Zeitschrift: Bulletin der Vereinigung Schweiz. Petroleum-Geologen und -Ingenieure

Herausgeber: Vereinigung Schweizerischer Petroleum-Geologen und -Ingenieure

Band: 30 (1963-1964)

Heft: 78

Artikel: Zur Stratigraphie und Fazies der oligozänen und miozänen Molasse im

südlichen Oberbayern

Autor: Paulus, Bruno

DOI: https://doi.org/10.5169/seals-192671

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Stratigraphie und Fazies der oligozänen und miozänen Molasse im südlichen Oberbayern

Mit 12 Abbildungen im Text

von Bruno Paulus, München

Zusammenfassung

Es werden Profile von 7 Tiefbohrungen im S-Teil des Molassetroges beschrieben und die stratigraphisch-fazielle Entwicklung in diesem Raum geschildert. Eine Erörterung der paläontologischen Möglichkeiten für die Abgrenzung von Rupélien gegen Chattien zeigt, wie problematisch diese Grenzziehung noch ist. Für die Roßwies-Schichten wird die stratigraphische Einordnung ins Niveau des Unteren Glassandes wahrscheinlich gemacht. Die altersmäßige Zuordnung der Promberg-Schichten erfolgt im unteren Drittel zum Chattien, in den oberen Zweidrittel zum Aquitanien. Mit der Revision von Querprofilen durch die Aufrichtungszone im Gebiet der Mangfall, Leitzach und des Bleichgrabens wird die Existenz einer bedeutenden Überschiebung am N-Rand der Faltenmolasse auch für den E-Teil nachgewiesen. Die bisher nach Mikrofaunen gezogene Grenze Chattien/Aquitanien konnte in der Nonnenwald-Mulde mit altersweisenden Molluskenfaunen geeicht werden. Diese Maringrenze wird mit der Landschneckengrenze des W-Gebietes verglichen, wobei sich ergibt, daß die Grenzen um ca. 250—300 m differieren.

Abstract

The stratigraphic results of 7 wells drilled in the southern molasse basin of Upper Bavaria and the facies development within this area are described. The delimitation of the Rupelian from the Chattian on palaeontologic grounds is discussed. The Rosswies-Beds are probably to be correlated with the zone of the Lower Glass Sand. The lower third of the Promberg Beds belongs to the Chattian, the upper two thirds to the Aquitanian. The revision of cross sections through the tectonic zone of Mangfall-Leitzach-Bleichgraben indicates that a considerable overthrust at the northern border of the folded molasse exists also in the eastern part of the area described. The boundary Chattian-Aquitanian which so far had been established on the base of microfaunas is now also corroborated by mollusc faunas in the area of the Nonnenwald Syncline. This marine boundary is compared with that based on terrestric molluscs in the western part of the area, both, however, varying from 250—300 m.

Inhalt

A.	Vorwort .																	. 54
	Einleitung .																	. 54
C.	Kurze Beschreibu	ngen	von	stra	tigr	aphi	sch	wicl	htige	en B	ohr	orof	ilen	•				. 56
	1. Endorf 1		•	0.700		1.70	0.000		0.00		(2)			•				. 56
	2. Feilnbach	l .								× .						•		. 58
	3. Tölz 1 .		•	•		•	•		•	•				•		٠	•	. 60
	4. Kirchbichl															•	•	. 61
	Königsdorf			•		•				•	•		•	•		•	•	. 63
	Königsdorf	2		•							t.			•		•		. 64
	7. Eberfing 1		•	•		•	•		•	•	•			•	•		•	. 65

Anschrift des Autors: Deutsche Erdöl-Aktiengesellschaft, Geologisches Büro München, 8 München 15, Pettenkoferstraße 46/I.

D.	Übersicht der faziellen Entwicklung und Erörterung stratigraphischer Probleme
	1. Molassebasisschichten
	2. Untere Meeresmolasse (UMM)
	3. Zum Problem der Grenzziehung Rupélien/Chattien
	4. Cyrenenschichten und Untere Bunte Molasse (UBM) des Chattien
	5. Jüngeres marines Chattien
	6. Abgrenzung, Verbreitung und Einstufung der Promberg-Schichten
	7. Cyrenenschichten und Obere Bunte Molasse (OBM) des Aquitanien
	8. Die Schichtfolge Rupélien bis Aquitanien im marinen E-Gebiet
	9. Obere Meeresmolasse (OMM)
	10. Obere Süßwassermolasse (OSM)
E.	
	1. Allgemeines
	2. Mangfallprofil
	3. Leitzachprofil
	4. Bleichgraben- und Kaltenbach-Profil
F.	Die makropaläontologischen Grundlagen für die Grenzziehung Chattien/Aquitanien
	im marinen Bereich und deren Beziehung zur Landschneckengrenze des W-Gebietes
Sc	hriftenverzeichnis

