgsqualitätszahl Q. N      |
| : Leitziffern für die Berechnung der Gebirgsqualitätszahl Q. N    |
| 2: Leitziffern für die Berechnung der Gebirgsqualitätszahl Q. N   |
| b.2: Leitziffern für die Berechnung der Gebirgsqualitätszahl Q. N |

-

- RQD = <u>Rock Quality Designation</u> nach J. Deere (1963), definiert als Prozentanteil von Bohrkernstücken grösser als 10 cm an der totalen Bohrlänge in einer bestimmten Schicht. Variation zwischen 10 und 100 %.
- J<sub>n</sub> = <u>Joint set number</u> <u>Kluftsysteme</u> Mit Leitziffern zwischen 0.5 und 20 werden Gebirgstypen von "massiv, nur wenig Klüfte" über Typen mit einem bis mehreren ausgeprägten Kluftsystemen bis zu vollständig zertrümmerten Kakiriten und Kataklasiten beschrieben.
- $J_r = \underbrace{ Joint roughness number}_{Mit Leitziffern zwischen 4 und 0.5 werden Kluftflächen beschrieben, die von nicht zusammenhängenden über rauhe und unregelmässige bis zu glatten Flächen reichen.$
- $J_a = J_{oint alteration number} Kluftverwitterung$ Mit Leitziffern zwischen 0.75 bis 20 werden von verheilten über wenig bis stark verwitterte bis zu mit dicken Tonlagen gefüllte Klüfte beschrieben.
- $J_{w} = \frac{\text{Joint water reduction factor}}{\text{Mit Leitziffern zwischen 1 und 0.05 werden Kluftsysteme ohne Wasser bis zu Systemen mit extrem hohen Wasserdrücken oder Wassereinströmungen beschrieben.}$
- SRF = <u>Stress Reduction Factor</u> <u>Spannungsfaktor</u> Mit Leitziffern von 0.5 bis 10 werden Schwächezonen im Gebirge, die durch den Ueberlagerungsdruck zerstört werden oder zu Bergschlag führen können, beschrieben. Leitziffern bis 20 charakterisieren quellfähige Felsschichten.

Die Felsqualität Q wird aus den Leitziffern wie folgt berechnet:

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$
(1)

Sie variiert zwischen 0.001 für vollständig gebräches, quellendes Gebirge bis zu 1000 für sehr harten, gesunden, praktisch nicht geklüfteten Fels.

Bei den dargestellten Beispielen (s. Tabelle 4) variiert der Wert Q zwischen 0.075 für Molassemergel und 90 für sehr harten Basalt.

# 3. Die Festigkeit von Fels und Gebirge nach Hoek

Zwischen 1980 und 1994 haben Dr. E. Hoek und seine Mitarbeiter Vergleichsversuche und Berechnungen ausgeführt, um mit Hilfe der von Barton vorgeschlagenen Felsqualitäts-Zahl Q, der einaxialen Druckfestigkeit  $\sigma_{ci}$  des intakten Felsens und einigen zusätzlichen Parametern die Druck- und Scherfestigkeit des Gebirges abzuschätzen.

Die Felsqualität Q charakterisiert dabei wie in Kap. 2 dargestellt vor allem die Gefügeeigenschaften, d.h. den Einfluss von Schichtung, Klüftung, Anzahl von Kluftsystemen, Oberflächeneigenschaften der Klüfte und Kluftbeläge, sowie Kluftwasser- und Spannungseinflüsse.

Die Felsqualitätszahl Q kann, wie erwähnt, in einem sehr grossen Bereich variieren, was für Vergleiche nicht praktisch ist. Daher wurde ein neuer, auf Q basierender Wert GSI (Geological Strength Index) eingeführt, welcher von ca. 10 für sehr schlechtes Gebirge bis 100 für intakten Fels variiert. Er ist nach Hoek et al. (1994) wie folgt definiert:  $GSI = 9 \cdot ln Q + 44$ 

| Beispiel: | weicher Mergel   | Q = 0.02 | GSI = 9  |
|-----------|------------------|----------|----------|
| -         | Molassesandstein | Q = 0.4  | GSI = 36 |
|           | Granit           | Q = 50   | GSI = 79 |
|           | Basalt           | O = 200  | GSI = 92 |

Die einaxiale Druckfestigkeit  $\sigma_{ci}$  charakterisiert die Festigkeitseigenschaften des intakten Felsens. Da der Druckversuch an Bohrkernen relativ einfach und billig auszuführen ist, gibt es hier eine sehr grosse Menge von Erfahrungen und Messungen. Die Resultate wurden für die Auswertungen auf einen Bohrkerndurchmesser von 50 mm umgerechnet.

Die Parameter m<sub>i</sub>, s und a charakterisieren das Bruchverhalten des Gebirges. Hoek benützt die Bruchtheorie von Griffith und passt das Bruchkriterium wie folgt an (Hoek-Brown-Bruchkriterium):

$$\sigma_{1}' = \sigma_{3}' + \sigma_{ci} \left[ m_{b} \cdot \frac{\sigma_{3}'}{\sigma_{ci}} + s \right]^{a}$$
(3)

(2)

| $\sigma_1$ '   | = | grössere effektive Hauptspannung im Gebirge bei Bruch                                  |
|----------------|---|----------------------------------------------------------------------------------------|
| $\sigma_3$     | = | kleinere effektive Hauptspannung im Gebirge bei Bruch                                  |
| $\sigma_{ci}$  | = | einaxiale Druckfestigkeit des intakten Felsens                                         |
| m <sub>b</sub> | = | Materialkonstante für das Gebirge (Abminderungsparameter)                              |
| s }<br>a }     | = | Konstanten für die Form der Bruchlinie, abhängig von den<br>Eigenschaften des Gebirges |

