Zeitschrift: Bulletin der Vereinigung Schweiz. Petroleum-Geologen und -Ingenieure

Herausgeber: Vereinigung Schweizerischer Petroleum-Geologen und -Ingenieure

Band: 53 (1987)

Heft: 124

Artikel: La télédétection : le troisième oeil du géologue

Autor: Jaquet, O.

DOI: https://doi.org/10.5169/seals-210911

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La télédétection: Le troisième oeil du géologue

par O. JAQUET* avec 3 figures

Abstract

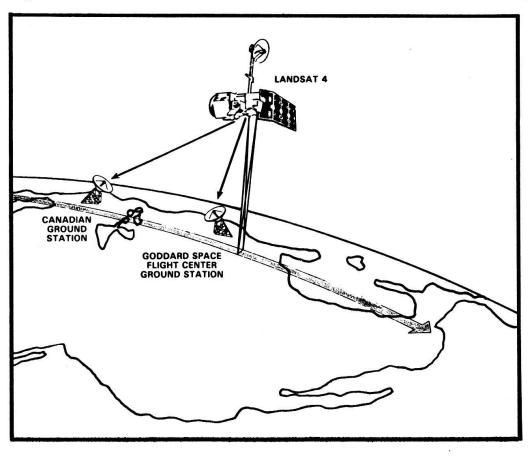
Remote sensing is a recent exploration method of the surface of the earth. The global vision given by the satellite images allows, after interpretation, to obtain geological clues that can lead to the discovery of new orebodies. Remote sensing is the most economical exploration method.

Résumé

La télédétection est une méthode récente de prospection de la surface terrestre. La vision globale fournie par les images-satellite permet, après interprétation, d'obtenir des indices géologiques pouvant aboutir à la découverte de nouveaux gisements. La télédétection est la plus économique des méthodes de prospection.

1. Introduction

La télédétection est l'étude de la terre à l'aide du rayonnement électromagnétique réfléchi et émis à partir de la surface terrestre dans le domaine spectral allant du spectre visible — 0.4 micromètre — jusqu'aux micro-ondes des radars — de longueur d'onde centimètrique —. Le rayonnement électromagnétique provient du soleil, de la terre, ou peut être généré par des sources artificielles (radars).


Pour les observations par télédétection, les satellites et les avions servent de plateformes. Les données mesurées sont restituées sous forme d'images de la zone étudiée.

La télédétection, appliquée à l'inventaire des ressources terrestres, se révèle être une méthode de prospection performante.

^{*} O. JAQUET, gélogue et géomathématicien, GEOSCIENCES APPLIQUEES, 52 Av. du Casino, 1820 Montreux, 021 636320.

2. Satellites de télédétection

Les satellites, instruments de mesures de la télédétection spatiale, gravitent autour de la terre à environ 800 km d'altitude sur une orbite héliosynchrone polaire. Depuis une telle orbite, l'acquisition des données est obtenue dans les mêmes conditions géométriques optimales d'éclairement. La couverture de pratiquement toute la surface du globe est assurée.

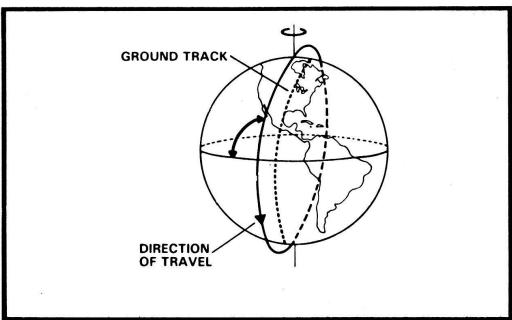


Figure 1: orbite héliosynchrone polaire du satellite Landsat.

Un capteur, appareil dont l'optique est orientée vers le sol terrestre constitue l'«oeil» du satellite. Celui-ci mesure les quantités d'énergie électromagnétique dans plusieurs bandes spectrales. Les données enregistrées sont ensuite transmises à des stations de réceptions, pour être reconstituées sous forme d'images.

Les deux qualités fondamentales d'un capteur sont:

- son pouvoir de résolution spatiale au sol, correspondant aux dimensions minimales de la plus petite surface (= «pixel», de l'anglais «picture element») discriminée par le capteur.
- son pouvoir de résolution spectrale, équivalant à la largeur du plus petit domaine de longueur d'onde distingué par le capteur.

Pour être performant, un satellite doit posséder pour chacune de ses bandes spectrales, les plus grandes résolutions spatiales et spectrales possibles.