A. Vorwort

Der größte Teil der bayerischen Subalpinen Molasse zwischen Lech und Traun ist Erdölkonzessionsgebiet der Deutschen Erdöl-Aktiengesellschaft, von der kurz nach dem letzten Krieg mit der Bohrung Tölz 1 die erste Tiefbohrung in der Faltenmolasse abgeteuft wurde. Nach einer zehnjährigen Pause, in der zur Erforschung des tieferen tektonischen Baues vor allem reflexionsseismische Messungen durchgeführt wurden, begann 1959 mit Feilnbach 1 erneut eine Tiefbohrtätigkeit, während der bis jetzt 12 Untersuchungs- und 5 Aufschlußbohrungen niedergebracht wurden. Seit 1959 habe ich den Auftrag, mich mit der Geologie dieses Gebietes zu befassen, die zu jenem Zeitpunkt wegen vieler ungelöster Probleme für unsere Vorhaben noch nicht ausreichend bekannt war. Inzwischen ist es mit Hilfe der zahlreichen neu geschaffenen Bohraufschlüsse gelungen, einige wichtige stratigraphische und tektonische Fragen zu klären. Da diese Arbeiten jetzt einen gewissen Abschluß erreicht haben, werden die Ergebnisse hier mitgeteilt. Ich danke der Deutschen Erdöl-Aktiengesellschaft, insbesonders ihrem Chefgeologen, Professor Dr. F. HECHT, für die Erlaubnis zum Veröffentlichen der Untersuchungsergebnisse. Gedankt sei außerdem den Bergwerksdirektionen von Hausham und Penzberg, die mir Einblick in geologische und markscheiderische Unterlagen gewährten, die teilweise in der Arbeit verwendet wurden. Den Kollegen, die meine Arbeiten durch Ratschläge, Fossilbestimmungen, paläontologische Auskünfte, Führungen im Gelände und Diskussionen gefördert haben, bin ich sehr zu Dank verbunden: Dr. M. Brockert, Ampfing, Mobil Oil AG; Dipl. Ing. Markscheider P. Geissler, Hausham, Oberbayerische AG für Kohlenbergbau, Dr. h. c. O. Hölzl, Hausham; Dr. F. Oschmann, Celle, Mobil Oil AG; Dr. W. Stephan, München, Bayerisches Geologisches Landesamt; Oberkonservator Dr. H. K. ZÖBELEIN, München, Bayerische Staatssammlung für Paläontologie und Geologie.

B. Einleitung

In der Arbeit wird die rund 130 km lange und meist weniger als 8 km breite Zone der oberbayerischen Subalpinen Molasse und ein kleiner Teil der Vorlandmolasse behandelt. In diesem Gebiet wurden die älteren Molasseschichten, die im Vorland fast immer unter der Oberen Süßwassermolasse verborgen sind, durch tektonische Vorgänge an die Oberfläche gebracht. Wegen der hier vorhandenen guten Beobachtungs-

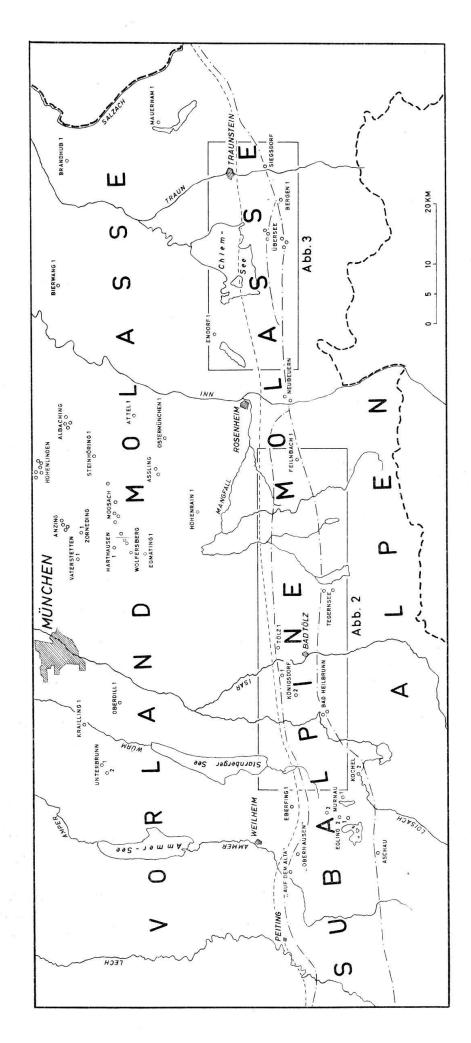


Abb. 1 — Topographische Übersicht des südlichen Oberbayerns mit den vor geographischen Grenzen zwischen Alpen, Subalpiner Molasse und Vorland- Ne molasse. Maßstab 1:800 000. — Die S-Grenze der Subalpinen Molasse wird der vom Ausstrich der Helvetikum-Überschiebung markiert. Zwischen dieser Vound der nördlichen strichpunktierten Linie, die der Überschiebung im Kern wu des N-Sattels folgt, liegen die Mulden der Faltenmolasse. Unmittelbar da-

vor schließt sich die verschieden breite Aufrichtungszone an, in der die Neigung der aufgerichteten Schichten von S nach N abnimmt, bis sie an der gestrichelten, oft nicht scharfen Grenze in die flache Lagerung der Vorlandmolasse übergeht. — Namen von Tiefbohrungen und Ölfeldern wurden in gerader Schrift geschrieben.