Auf Grund der zur Verfügung stehenden Literatur, z.B. Bieniawski (1976) und von eigenen Vergleichswerten hat Hoek folgende Werte für die drei Parameter angegeben (Hoek et al. 1994):

$$m_{b} \approx m_{i} \cdot e^{\frac{GSI-100}{28}}$$
(4)

m<sub>i</sub> = Materialkonstante für den intakten Fels, s. Tabelle 3

GSI-100  $S \approx e^{\frac{9}{9}}$ Verschiebung für GSI  $\geq$  25 (5)(6)a ≈ 0.5 Exponent

$$s \approx 0$$
 Verschiebung (5a)

$$a \approx 0.65 - \frac{GSI}{200}$$
 Exponent (6a)

Aus den Hauptspannungen  $\sigma_1'$  und  $\sigma_3'$  im Bruchzustand können die Spannungen  $\sigma_n$  und  $\tau$  für die Bruchlinie berechnet werden:

$$\sigma_{n} = \sigma_{3}' + \frac{\sigma_{1}' - \sigma_{3}'}{\delta \sigma_{1}' / \delta \sigma_{3}' + 1}$$
(7)

$$\tau = \left(\sigma_{n} - \sigma_{3}'\right) \sqrt{\frac{\delta\sigma_{1}'}{\delta\sigma_{3}'}}$$
(8)

für GSI < 25

| Sedimente                     | Metamorphe Gesteine                                                                                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|
| Für GSI < 25                  | $\frac{\delta \sigma_1}{\delta \sigma_3} = 1 + a \cdot m_b^a \left( \frac{\sigma_3}{\sigma_c} \right)^{a-1}$ |
| Dabei bedeuten:<br>Für GSI≥25 | $\frac{\delta \sigma_1}{\delta \sigma_3} = 1 + \frac{m_b \cdot \sigma_c}{2 \cdot (\sigma_1 - \sigma_3)}$     |

|                      | Sedimente               |           |                       | Metamorphe Gesteine |      |                         | Eruptivgesteine |      |
|----------------------|-------------------------|-----------|-----------------------|---------------------|------|-------------------------|-----------------|------|
|                      |                         | mi        |                       |                     | mi   |                         |                 | mi   |
| Klastische Sedimente | Nagelfluh               | (22)*)    | nicht geschiefert     | Marmor              | 9    | Ergussgesteine hell     | Obsidian        | (19) |
|                      | Sandstein               | 19        |                       | Hornfels            | (19) |                         | Andesit         | 19   |
|                      | Siltstein               | 9         |                       | Quarzit             | 24   |                         | Dacit           | (17) |
|                      | Tonstein + Mergel       | 4         | leicht geschiefert    | Migmatit            | (30) |                         | Rhyolit         | (16) |
|                      | Grauwacke               | (18)      |                       | Amphibolit          | 31   | Ergussgesteine dunkel   | Basalt          | (17) |
| Karbonatgesteine     | Kalkbrekzie             | (20)      |                       | Mylonit             | (6)  | Tiefengesteine hell     | Granit          | 33   |
|                      | Kalksparit (grobkörnig) | (10)      | stark geschiefert **) | Gneis               | 33   |                         | Granodiorit     | (30) |
|                      | Kalkmikrit (feinkörnig) | 8         |                       | Glimmerschiefer     | (10) |                         | Diorit          | (28) |
| Chemische Sedimente  | Gips                    | 16        |                       | Phyllit             | (10) | Tiefengesteine dunkel   | Gabbro          | 27   |
|                      | Anhydrit                | 13        |                       | Tonschiefer         | 9    |                         | Norit           | 22   |
|                      | Kreidegestein           | 7         |                       |                     |      | Pyroklastische Gesteine | Agglomerat      | (20) |
| Organische Sedimente | Kohle                   | ( 8 - 21) |                       |                     |      |                         | Brekzie         | (18) |
|                      |                         |           |                       |                     |      |                         | Tuff            | (15) |

\*) Zahlen in Klammern: geschätzte Werte

\*\*) Versuche senkrecht zur Schieferung

Tab. 3: Berechnung der Gebirgs-Parameter nach Hoek. Materialkonstanten m<sub>i</sub> für verschiedene Felsarten.

Da die Bruchlinien des Griffith-Kriteriums gekrümmte Linien sind, ist es vorteilhaft, einen vernünftigen Spannungsbereich auszuwählen und mit Hilfe von linearer Regressionsrechnung über diesen Bereich eine gerade Bruchlinie mit einer Kohäsion  $c_m$  und einem Reibungswinkel  $\Phi_m$  zu berechnen.

Mit Hilfe dieser Werte kann sodann auch eine mittlere Druckfestigkeit des Gebirges (compressive strength of rock mass)

$$\sigma_{\rm cm} = \frac{2 \cdot c_{\rm m} \cdot \cos\Phi_{\rm m}}{1 - \sin\Phi_{\rm m}} \tag{9}$$

berechnet werden, welche direkt mit der Druckfestigkeit des Gesteins  $\sigma_{ci}$  verglichen werden kann. Das Verhältnis  $\sigma_{ci} / \sigma_{cm}$  variiert in den in Kapitel 5 dargestellten Beispielen von 50 beim schlechtesten bis 1.5 beim besten Material.