Les caractéristiques techniques des capteurs des deux systèmes de satellites, (Landsat: U.S.A. et SPOT: Europe) fournisseurs d'images, sont:

Satellite	LANDSAT 5		SPOT 1
Capteur	Radiomètre MSS Radiomètre TM		Radiomètre HRV
Unité géographique d'observation (scène)	185 * 185 km	185 * 185 km	60 * 60 km
Répétitivité du passage sur une scène	16 jours	16 jours	2.4 - 26 jours
Résolution spatiale	80 * 80 m	30 * 30 m (6):120 * 120 m	20 * 20 m (4):10 * 10 m
Résolution spectrale (micromètres) et couleur		(1):0.45-0.52 (2):0.52-0.60 (3):0.63-0.69 (4):0.76-0.90 (5):1.55-1.75 (6):10.4-12.5 (7):2.08-2.35	Vert (1): 0.50-0.59 Rouge (2): 0.61-0.68 Infrarouges (3): 0.79-0.89 Panchrom. (4): 0.51-0.73



Figure 2: Image SPOT de la plaine du Pô (Italie), prise le 23 février 1986, scène de 60 * 40 km, résolution spatiale 10 * 10 m, bande (4).

3. Télédétection géologique

La télédétection est une méthode indirecte de prospection régionale, développée pour les domaines d'applications suivants:

- cartographie géologique
- prospection pétrolière
- prospection minière
- prospection d'eau

La télédétection offre une image de la surface terrestre, qui révèle des indices dépendant de phénomènes géologiques plus profonds. Toute la science du géologue réside dans l'interprétation de ces indices.

L'interprétation est réalisée sur la base de l'analyse manuelle ou informatique (image numérisée) de l'image. Par exemple, lors de l'analyse de l'image-satellite d'une région à potentiel pétrolier, le géologue doit détecter et identifier toutes structures géologiques (plis, failles, ...) susceptibles d'être interprêtées en termes de réservoir pétrolier. Ainsi, l'interprétation d'images-satellite permet de sélectionner des zones favorables, en vue d'une prospection géophysique.

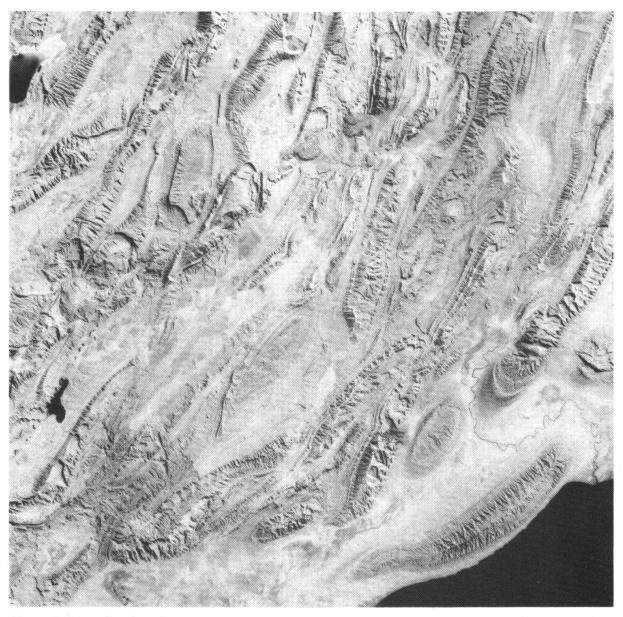


Figure 3: Image Landsat des montagnes Zagros (Iran), prise le 20 novembre 1976, scène de 185 * 185 km, résolution spatiale 80 * 80 m, bande infrarouges (7).

4. Avantages et limites de la télédétection

La télédétection joue un rôle capital au début d'une campagne de prospection régionale (pétrolière, minière, ...). Une bonne interprétation permet d'économiser des millions de francs en coûts de prospection et de développements. De plus, elle fournit des indices géologiques pouvant conduire à la découverte de réserves considérables.

Les résultats optimaux sont obtenus, si les images-satellites peuvent être interprêtées en combinaison avec d'autres données (sismiques, magnétiques, gravimétriques, géochimiques, ...).

Les prises d'images-satellite ont l'avantage d'être répétées dans le temps, le satellite survolant le même endroit périodiquement.

La télédétection s'applique en mode actif, le satellite est équipé d'un radar générant des micro-ondes de longueur d'onde centimétrique. Celles-ci sont réfléchies par le sol terrestre, et détectées par le capteur — une antenne radio placée à son bord — du satellite. Les ondes radar présentent l'avantage de traverser les nuages, qui constituent un obstacle infranchissable pour les ondes des domaines spectraux du visible et de l'infrarouge. La résolution spatiale du radar est excellente (40 mètres pour le SIR-A: Shuttle Imaging Radar). De plus, le faisceau radar peut traverser des sols extrémement secs (sables éoliens) sur quelques mètres d'épaisseur, l'absence d'humidité favorisant la pénétration.