möglichkeiten, die vor allem auch in den Kohlenbergwerken bestehen, fand das Gebiet reges Interesse, und es liegen zahlreiche Publikationen darüber vor. Ich möchte vor allem das Wirken K. A. Weithofer's hervorheben, der die Stratigraphie in den Bergbaugebieten als erster im wesentlichen richtig dargestellt hat. Nach dem letzten Krieg haben sich H. HAGN, O. HÖLZL und H. K. ZÖBELEIN um die paläontologische Untermauerung der Stratigraphie Verdienste erworben. Eine umfassende Bestandsaufnahme der Kenntnisse über die Subalpine Molasse und vor allen Dingen die erste vollständige geologische Aufnahme erfolgte im Rahmen der Vorarbeiten für die Geologische Übersichtskarte der Süddeutschen Molasse 1:300 000 durch O. Ganss & P. Schmidt-Thomé. In der Folgezeit hat sich unser Wissen durch eine Reihe von wertvollen Arbeiten weiter vervollständigt und die Probleme, die sich durch Untersuchung an Oberflächenaufschlüssen lösen ließen, wurden weniger. Da aber manche Fragen nur mit der Kenntnis neuer Tatsachen beantwortet werden können, stelle ich meinen Ausführungen einige wichtige Bohrprofile voran. Das sind Erdölaufschlußbohrungen der Deutschen Erdöl-Aktiengesellschaft (Endorf 1, Feilnbach 1, Tölz 1, Königsdorf 1 und 2), eine Konsortialbohrung von DEA und Mobil Oil AG (Eberfing 1), und eine Kohlenschürfbohrung (Kirchbichl 1) des Bergwerks Marienstein. In Ergänzung des stratigraphischen Teils möchte ich auf die wertvollen Quellennachweise und Bemerkungen zur Stratigraphie von Zöbelein (1957: 56-69) hinweisen.

In der vorliegenden Arbeit habe ich die Absicht, die fazielle Entwicklung im S-Teil des Molassetroges zu schildern und eine damit in Einklang stehende Deutung der Einzelprofile und Aufschlüsse anzustreben. Erst die genaue Kenntnis der Stratigraphie und Faziesverteilung ermöglicht eine sinnvolle Exploration auf Erdöl und Gas. Vor allem für die geologische Interpretation der schwierig zu deutenden reflexionsseismischen Profile in der Faltenmolasse ist die Kenntnis der komplizierten Oberflächengeologie unerläßliche Voraussetzung.

C. Kurze Beschreibungen von stratigraphisch wichtigen Bohrprofilen

C1. Endorf 1

Lage: Bl. Endorf Nr. 8039, r 45 21 218, h 53 07 084, + 510 m NN.

Bohrzeit: 15. 9. 1962—22. 2. 1963.

Bearbeiter: B. Paulus.

Die Bohrung steht im ungefalteten Vorland NE vom Simssee (Abb. 3). Sie hat vom mittleren Helvétien an bis tief in die Tonmergelschichten den größten Teil der Molasse durchbohrt und mußte dann aus technischen Gründen aufgegeben werden. Die nicht erreichten Basisschichten der Molasse sollen mit der nächsten Bohrung untersucht werden.

Profilbeschreibung:

—ca. 7 m Quartär: Feinsand und Kies.

—ca. 130 m Mittleres Helvétien: Hellgraue Sandmergel und Tonmergel, glimmerig, tw. glaukonitisch. Marine Muscheln und Schnecken. Ärmliche Mikrofauna mit Ammonia beccarii, Elphidium crispum, Nonion soldanii, im tieferen Teil Radiolarien und selten Spiroplectammina pectinata.

—ca. 425 m Unteres Helvétien: Hellgraue Tonmergel und Sandmergel, stark glimmerig, tw. glaukonitisch. Zahlreiche Muscheln und Schnecken. In den oberen 100 m Foraminiferenfauna der Neuhofen-Schichten, darunter fossilarm.