Diese Zahlen zeigen deutlich, dass eine Schätzung von irgendwelchen Abminderungsfaktoren sehr problematisch ist und zu grossen Fehleinschätzungen führen kann.

Aus den Vergleichsversuchen ging ferner ein approximativer empirischer Zusammenhang zwischen dem Geological Strength Index GSI und einem mittleren Verformungsmodul des Gebirges  $E_m$  hervor. Eine statistische Auswertung vieler Versuche ergab folgende Näherungsformel:

$$\mathsf{E}_{\mathsf{m}} \approx 10^{\frac{\mathsf{GSI} - 10}{40}} \tag{10}$$

Auch hier ist das Verhältnis zwischen dem E-Modul des intakten Felsens und des Gebirges beträchtlich. In den Beispielen des Kapitels 5 variiert es schätzungsweise zwischen 100 und 500. Eine Abschätzung von Felsdeformationen wird mit den reduzierten Werten von  $E_m$  nach der erwähnten Formel wesentlich realistischer. Bei der Anwendung dieser durchschnittlichen Felskennwerte ist es natürlich unumgänglich, die gesamte Struktur des Gebirges im betrachteten Bereich einzubeziehen. Fällt z.B. bei einer Stabilitätsrechnung eine grössere Kluft oder Störung ungefähr parallel zu den untersuchten Gleitflächen, dann dürfen die hier errechneten durchschnittlichen Felskennwerte werden.

## 4. Abschätzung der Genauigkeit mit probabilistischen Methoden

Die Eingabegrössen der in den Kapiteln 2 und 3 dargestellten halbempirischen Berechnungsmethode sind nicht sehr genau, da es sich mit Ausnahme der Fels-Druckfestigkeit  $\sigma_{ci}$ , um visuell bestimmte, d.h. nach Ermessen geschätzte Zahlen handelt. Alle Grössen können als "unscharf definierte Grössen" nach Prof. Jörg Schneider betrachtet werden (Schneider J. 1994).

In diesem Artikel wird die Streuung der Eingabedaten durch insgesamt fünf Variationskoeffizienten (V = Standardabweichung / Mittelwert) erfasst. Die V-Werte müssen entweder geschätzt oder aus Reihen von mindestens 10 Bestimmungen statistisch errechnet werden.

Eingabe:

 $V\left(\frac{RQD}{J_{n}}\right)$ (11a)

$$V\left(\frac{J_r}{J_a}\right)$$
 (11b)

$$V\left(\frac{J_w}{SRF}\right)$$
 (11c)

$$(\sigma_{ci})$$
 (11d)

$$/(m_i)$$
 (11e)

Mit Hilfe der Näherungsmethode "Punkt-Abschätzungsmethode nach Rosenblueth" (s. Harr 1987) können aus diesen Eingabe-Variationskoeffizienten die Streuungen, d.h. die Variationskoeffizienten der Berechnungsresultate näherungsweise ermittelt werden.

| Qualitätszahl Q                        | V(Q)             | (12a) |
|----------------------------------------|------------------|-------|
| Geological Strength Index GSI          | V (GSI)          | (12b) |
| E-Modul                                | $V(E_m)$         | (12c) |
| einaxiale Druckfestigkeit des Gebirges | $V(\sigma_{cm})$ | (12d) |
| Reibungswinkel                         | $V(\Phi_m)$      | (12e) |
| Kohäsion                               | $V(c_m)$         | (12f) |

Tabelle 5 stellt ein von mir entwickeltes Berechnungsblatt im Tabellenrechnungsprogramm EXCEL dar, auf welchem der Berechnungsgang mit den Formeln (1) ... (11) nach Barton et al. (1974) und nach Hoek + Brown (1982) und Hoek (1994), so-