5. Coûts d'une étude par télédétection

Les frais d'acquisition des images-satellite Landsat sont:

IMAGE (MSS): 185 * 185 km	PRIX (\$)
noir et blanc couleurs	42 - 454 139 - 1283
numérisée (bande magnétique)	660 ou 1187

Le prix des images est fonction de leurs dimensions, variant de 18.5 à 74.2 cm. A cela s'ajoute, les coûts de l'interprétation, qui dépendent du problème à résoudre et de la superficie de la région à étudier. La surface interprétable par un géologue par jour est généralement comprise entre 3'000 et 34'000 km².

6. Conclusions

La télédétection géologique est une méthode de prospection des ressouces terrestres, qui fournit rapidement d'excellents résultats à des coûts nettement inférieurs à ceux des autres méthodes de prospection. Cette méthode permet de minimiser considérablement les risques économiques encourus lors d'une campagne de prospection.

La tendance actuelle est de constituer une banque de données informatiques comprenant les images-satellite, les données géologiques, géophysiques, géochimiques et topographiques, ... de la région étudiée, facilitant la réalisation d'interprétations combinées. Les méthodes de prospection toujours plus sophistiquées tendent à augmenter considérablement le nombre et la variété des données disponibles. Dans un proche avenir, cette banque de données sera intégrée à un système expert, véritable conseiller informatique en prospection des matières premières.

La mise sur orbite prochaine des satellites de la troisième génération — à résolutions spatiales et spectrales supérieures — va encore améliorer les performances de la télédétection géologique. Ainsi, les images-satellite vont jouer un rôle croissant dans la découverte de nouveaux gisements.

7. Bibliographie

CERVELLE B. et CHOROWICZ J. (1986): La télédétection des ressources minérales, La Recherche no 174.

HALBOUTY M.T. (1976): Application of Landsat imagery to petroleum and mineral exploration, The american association of petroleum geologists bulletin, vol. 60, no 5.

HASTINGS D.A. (1983): Synthesis of geophysical data with space-acquired imagery: a review, EROS data center.

JENSEN H., GRAHAM L.C., PORCELLO L.J. and LEITH E.N. (1977): Side-looking airborne radar, Scientific American, vol. 237 no 4.

MOORE G.K. (1982): Ground-water applications of remote sensing, USGS report 82-240.

REEVES R.G., ANSON A. and LANDEN D. (1975): Manual of remote sensing,

Volume 1 - Theory, instruments and techniques

Volume 2 - Interpretation and applications,

The american society of photogrammetry.

SABINS F.F. (1978): Remote sensing principles and interpretation, W.H. Freemann and company San Francisco.

SABINS F.F. (1979): Oil occurrence and plate tectonics as viewed on Landsat images, Proceedings of 10th World Petroleum Congress Bucarest.

TARANIK J.V. and TRAUTWEIN (1976): Integration of geological remote sensing techniques in subsurface analysis, Open-file report 76-402 USGS.

TARANIK J.V. (1978): Principles of computer processing of Landsat data for geologic applications, Open-file report 78-117 USGS.

US GEOLOGICAL SURVEY (1976): ERTS-1 a new window on our planet, Geological survey professional paper 929.

US GEOLOGICAL SURVEY NOAA (1984): Landsat 4 data users handbook, USGS.

Buchbesprechung

Mount Etna (1985)

The anatomy of a volcano

by D.K.Chester, A.M. Duncan, J.E. Guest and C.R.J. Kilburn VIII + 404 p., 189 figs., 30 tabs.; £ 40.—
Chapman and Hall, London

Dieses neuartig konzipierte Buch gibt einen reich illustrierten Einblick in den modernen Wissensstand der vulkanischen Vorgänge und die historische Entwicklung des Ätna. Dieses Werk über den grössten aktiven europäischen Vulkan basiert auf den Vorarbeiten von Prof. A. Rittmann, auf neueren Kartierungen des Areals im Massstab 1:50000 und auf ausgedehnten geochemischen Untersuchungen. Seismische und mikrogravitations Messungen sowie Studien über Deformationen, über Gas-Sublimat-Analysen und Rheologie der Lava sind neu ausgewertet worden.

Die 9 Kapitel sind auch einzeln gut lesbar und können für die Lehre z.T. gute Grundlagen für spezielle Kurse bieten. Literaturverzeichnis und Index sind eine gute Hilfe zum Gebrauch des Textes. Die aus ursprünglichen Farbbildern erstellen s/w Photos sind für den Druck nicht besonders geeignet. Trotzdem bringt dieser Band für Fachleute und Laien eine ausgezeichete Grundlage für weitere Studien.

Gabriel WIENER