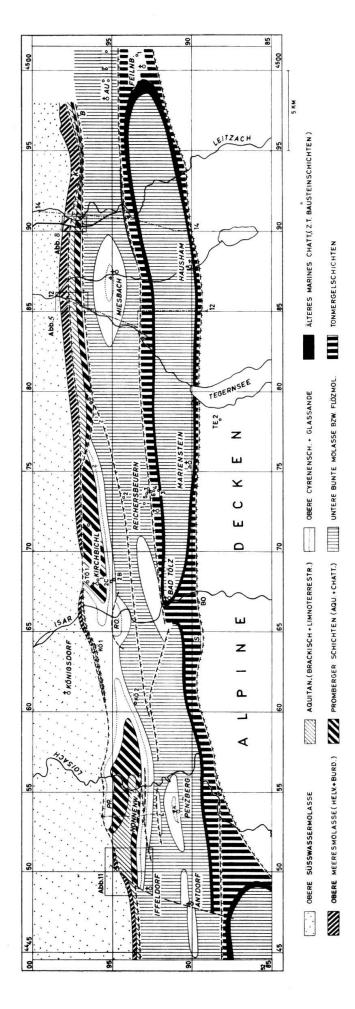


Abb. 2 — Abgedeckte geologische Karte der Molasse zwischen Iffeldorf und Feilnbach. Maßstab 1:300 000. — In dem Gebiet lassen sich mehrere Molassemulden unterscheiden, die in vier alpenrandparallelen Zonen angeordnet sind. 1. Zone: Die Murnauer Mulde (im linken unteren Bildeck). 2. Zone: Die Mulden von Antdorf, Penzberg und Marienstein-Hausham. 3. Zone: Die Mulden von Langsee (L), Reichersbeuern und Miesbach. 4. Zone: Die Mulden von Nonnenwald und Kirchbichl. Bei Roßwies (RO) an der Isar wird eine kleine eingesenkte Scholle mit Unterem Glassand und Schwaig-Schichten angenommen, deren genaue Begrenzung noch nicht bekannt ist. — Folgende Bohrungen wurden eingetragen: KO 1 = Königsdorf 1; KO 2 = Königsdorf 2; TO 1 = Tölz 1; Kirchbichl 1, 2b, 2c (Kohle); BO = Bocksleiten (Jodwasser);

Reichersbeuern 1—7 (Kohle); Au 1—5 (Kohle); Feilnbach 1; TE 2 = Tegernsee 2. Einige im Text erwähnte geologisch wichtige Lokalitäten wurden durch folgende Buchstaben bezeichnet: PR = Promberg, S = Sauersberg, K = Kaltenbach, B = Bleichgraben. — Strichpunktiert wird der Verlauf angezeigt vom Querprofil durch die Nonnenwald-Mulde (Abb. 10), Profil 12 (nach Ganss 1955) entlang der Mangfall (Abb. 6) und Profil 14 (nach Ganss 1955) entlang der Leitzach (Abb. 9). Die starke Linie W der Leitzach ist die Trasse des Leitzach-Wasserstollens (Abb. 7). — Für die Anfertigung der Karte wurden Arbeiten von Ganss, M. Richter et al., Schmidtenbam und Penzberg und eigene Beobachtungen verwendet.

- 810 m Burdigalien: Bis 435 m hellgraue Tonmergel und Sandmergel; bis 545 m hellgrauer, schwach glaukonitischer Mergelsandstein; bis 733 m vorw. Tonmergel; bis 810 m vorw. Feinsand, leicht glaukonitisch, an der Basis einige Gerölle. Vereinzelt Mollusken, daneben eine arme, kleinwüchsige, untypische marine Foraminiferenfauna.
- 1722 m Aquitanien: Bis 852 m schwarzbraungrauer Tonstein; bis 1070 m zunächst noch schwarzgrauer, darunter mittelbraungrauer, hell gebänderter Tonmergelstein, dazwischen poröse Feinsandsteinbänke; bis 1143 m Sandmergel; bis 1722 m vorw. hellgrauer, sandiger Tonmergelstein. Durchgehend Fischschuppen. In Tonmergeln reiche, für Aquitanien typische Foraminiferenfauna mit *Uvigerina semiornata* und *U. urnula*.
- 1875 m Hangende Tonmergel des Chattien: Bis 1853 m mittelgrauer Tonmergelstein mit Mikrofauna des Rainer-Mühle-Horizonts; bis 1875 m stark glaukonitsandiger Tonmergelstein mit Mikrofauna des Greimelberg-Horizonts und Mollusken.
- 2452 m Sandserie des Chattien: Bis 2032 m überw. Kalksandstein mit Sandmergel. Niedermarine Mikrofauna des Greimelberg-Horizonts, Mollusken. Bis 2115 m vorw. Kalkfein- bis Grobsandstein mit Geröllen. Sehr arme niedermarine Mikrofauna. Bis 2280 m Kalkfein- bis Grobsandstein mit wenigen limnischen Stinkkalken und Glanzkohleflözen. Arme niedermarine bis brackische Mikrofauna, darunter Ostrakoden und Characeen, reichlich Mollusken. Bis 2452 m Feinbis Grobsandstein, tw. mürbe, porös, marin.
- —ca. 2850 m Liegende Tonmergel des Chattien: Vorw. hell- bis mittelgrauer Tonmergelstein, mit wenigen Kalksandsteinbänken und zahlreichen Sandflasern. Fischschuppen, marine Mollusken, niedermarine arme Foraminiferenfauna.
- 4259,2 m Tonmergelschichten des Rupélien: Mittelgrauer Tonmergelstein, tw. feinstsandig, sandflaserig. Marine Foraminiferenfauna, tw. sehr reich. Bei 4181—4184 m und 4248—4259 m zwei poröse Sandsteinhorizonte, aus denen Salzwasser mit gelöstem Gas zufloß.

C2. Feilnbach 1

Lage: Bl. Neubeuern Nr. 8238, r 45 00 940, h 52 93 378, + 501,7 m.

Bohrzeit: 10. 8. 1959—27. 2. 1960.

Bearbeiter: B. Paulus.

Die Bohrung steht am aushebenden E-Ende der Haushamer Mulde (siehe Abb. 2). Sie hat die Tonmergelschichten der Mulde durchbohrt, traf in einer Zwischenscholle marine Sandsteine des tiefen marinen Chattien an, kam darunter in überkippte Cyrenenschichten und wurde in den flachliegenden Cyrenenschichten der ungefalteten Molasse eingestellt. Die Bohrung ist fehl und wurde verfüllt. Profildarstellung in Veit (1963, Abb. 13).