| Beispiel Nr. |           | -            |            |           | 2           |            |            | 3          |            |            | 4              |            |           | 5        |            |            | 9        |            |             | 7        |            | Einheit |
|--------------|-----------|--------------|------------|-----------|-------------|------------|------------|------------|------------|------------|----------------|------------|-----------|----------|------------|------------|----------|------------|-------------|----------|------------|---------|
|              | Molassen  | nergel Combu | atte       | Molasse C | 3F Combette |            | Volasse GI | D Combette |            | Molassesar | Idstein Stettl | en         | Malmkalk. | Jura     |            | Aaregranit |          |            | Basalt      |          |            |         |
|              | Mittel    | Std.Abw.     | Var.Koeff. | Mittel    | Std.Abw.    | Var.Koeff. | Mittel     | Std.Abw.   | Var.Koeff. | Mittel     | Std.Abw.       | Var.Koeff. | Mittel    | Std.Abw. | Var.Koeff. | Mittel     | Std.Abw. | Var.Koeff. | Mittel      | Std.Abw. | Var.Koeff. |         |
| Eingabe      |           |              |            |           |             |            |            |            |            |            |                |            |           |          |            |            |          |            |             |          |            |         |
| RQD=         | 30        |              | 0,20       | 15        |             | 0,20       | 50         |            | 0,20       | 10         |                | 0,15       | 80        |          | 0,10       | 95         |          | 0,10       | 100         |          | 0,10       | *****   |
| L<br>L       | 8         |              |            | 12        |             |            | 10         |            |            | 9          |                |            | 3         |          |            | 2          |          |            | +           |          | *****      | *****   |
| L =          | 4         |              | 0,10       | -         |             | 0,20       | 1,5        |            | 0,10       | 1,5        |                | 0,10       | e         |          | 0,10       | 4          |          | 0,10       | 4           |          | 0,10       |         |
| Ja =         | 10        |              |            | 5         |             |            | 1,5        |            |            | 3          |                |            | 2         |          |            | -          |          |            | 0,75        |          |            |         |
| = wC         | 0,5       |              | 0,15       | 0,5       |             | 0,15       | 0,5        |            | 0,15       | ÷          |                | 0,15       | 0,66      |          | 0,15       | 0,66       |          | 0,15       | -           |          | 0,15       |         |
| SRF          | 10        |              |            | 2,5       |             |            | 2,5        |            |            | 2,5        |                |            | 2,5       |          |            | 2,5        |          |            | 2,5         |          |            |         |
|              |           |              |            |           |             |            |            |            |            |            |                |            |           |          |            |            |          |            |             |          |            |         |
| sig_ci =     | 3,5       |              | 0,15       | 4,5       |             | 0,15       | 6,5        |            | 0,15       | с          |                | 0,15       | 100       |          | 0,15       | 300        |          | 0,15       | 400         |          | 0,15       | MN/m2   |
| mi=          | 4         |              | 0,20       | 15        |             | 0,20       | 15         |            | 0,20       | 6          |                | 0,20       | 7         |          | 0,20       | 33         |          | 0,20       | 17          |          | 0,20       |         |
| Resultate    |           |              |            |           |             |            |            |            |            |            |                |            |           |          |            |            |          |            |             |          |            | ****    |
| 0=           | 0,075     | 0,020        | 0,272      | 0,050     | 0,016       | 0,325      | 1,000      | 0,272      | 0,272      | 0,333      | 0,079          | 0,237      | 10,560    | 2,191    | 0,207      | 50,160     | 10,408   | 0,207      | 213,333     | 44,265   | 0,207      |         |
| GSI =        | 20,4      | 2,4          | 0,120      | 16,6      | 2,9         | 0,176      | 43,7       | 2,4        | 0,056      | 33,9       | 2,1            | 0,063      | 65,0      | 1,9      | 0,025      | 79,0       | 1,9      | 0,024      | 92,1        | 1,9      | 0,020      |         |
| Em =         | 1,833     | 0,258        | 0,141      | 1,480     | 0,249       | 0,168      | 7,015      | 0,989      | 0,141      | 3,979      | 0,487          | 0,122      | 23,879    | 2,565    | 0,107      | 53,531     | 5,751    | 0,107      | 113,325     | 12,174   | 0,107      | MN/m2   |
| sig_cm =     | 0,064     | 0,015        | 0,232      | 0,138     | 0,035       | 0,255      | 0,535      | 0,111      | 0,207      | 0,158      | 0,033          | 0,210      | 14,76     | 3,19     | 0,216      | 102,13     | 22,01    | 0,216      | 243,09      | 53,16    | 0,219      | MN/m2   |
| phi_m =      | 20,3      | 2,4          | 0,119      | 29,5      | 2,8         | 0,096      | 39,3       | 2,2        | 0,056      | 32,2       | 2,2            | 0,067      | 36,8      | 2,4      | 0,064      | 54,3       | 2,0      | 0,037      | 48,9        | 2,4      | 0,049      | 0       |
| tan phi_m =  | 0,370     | 0,048        | 0,129      | 0,566     | 0,065       | 0,116      | 0,820      | 0,065      | 0,079      | 0,630      | 0,053          | 0,084      | 0,747     | 0,064    | 0,086      | 1,390      | 0,103    | 0,074      | 1,146       | 0,096    | 0,084      |         |
| c_m =        | 22,0      | 4,8          | 0,218      | 40,0      | 9,4         | 0,235      | 126,4      | 25,8       | 0,204      | 43,6       | 9,0            | 0,206      | 3700,3    | 815,4    | 0,220      | 16459,5    | 3597,5   | 0,219      | 45626,9     | 10467,1  | 0,229      | kN/m2   |
| Beurteilung  | extremely | poor         |            | extremely | poor        |            | poor       |            |            | very poor  |                |            | good      |          |            | very good  |          |            | extremely g | poo      |            |         |
|              |           |              |            |           |             |            |            |            |            |            |                |            |           |          |            |            |          |            |             |          |            |         |

Tab. 4:Zusammenstellung von Beispielen von 7 Gebirgstypen. Gebirgsfestigkeiten.

wie die Variationskoeffizienten aller Resultate mit Hilfe der Punktabschätzungsmethode nach Rosenblueth (Harr 1987) ausgeführt wird.

Dieses Verfahren ist eine relativ einfache Näherungsmethode, die aber gegenüber genaueren Methoden den Vorteil hat, dass sie direkt in einer Tabellenrechnung verwendet werden kann. Sie ist für Abschätzungen der hier beschriebenen Art meist weitaus genügend genau. Exaktere Methoden sind z.B. im Programm VaP des Instituts für Baustatik und Konstruktion an der ETHZ (Schneider J. 1994) verfügbar und können für kritische Fälle zur Kontrolle dienen.

In Tabelle 5 ist als Muster das 4. Beispiel der Tabelle 4 gezeigt:

- Block A: Hier werden die Eingabedaten für die Berechnung des Q-Werts nach Barton eingegeben.
- Block B: Eingabe der Variationskoeffizienten für die Ausdrücke

$$\frac{RQD}{J_n}, \frac{J_r}{J_a}, \frac{J_w}{SRF}$$

- Block C: Eingabe der einaxialen Druckfestigkeit des intakten Felsens  $\sigma_{ci}$ , der Materialkonstanten des intakten Felsens  $m_i$  (s. Tabelle 3) und der zugehörigen Variationskoeffizienten.
- Block D: Ausgabe der Resultate. m<sub>b</sub>, s und a sind die Parameter der Hoek-Brown'schen Gleichung [Gl. (3)].

Für die eigentlichen Berechnungsresultate sind neben Mittelwert, Standardabweichung, Variationskoeffizient = Standardabweichung / Mittelwert auch die zu erwartenden Grenzen A und B angegeben.

- Block E: Definitionen und Einheiten
- Block F: Wahrscheinlichkeitsverteilungen für Reibungswinkel  $\Phi_m$  und Kohäsion  $c_m$ .

Die in Block F dargestellten Betaverteilungen können symmetrisch oder unsymmetrisch sein. Sie gehen von Grenze A bis Grenze B und erlauben, die Wahrscheinlichkeit für das Ueber- oder Unterschreiten vorgegebener Werte abzuschätzen.

# 5. Beispiele

## 5.1 Felskennwerte

Zur Illustration wurden in Tabelle 4 sieben typische Beispiele zusammengestellt.

Beispiele 1 bis 3 stammen aus einer Hangstabilitätsuntersuchung an der N1, Umfahrung Murten. Die Resultate sind im nachfolgend dargestellten Problem 1 (Fig. 1) verwendet worden.

Beispiel 4 diente zur Beurteilung eines Baugrubenaushubs oberhalb Stettlen bei Bern (Problem 2, Fig. 2).

Die Beispiele 5, 6 und 7 wurden zur Illustration von guten bis sehr guten Gebirgstypen zusammengestellt.

Tunnelling Quality Index (Barton 1974 + 1994)

| BLOCK A: INPUT DATA          | BARTON | mean |
|------------------------------|--------|------|
| Rock Quality Designation     | RQD =  | 10   |
| Joint set number             | Jn =   | 6    |
| Joint roughness number       | Jr =   | 1.5  |
| Joint alteration number      | Ja =   | 3    |
| Joint water reduction factor | Jw =   | 1    |
| Stress reduction factor      | SRF =  | 2.5  |

 $Q = (RQD / Jn)^{*} (Jr / Ja)^{*} (Jw / SRF)$ 

E. Hoek (1994), Strength of rock and rock masses ISRM News Journal, Vol 2, Nr 2

| BLOCK B: INPUT       | COEFFICIENTS OF VARIATION V |      |      |  |  |  |
|----------------------|-----------------------------|------|------|--|--|--|
|                      |                             |      | ٧    |  |  |  |
| Block size           | RQD / Jn =                  | 1.67 | 0.15 |  |  |  |
| Inter-block friction | Jr / Ja =                   | 0.50 | 0.10 |  |  |  |
| Active stresses      | Jw/SRF =                    | 0.40 | 0.15 |  |  |  |

Rock mass Quality

Q = 0.333

| BLOCK C: INPUT DATA HOEK             |     |      |
|--------------------------------------|-----|------|
|                                      |     | V    |
| Strength of intact rock MN/m2 sig_ci | = 3 | 0.15 |
| Material const. intact rock mi       | = 9 | 0.20 |

| BLOCK D: RESULTS |        |          | BLOCK | E: DEFINITIONS AND UNITS |       |                                                    |                                                  |       |
|------------------|--------|----------|-------|--------------------------|-------|----------------------------------------------------|--------------------------------------------------|-------|
| Output           | mean   | Std.dev. | V     | limits                   |       | sig1 = major principal effective stress at failure |                                                  | kN/m2 |
|                  |        |          |       | A                        | В     | sig3 =                                             | minor principal effective stress at failure      | kN/m2 |
| mb/mi =          | 0.094  |          |       |                          |       | sig_ci =                                           | uniaxial compressive strength of the intact rock | MN/m2 |
| mb =             | 0.859  |          |       |                          |       | GSI =                                              | Geological Strength Index                        |       |
| s =              | 0.0007 |          |       |                          |       |                                                    |                                                  |       |
| a =              | 0.500  |          |       |                          |       | mi =                                               | material constant for intact rock                |       |
| Q =              | 0.333  | 0.079    | 0.237 | 0.071                    | 0.911 | mb =                                               | material constant for rock mass                  |       |
| GSI =            | 33.9   | 2.1      | 0.063 | 20.1                     | 43.2  | s =                                                | constant for rock mass                           |       |
| Em =             | 3.98   | 0.49     | 0.122 | 1.79                     | 6.75  | a =                                                | exponential constant for rock mass               |       |
| sig_cm =         | 158.2  | 33.3     | 0.210 | 30.6                     | 379.8 | Em =                                               | insitu deformation modulus of rock mass          | MN/m2 |
| ph_m =           | 32.2   | 2.2      | 0.067 | 19.5                     | 39.0  | sig_cm =                                           | uniaxial compressive strength of rock mass       | MNVm2 |
| tan phi_m =      | 0.630  | 0.053    | 0.084 | 0.354                    | 0.811 | phi_m =                                            | friction angle of rock mass                      | •     |
| c_m =            | 43.6   | 9.0      | 0.206 | 10.8                     | 90.5  | c_m =                                              | cohesion of rock mass                            | kN/m2 |



Cell formulae:

mb/mi = EXP((GSI-100)/28)

 $mb = mi^{*}EXP((GSI-100)/28)$ 

s = IF(GSI>25 THEN EXP((GSI-100)/9) ELSE 0)