Profilbeschreibung:

—ca. 83 m Quartär: Plastische Seekreide, von 8—38 m Schotter.

- 2155 m Tonmergelschichten des Rupélien: Mittelgrauer Tonmergelstein, glimmerstaubig, partienweise in festen Mergelstein übergehend, oft schluffsandig, tw. ungeschichtet, tw. deutliche Feinschichtung, sehr selten mit Kalkschluffsandsteinflasern. Auf Grund der unterschiedlichen Mikrofossilführung können 4 Horizonte unterschieden werden:
 - a) ca. 270 m: Fauna sehr arm, kleinwüchsig, mit Globigerina bulloides, Bolivina crenulata, Rhabdammina annulata; etwas tiefer mit Bulimina arndti, Cyclammina placenta aff. exiqua, Cibicides sp., Asterigerina sp., umgelagerte Globotruncanen.
 - b) ca. 800 m: Fauna wird reicher und großwüchsig, artenreichster Horizont, wird durch *Bulimina elongata* gekennzeichnet.
 - c) ca. 1450 m: Fauna großwüchsig, individuenreich, aber artenarm. Gegenüber b) herrscht *Bulimina ovata* vor.
 - d) 2155 m: Sehr unterschiedliche Faunenbilder, im allgemeinen kleinwüchsig und artenarm, manche Faunen ähneln a), es fehlt hier jedoch die oben häufige Bulimina arndti.

Das Vorhandensein der 4 Horizonte läßt schließen, daß in den Tonmergelschichten keine größeren Schichtwiederholungen vorkommen. An Makrofossilien wurden Fischschuppen und dünnschalige Muscheln beobachtet. Höllz bestimmte folgende Formen: Yoldia sp., Astarte sp., Lucina sp., Myrica sp. und Dentalium sp.

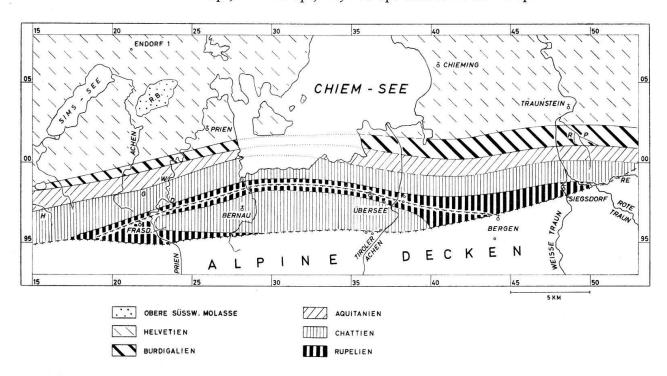


Abb. 3 — Abgedeckte geologische Karte der Molasse im Chiemsee-Gebiet. Maßstab 1:300 000. — Die S-Grenze der Vorlandmolasse liegt etwas N vom Ausstrich der Grenze Helvétien/Burdigalien. Die Subalpine Molasse besteht aus der sehr breiten Aufrichtungszone und der Mulde von Bernau. — Im Kartenbereich befinden sich die Tiefbohrungen Endorf 1 und Bergen 1 und die Untersuchungsbohrungen Siegsdorf 101 und Übersee 101—106. — Im Text erwähnte geologisch wichtige Lokalitäten sind von W nach E mit den Buchstaben gekennzeichnet: H = Haselbach, G = Greimelberg, W = Wildenwart und Rainer Mühle, D = Dösdorf, R.B. = Ratzinger Berg, R = Röthelbach, P = Pechschnaitgraben, RE = Rettenbach. — Für die Anfertigung der Karte wurden Arbeiten von Ganss, Hagn & Hölzl, Hofmann und eigene Beobachtungen verwendet.

Marine chattische Sandsteine in der Fazies der Bausteinschichten. Vorw. calcitisch-dolomitische Sandsteine mit Schrägschichtung, tonmergeligen Zwischenlagen und Linsen oder Flasern von Tonmergelstein. Aus Bohrkernen hat Hölzl folgende reiche Molluskenfauna bestimmt:

Nucula cf. compta, Nuculana westendorpi, Yoldia glaberrima, Amussiopecten sp., Astarte gracilis goldfussi, Cyprina islandica rotundata, Isocardia cf. subtransversa, Laevicardium cingulatum, Cardium heeri, Cardium (Parvicardium) kochi, Pitaria (Paradione) beyrichi beyrichi, Pitaria (Paradione) beyrichi multilamellata, Pitaria (Cordiopsis) polytropa suborbicularis, Solecurtus cf. basteroti, Abra bosqueti, Angulus (Moerella) aff. angustus, Angulus (Moerella) aff. postera, Angulus (Peronidia) nysti, Siliqua bavarica, Ensis cf. hausmanni, Panopea meynardi, Corbula (Varicorbula) gibba, Pholadomya puschi, Thracia (Cyathodonta) speyeri; Dentalium kickxi; Turritella (Haustator) venus, Polinices (Lunatia) catena achatensis, Pirula concinna, Turricula cf. selysi; Schizaster acuminatus. Die marine Mikrofauna aus Tonmergellagen ist nicht sehr reich.