- a = IF(GSI>25 THEN 0.5 ELSE (0.65-GSI/200))
- Em = 1000\*10^((GSI-10)/40)

sig3 = sigci/2<sup>n</sup> where n starts at 10 and decreases by 1 for each subsequent cell

sig1 = sig3+sigci\*(((mb\*sig3)/sigci) + s)^a

ds1ds3 = IF(GSI>25 THEN 1+(mb\*sigci)/(2\*(sig1-sig3)) ELSE 1+(a\*mb\*a)\*(sig3/sigci)\*(a-1))

- sign = sig3+(sig1-sig3)/(1+ds1ds3)
- tau = (sign-sig3)\*SQRT(ds1ds3)

signtau = sign\*tau signsq = sign\*2 phi\_m = phi = (ATAN((sum(signtau)-(sum(sign)\*sum(tau))/8)/(sum(signsq)-((sum(sign))\*2)/8)))\*180/Pl()

c\_m = coh = (sum(tau)/8) - (sum(sign)/8)\*TAN(phi\*Pl()/180) \_\_\_\_\_\_sigcm = (2\*coh\*COS(phi\*Pl()/180))/(1-SIN(phi\*Pl()/180))





Fig. 1: Problem 1: N 1 Umfahrung Murten (Kt. Freiburg). Felssicherung mit Vorspannankern, Gesamtstabilität des verankerten Körpers. Gebirgstypen; Beispiele 1, 2 und 3 aus Tabelle 4.

### 5.2 Probleme

Problem 1 (s. Figur 1):

Für den Baugrubenaushub des Abschnitts Combette an der N1, Umfahrung Murten (Kanton Freiburg) war bei ca. km 136.800 eine verankerte Rühlwand zu dimensionieren, d.h. die Kräfte und freien Längen der Anker zu bestimmen. Die verwendeten Felskennwerte konnten mit einem Hangabschnitt etwas weiter westlich, bei ca. km 136.300, überprüft werden, wo vor dem Versetzen der Anker der Beginn von Rutschbewegungen festgestellt worden war (Sicherheit F = 1.0).

Mit Hilfe einer Rückrechnung konnten hier folgende mittleren Felskennwerte bestimmt werden:

 $\begin{array}{ll} \Phi_{m} &= 26^{\circ} & (geschätzt) \\ c_{m} &= 40 \text{ kN/m}^{2} & (aus Rückrechnung mit Annahme F = 1) \end{array}$ 

Beim in Fig. 1 dargestellten Problem ergaben sich die entsprechenden Kennwerte, nämlich ein Gewichtsmittel aus den Schichten 1 und 2, wie folgt:

 $\begin{array}{ll} \Phi_m & = 28 \ ^\circ \\ c_m & = 36 \ kN/m^2 \end{array} \right\} \ \ \ \ (berechnet \ mit \ der \ Methode \ Hoek \ - \ Brown)$ 

Die Werte berechnet nach dem Verfahren Hoek - Brown sind somit in diesem Beispiel in guter Uebereinstimmung mit einer Rückrechnung an einem Hang im gleichen Fels, der sich in labilem Gleichgewicht befand.

Für dieses Beispiel können die Felskennwerte und Stabilitätsrechnungsresultate wie folgt zusammengestellt werden:

| Gebirge:                     |                |                   | Gebirge<br>Nr. <sup>2)</sup> | Mittel-<br>wert<br>x <sub>m</sub> | Standardab-<br>weichung<br>S | Charakteristi-<br>scher Wert<br>x <sub>k</sub> | Teilsicher-<br>heitsbeiwer<br>γ | Bemes-<br>sungswert<br>x <sub>d</sub> |
|------------------------------|----------------|-------------------|------------------------------|-----------------------------------|------------------------------|------------------------------------------------|---------------------------------|---------------------------------------|
| Genereller<br>Reibungswinkel | $\Phi_{\rm m}$ | 0                 | 1                            | 20                                | 2.4                          | 19                                             | 1.2                             | 16                                    |
|                              |                |                   | 2                            | 30                                | 2.8                          | 28                                             | 1.2                             | 24                                    |
|                              |                |                   | 3                            | 39                                | 2.2                          | 38                                             | 1.2                             | 33                                    |
| Generelle<br>Kohäsion        | c <sub>m</sub> | kN/m <sup>2</sup> | 1                            | 22                                | 4.8                          | 20                                             | 1.6                             | 12                                    |
|                              |                |                   | 2                            | 40                                | 9.4                          | 35                                             | 1.6                             | 22                                    |
|                              |                |                   | 3                            | 126                               | 25.8                         | 114                                            | 1.6                             | 71                                    |
| Raumgewicht                  |                | kN/m <sup>3</sup> |                              |                                   |                              | 23                                             | 1.0                             | 23                                    |
| Sicherheit F                 |                |                   |                              | 1.61                              |                              | 1.49                                           |                                 | 1.17                                  |

## 2) Nummern entsprechen den Beispielen in Tabelle 4

Nach einem Vorschlag von Dr. H.R. Schneider, Zug (1990) wurden folgende Formeln und Werte verwendet: – Mittelwert x<sub>m</sub>: Resultat der Berechnungen nach Tabellen 4 und 5

| – Mittelwert x <sub>m</sub> :               | Resultat der Berec        | chnungen nach Tabellen 4 un     |
|---------------------------------------------|---------------------------|---------------------------------|
| <ul> <li>Charakteristischer Wert</li> </ul> | $x_k = x_m - 0.5 \cdot S$ |                                 |
| <ul> <li>Teilsicherheiten γ.</li> </ul>     | empfohlen                 |                                 |
| -                                           | $\gamma(\sigma_{ci})$     | = 1.6                           |
|                                             | $\gamma(\Phi_{\rm m})$    | = 1.2 (auf tan $\Phi_{\rm m}$ ) |
|                                             | $\gamma(c_m)$             | = 1.6                           |
|                                             | $\gamma$ (Raumgewicht)    | = 1.0                           |
| – Bemessungswert:                           | x <sub>d</sub>            | $= x_k / \gamma_X$              |
|                                             |                           |                                 |

Die Sicherheit F wurde mit dem Stabilitätsrechnungsprogramm LARIX 2 gerechnet.

### Problem 2 (s. Figur 2)



Fig. 2: Problem 2: Baugrubenaushub für Zweifamilienhaus in Stettlen, (Kt. Bern). Gebirgstyp: Beispiel 4 aus Tabelle 4

Für ein Zweifamilienhaus ob Stettlen (Worblental, Kanton Bern) ist ein Aushub im Molassefels vorgesehen. Anhand der Werte von Beispiel 4 aus Tabelle 4 und Figur 2 ist ein Aushub mit der Böschungsneigung 10:1 ohne Abstützung auf 6.5 m Höhe geplant.

Für dieses Beispiel können die Felskennwerte und die erhaltenen Stabilitätsrechnungsresultate wie folgt zusammengestellt werden:

| Gebirge:                         |                |                   | Mittel-<br>wert<br>x <sub>m</sub> | Standardab-<br>weichung<br>S | Charakteristi<br>scher Wert<br>x <sub>k</sub> | - Teilsicher-<br>heitsbeiwert<br>γ | Bemes-<br>sungswert<br>x <sub>d</sub> |
|----------------------------------|----------------|-------------------|-----------------------------------|------------------------------|-----------------------------------------------|------------------------------------|---------------------------------------|
| Druckfestigkeit<br>des Gebirges  | $\sigma_{cm}$  | kN/m <sup>2</sup> | 158                               | 33                           | 142                                           | 1.6                                | 88                                    |
| Genereller<br>Reibungswinkel     | $\Phi_{\rm m}$ | 0                 | 32                                | 2                            | 31                                            | 1.2                                | 27                                    |
| Generelle<br>Kohäsion            | c <sub>m</sub> | kN/m <sup>2</sup> | 43                                | 9                            | 39                                            | 1.6                                | 24                                    |
| Raumgewicht                      |                | kN/m <sup>3</sup> |                                   |                              | 23                                            | 1.0                                | 23                                    |
| Sicherheiten:                    |                |                   |                                   |                              |                                               |                                    |                                       |
| Sicherheit                       | F              |                   | 1.59                              | 0.3                          | 1.48                                          |                                    | 1.02                                  |
| Versagenswahr-<br>scheinlichkeit | р              | %                 | 0.6                               |                              |                                               |                                    |                                       |

Die Bezeichnungen sind gleich gewählt wie in Problem 1. Die Sicherheit F wurde ebenfalls mit dem Programm LARIX 2 gerechnet. Die Versagenswahrscheinlichkeit ist die Wahrscheinlichkeit dafür, dass die Sicherheit F kleiner als 1 wird. Sie wurde mit Hilfe der Näherungsmethode von Rosenblueth aus einer Betaverteilung für F bestimmt.

# 6. Zusammenfassung und Schlussfolgerungen

## 6.1 Ziel

Geotechnische Untersuchungen von Fels ergeben i. allg. folgende Resultate:

- Petrographie, Druckfestigkeit, evt. Elastizitätsmodul von Proben des intakten Gesteins
- visuelle Beurteilung der Klüftung und Schichtung des Gesteins
- Angaben über die Grund- resp. Kluftwasserverhältnisse.

Für die Beurteilung von Bruchproblemen im Fels sind diese Angaben nicht direkt nutzbar. In jüngster Zeit sind in der Literatur aber Methoden bekannt geworden, die die Brücke zu schlagen versuchen zwischen den oben erwähnten erhältlichen Angaben und den für die Berechnungen nötigen Kennwerten des *Gebirges*, nämlich in erster Linie die Scherparameter Kohäsion c<sub>m</sub> und Reibungswinkel  $\Phi_m$ . Dabei wird unterschieden zwischen

- Kennwerten des intakten Felsens

- Kennwerten des Gebirges mit allen Diskontinuitäten

Letztere sind das Ziel der Untersuchungen.

## 6.2 Anwendung

Die erwähnten Methoden beruhen auf folgendem Lösungsweg:

– Darstellung der zur Verfügung stehenden Grössen durch total 8 Parameter, welche die Resultate der Untersuchungen wie folgt durch gemessene Grössen oder als visuell beurteilte Leitwerte (s. Tabellen 1 und 2) zu erfassen erlauben:

- Die Klüftung und Schichtung des Gebirges durch die Leitwerte
  - RQD = Rock Quality Designation nach Deere (Qualität des Gesteins)
  - $J_n$  = Leitziffer für Kluftsysteme
  - $J_r$  = Leitziffer für Kluftrauhigkeit
  - J<sub>a</sub> = Leitziffer für Kluftverwitterung
  - $J_w = Wasserfaktor$
  - SRF = Spannungsfaktor

Aus den 6 Leitwerten wird die Qualitätszahl des Gebirges Q und der Geological Strength Index (Festigkeitsindex) GSI des Gebirges errechnet.

- Die einaxiale Druckfestigkeit des Gesteins  $\sigma_{ci}$  durch Druckversuche, meist an Bohrkernen. Es wird empfohlen, so viele Versuche durchzuführen, dass daraus statistisch Mittelwert und Standardabweichung bestimmt werden können. Sonst muss der Variationskoeffizient geschätzt werden.
- eine Kennzahl m; für die Petrographie des intakten Felsens.