3273,3 m

Überschiebung bei 2546 m — — — — — — — — — — — Flözmolasse des Chattien: Calcitisch-dolomitische Sandsteine und Tonmergelstein, dazwischen Glanzkohlenflöze und limnische Stinkkalke. Die Makro- und Mikrofauna ist artenarm, zuweilen aber sehr individuenreich. Es treten vorw. brackische, daneben marine, in Flöznähe limnische Arten auf. Die Mikrofauna enthält: Quinqueloculina seminula, Sigmoilina tenuis, Ammonia cf. beccarii, Bulimina ovata, Cibicides sp., Nonion granosum, Ostrakoden, Characeen. Folgende Mollusken wurden von Hölzl bestimmt: Ostrea cyathula, Polymesoda convexa, Cyprina islandica rotundata, Taras rotundatus, Cardium sp., Pitaria (Cordiopsis) polytropa suborbicularis, Psammobia cf. protracta, Corbulomya (Lentidium) cf. bavarica, Pholadomya puschi, Melanopsis aff. hantkeni, Tympanotonus margaritaceus, T. m. calcaratus, Dorsanum flurli.

C3. Tölz 1

Lage: Bl. Sachsenkam Nr. 8135, r 44 68 180, h 52 96 520, + 690 m.

Bohrzeit: 25. 3. 1947—19. 1. 1949.

Bearbeiter: F. HECHT.

Die Bohrung steht rd. 100 m S des N-Randes der Kirchbichler Mulde. Sie gelangte bei 245 m aus der Mulde in die flachliegenden Schichten der ungefalteten Molasse, in der sie im Grenzbereich Promberg-Schichten/Oberer Glassand bei 2205,4 m eingestellt wurde. Die Bohrung ist fehl und wurde nach der seismischen 2-to-Sprengung am 11. 12. 1954 verfüllt. Über die Profildeutung herrschen in Publikationen von Schmidt-Thomé (1949, 1955) und Zöbelein (1957) verschiedene Meinungen. Die vorliegende Version, die von den älteren tw. abweicht, basiert auf Mikrountersuchungen von F. Oschmann. Eine ausführliche Revision des Profils mit Erörterung der Literatur ist von Oschmann & Paulus geplant. Profildarstellung in Veit (1963 Abb. 8).

Pro	ofilbesc	hreib	oung:
са.	6 0	m	Quartär: Moränenschotter und Seekreide.
	245	m	Promberg-Schichten: Graue sandige Tonmergelsteine mit einer ma-
			rinen Foraminiferenfauna des tiefen Aquitanien.
			Überschiebung bei 245 m — — — — — — — —
_	491	m	Obere Meeresmolasse: Vorw. mergelige, glaukonitische Sandsteine mit inkohlten Pflanzenresten, daneben sandige Tonmergel. Marine Mollusken sind nicht selten; es befinden sich aber nach Höllt keine altersweisenden Formen darunter. An Mikrofossilien liegen nur einige Exemplare von Elphidium crispum und Ostrakoden vor.
—са.	840	\mathbf{m}	Cyrenenschichten des hohen Aquitanien: Graue, tw. grünliche Mer-
**			gel, Steinmergel und mergelige Sandsteine in Wechsellagerung, mehrere Kohleflözchen und Stinksteinbänke. Von Mikrofossilien tritt fast nur Ammonia beccarii auf, sehr selten auch Quinqueloculina sp. Hölzl hat folgende Mollusken bestimmt: Ostrea cyathula, Polymesoda convexa, Congeria basteroti, Pitaria (Cordiopsis) polytropa juv., Psammobia protracta, Clithon (Vittoclithon) pictus,
			Corbulomya (Lentidium) cf. bavarica, Melanopsis cf. hantkeni,
			Melanopsis cf. aquensis, Pirenella plicata, Unio sp., Tympanotonus
	1695	m	margaritaceus, Melanoides sp., Radix sp., Coretus sp., Hydrobia sp. Obere Bunte Molasse des Aquitanien: Graue, oft grünlich-bräunlich und rotbraun gefleckte Tonmergel, grünlich-hellgraue, glaukonitische Sandsteine, graue Kalksandsteine. Die Mikrofauna besteht nur zum geringen Teil aus autochthonen brackischen Formen. Der über-
170			wiegende Teil ist aus helvetischer Oberkreide umgelagert. Hölzi.
			hat folgende Mollusken bestimmt: Polymesoda convexa, Melanopsis aquensis, Cepaea sp., Vivipara pachystoma.
-	1810	m	Daser-Schichten, tiefes brackisches Aquitanien: Graue sandige Tonmergel und Kalksandsteine, Kohleschmitzen. Die brackische Mikrofauna setzt sich fast nur aus Ostrakoden und Ammonia beccarii zusammen. Hölzl hat folgende Mollusken bestimmt: Pirenella plicata, Potamides cf. lamarcki, Tympanotonus margaritaceus, Cepaea sp.,
			Coretus cornu, Unio sp.
	1855	m	Nantesbuch-Sandstein: Graue Kalksandsteine. Fauna nicht bekannt.
	2205,4		Promberg-Schichten, tiefes marines Aquitanien bis Chattien: Vorw. sandiger Tonmergelstein mit Kalksandstein-Einlagerungen, vor allem im höheren und im tieferen Teil. Die Mikrofauna oberhalb von 2100 m entspricht dem aquitanischen Wildenwart-Horizont. Darunter kommen hochchattische Faunen vom Typ Rainer-Mühle-
			Horizont und Greimelberg-Horizont vor. Aus dem Schlußkern be-

C4. Kirchbich11

Lage: Bl. Sachsenkam Nr. 8135, r 44 68 290, h 52 95 910, + 711 m.

stimmte Hölzl folgende Mollusken: Nuculana westendorpi, Cardium cf. heeri juv., Angulus (Peronidia) aff. nysti, Aquilofusus sp.