– Mit Hilfe von vielen Feldbeobachtungen und Vergleichsrechnungen wurden die Zusammenhänge zwischen den Eingabegrössen GSI,  $\sigma_{ci}$  und m<sub>i</sub> und den gesuchten Gebirgsparametern halbempirisch eruiert: (Hoek + Brown 1980, Hoek 1994)

- Scherparameter  $\Phi_m$  und  $c_m$
- Gebirgs-Druckfestigkeit  $\sigma_{cm}$
- Verformungsmodul E<sub>m</sub>

– Zusätzlich zu den von Barton und Hoek publizierten Ableitungen und Kennwerten wurde für jede Grösse eine Streuung (Variationskoeffizient V) geschätzt oder evt. berechnet. Dies erlaubt, die Streuung der Resultate  $E_m$ ,  $\sigma_{cm}$ ,  $\Phi_m$  und  $c_m$  zu beurteilen, um so eine Idee von den möglichen Variationen der Resultate zu erhalten.

### 6.3 Schlussfolgerungen

Die dargestellten Methoden erlauben, aus den vorwiegend visuell festgestellten Angaben über Fels und Gebirge eine Abschätzung derjenigen Parameter zu erhalten, welche für felsmechanische Berechnungen benötigt werden. Das vorgelegte Berechnungsblatt gibt zusätzlich eine Schätzung für die zu erwartenden Streuungen der Werte. Diese kann als Grundlage für Parameteranalysen mit über oder unter dem Mittelwert liegenden Parameterwerten dienen. Die Methode gibt daher ein Hilfsmittel in die Hand, die wichtigen Parameter des Gebirges, nämlich den Verformungsmodul  $E_m$ , die einaxiale Druckfestigkeit  $\sigma_{cm}$ , den durchschnittlichen Reibungswinkel  $\Phi_m$  und die durchschnittliche Kohäsion  $c_m$  näherungsweise zu bestimmen.

Es muss aber betont werden, dass die Resultate dieser Parameter auf halbempirischem Weg gefundene *Schätzwerte* sind. Sie können für Vorprojekte oder kleinere Bauten mit geringem Risiko angewendet werden. Für grössere und risikoreiche Bauwerke sind zusätzlich Versuche nötig, um die benötigten Parameter direkt zu bestimmen.

Es ist oft nicht möglich, eine statistisch genügende Zahl von Versuchen auszuführen. Hier kann das Theorem von Bayes weiterhelfen. Es erlaubt, Versuchswerte mit einer Vorinformation (a priori-Werte) auf statistisch optimale Weise zu verknüpfen. Als Vorinformation werden die mit der beschriebenen Methode erhaltenen Werte c<sub>m</sub> und  $\Phi_m$  mit ihren Streuungen eingesetzt. Man erhält dann als Resultat eine verbesserte Information (a posteriori-Werte), bei denen sowohl der Mittelwert wie auch die Streuung besser der Wirklichkeit entsprechen. Dieses Verfahren ist ebenfalls in (Schneider H.R. 1990) dargestellt, wo weitere Literaturangaben zu finden sind.

Damit ist das hier geschilderte Verfahren nach Barton - Hoek zur Abschätzung von Scherparametern des Gebirges ein Glied in einer Kette von Untersuchungen, die zu genaueren Werten der Parameter und damit zu günstigeren und sicheren Lösungen bei Scherproblemen im Fels führen können.

#### Literatur:

- BARTON N., LIEN R., LUNDE J., 1974: Engineering Classification of Rock Masses for the Design of Tunnel Supports. NGI Publication Nr. 106, Oslo.
- BIENIAWSKI Z.T., 1976: Rock mass classification in rock engineering. In: Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
- DEERE D.U., 1963: Technical Description of Rock Cores for Engineering Purposes. Felsmechanik und Ingenieurgeologie Vol. 1, Nr. 1, 16-22.
- HARR M.E., 1987: Reliability-Based Design in Civil Engineering. McGraw-Hill Book Company, New York.
- HOEK E. + BROWN E.T., 1980: Underground Excavations in Rock. Institute of Mining and Metallurgy, revised 1982.
- HOEK E., 1994: Strength of Rock and Rock Masses. ISRM News Journal, Vol. 2 Nr. 2.
- HOEK E., KAISER P.K., BAWDEN W.F., 1994: Support of Underground Excavations in Hard Rock. A.A. Balkema, Rotterdam.
- LANG H.-J. / HUDER J., 1982: Bodenmechanik und Grundbau. Springer-Verlag Berlin, Heidelberg, New York, Tokyo. 4. Auflage1990.
- LOCHER H.G., 1983: Probabilistische Methoden bei Stabilitätsproblemen in der Geotechnik. Schweiz. Ingenieur und Architekt 16/83, 429-434.
- LOCHER H.G., 1985: Anwendung probabilistischer Methoden in der Geotechnik. Schweiz. Gesellschaft für Boden- und Felsmechanik, Mitt. 112, 31-36.
- SCHNEIDER H.R., 1990: Die Wahl der Bodenkennwerte. SIA Dokumentation D 064: Anwendung der neuen Tragwerksnormen im Grundbau. 2. November 1990, 29-38.
- SCHNEIDER JÖRG, 1994: Sicherheit und Zuverlässigkeit im Bauwesen. Hochschulverlag AG an der ETH Zürich / B.G. Teubner Stuttgart.
- WITTKE W., 1984: Felsmechanik, Grundlagen für wirtschaftliches Bauen im Fels. Springer Berlin Heidelberg New York Tokyo.