Bohrzeit: 12. 8. 1953—2. 4. 1954. Bearbeiter: O. Hölzl, Th. Vollmayr. Die Bohrung steht rd. 600 m S der Tölz 1 im Kern der Kirchbichler Mulde und wurde zur Erkundung der Kohlenformationen abgeteuft. Sie durchbohrte ein ungestörtes Profil von Promberg-Schichten bis in die Untere Bunte Molasse hinein. Das Profil der Bohrung wurde von Schmidt-Thomé (1955: 433f.) veröffentlicht. Zöbelein (1957: 48f.) nahm zur ersten Profildeutung Stellung und wies darauf hin, daß es sich bei dem sog. Promberger Sandstein (420—650 m) um Schwaig-Schichten und Glassande in tw. mariner Fazies handeln müsse. Eine Profildarstellung gibt Veit (1963, Abb. 8).

- —ca. 120 m Quartär: Über Mächtigkeit und Ausbildung fehlen genaue Beobachtungen.
- --ca. 423 m Promberg-Schichten: Graue Tonmergelsteine, tw. sandig, mit Kalksandsteinbänken im untersten Teil. Die Mikrofauna ist marin, in einer Probe aus dem Aquitanien kommen brackische Ostrakoden vor, im hohen Chattien treten Faunen vom Typ Rainer Mühle und Greimelberg auf. Hölzl hat folgende marine Mollusken bestimmt: Nucula sp., Nuculana sp., Phacoides borealis, Dentalium sp., Trochus sp., Cylichna sp.
- —ca. 464 m Oberer Glassand. Mariner Sandstein mit Pitaria (Paradione) beyrichi.
- —ca. 622 m Schwaig-Schichten: Vorwiegend Sandsteine, tw. sehr mürbe mit marinen und brackischen Mollusken. Brackische Horizonte gibt es vor allem im tieferen Teil. Kohle ist nur in wenigen unbauwürdigen Flözen vorhanden. Mikrofaunen liegen keine vor. Hölzl bestimmte: Cardium neglectum angustum, Cardium sp., Psammobia protracta.
- 647.6 m Unterer Glassand: Vorw. Quarzsandstein mit marinen Mollusken. Hauptcyrenenschichten des höheren Chattien: Tonmergel und —ca. 1000 Kalksandsteine in Wechsellagerung, dazwischen Kohlenflöze und Stinkkalke. Die Fauna ist vorw. brackisch. Schwach marine Einschläge wurden bei 670 m und 838 m festgestellt. Die Mikrofauna besteht hauptsächlich aus Ammonia beccarii und A. cf. beccarii. Folgende Mollusken hat Hölzl bestimmt: Arca (Cunearca) guembeli, Brachyodontes (Septifer) sp., Ostrea cyathula, Polymesoda convexa, Sphaerium cf. oepfingense, Congeria basteroti, Taras rotundatus, Cardium neglectum angustum, Cardium sp., Pitaria (Cordiopsis) polytropa, Psammobia protracta, Angulus (Moerella) cf. postera, Angulus (Peronidia) nysti, Corbula carinata, Unio sp.; Dentalium fissura; Pomatias antiquum, Theodoxus aleodes, Melanopsis aquensis, Melanopsis hantkeni, Tympanotonus margaritaceus, Pirenella plicata var., Cepaea cf. subsulcosa, Coretus sp., Hydrobia sp.
- 1104,8 m Untere Bunte Molasse des Chattien: Tonmergel mit grünlichen, bräunlichen und rotbraunen Flecken, Mergelsteine, Sandsteine. Die Mikrofauna besteht aus Characeen. Hölzl fand folgende limnischterrestrische Mollusken: Hydrobia sp., Triptychia escheri, Pomatias antiquum und Coretus cornu.

C5. Königsdorf 1

Lage: Bl. Sachsenkam Nr. 8135, r 44 63 901, h 52 96 155, + 660 m.

Bohrzeit: 5. 7. 1961—17. 8. 1961. Bearbeiter: K. Hrubesch, B. Paulus.

Die Bohrung wurde in einer Überschiebungszone am N-Rand der Nonnenwald-Mulde angesetzt und erreichte nach 207 m die ungefaltete Molasse, in der sie bis zur Endteufe verblieb. Da die sandigen Speicher des Burdigalien und Aquitanien verwässert waren, wurde die Bohrung verfüllt. Eine Profildarstellung gibt Veit (1963: Abb. 6).

	93	m	Quartär: Moränenschotter und Seekreide.
	187	m	Obere Bunte Molasse des Aquitanien: Stark gestörte graue, gelb-
			braun gefleckte Tonmergel mit eingelagerten glaukonitischen Kalk-
			sandsteinen und Mergelschluffsandsteinen.
-	7		Überschiebung bei 187 m — — — — — — — — —
	207	m	
	407	m	Helvétien: Mittelgraue Tonmergel, schluffsandig, Sandmergel- bis
			Kalkfeinsandstein, mittelgrau, tw. durch viel Glaukonit intensiv
			grün gefärbt. Mikrofauna mit Cibicides cryptomphalus und Ano-
			malina sp. ist arm und kleinwüchsig.
	001		Überschiebung bei 207 m — — — — — — — — — — — — — — — — — —
-	331	m	Obere Süßwassermolasse: Gelbbräunliche grünstichige Tonmergel,
			schluffsandig, daneben zwei dicke Bänke von bräunlichem Süßwas-
	0.65		serkalk.
	365	m	Oberes Helvétien: Gelbbraun gefleckte Tonmergel und wenig
	- 4-		Kalkfeinsandstein.
	545	m	Mittleres Helvétien: Grauer, sandiger Tonmergel und Kalkfein-
	0.1.1		sandsteine, durch Glaukonit tw. intensiv grün, tw. Gerölle führend.
	644	m	Unteres Helvétien: Hell- bis mittelgraue Tonmergel und Sandmer-
			gel mit marinen Mollusken. Die kleinwüchsige Mikrofauna enthält
			wenige Arten: Globigerina bulloides, Cibicides cryptomphalus, C.
	10) 		boueanus, Pullenia bulloides, Schwammreste.
са.	788	m	Burdigalien: Mittelgraue Tonmergel mit bräunlichen und grünli-
			chen Flecken, dazwischen zwei Sandsteinhorizonte mit marinen
			Mollusken, von denen Hölzl bestimmte: Arca sp., Glycymeris sp.,
			Ostrea sp. (nicht cyathula), Pecten sp., Cardium sp. (große und
			kleine Formen), Pitaria sp., Turritella turris (zahlreich), Polinices
			sp. Die Mikrofauna besteht aus wenigen Ammonia beccarii und
			aus umgelagerten Foraminiferen der helvetischen Oberkreide.
	1103,4	m	Obere Bunte Molasse des Aquitanien: Vorw. hell- bis mittelgrün-
			graue Tonmergel mit gelbbraunen und olivgrünen Flecken, in we-
			nigen Lagen dunkelgrau, dazwischen graue, tw. glaukonitische
			Kalksandsteine. In Spülproben wurden Bruchstücke von Polyme-
			soda convexa gefunden. Aus dunklen Tonmergeln hat ZÖBELEIN fol-
			gende Fossilien bestimmt: Landschneckenreste, cf. Trichia sp., Ce-
			paea cf. subsulcosa, Knochensplitter, Fruchtsteinkerne von Celtis
			crenata, Helicide, cf. Omphalosagda sp.

C6. Königsdorf 2

Lage: Bl. Penzberg Nr. 8234, r 44 60 701, h 52 93 608, + 640 m.

Bohrzeit: 1. 8. 1961—7. 11. 1961. Bearbeiter: K. HRUBESCH, B. PAULUS.

Die Bohrung wurde im S-Flügel der Nonnenwald-Mulde angesetzt, in der sie eine Schichtenfolge von der UBM bis zu den Tonmergelschichten durchbohrte. Unter der Überschiebungsbahn der Mulde kam sie in Promberg-Schichten der ungefalteten Molasse und wurde in den Hauptcyrenenschichten eingestellt. Da alle unter der Überschiebung angetroffenen Speicher verwässert waren, wurde die Bohrung verfüllt. Eine Profildarstellung gibt Veit (1963: Abb. 5 und 7).

11	OTHECSCI	11 610	ung.
	10	m	Quartär: Moränenschotter.
	1492	m	Untere Bunte Molasse des Chattien: Vorw. graue Tonmergel mit
			bräunlichen, grünlichen und violettroten Flecken, daneben graue
			Kalksandsteine. In dieser limnisch-terrestrischen Folge wurden nur
			Characeen gefunden.
	1594	m	Tiefe Cyrenenschichten des Chattien: Graue Tonmergel, tw. noch
			bunt gefleckt, und graue Kalksandsteine, untergeordnet Stinkkalke
			und wenig Glanzkohle. Die Fazies ist brackisch bis limnisch. Es wur-
			den Ammonia beccarii und brackische Ostrakoden gefunden.
-	1655	m	Höhere Bausteinschichten des Chattien: Vorw. graue Kalksand-
	1000	111	steine, tw. kreuzgeschichtet, mit Linsen, Flasern und Lagen von
			dunkelgrauem Tonmergel. Aus Kernen wurde eine reiche marine
			Molluskenfauna geborgen, die derjenigen aus den gleichen Schich-
			ten der Feilnbach 1 sehr ähnlich ist.
-	1780	m	Tiefere Bausteinschichten des Chattien/Rupélien: Graue Kalksand-
	1700	111	steine und dunkelgraue Tonmergel in Wechsellagerung. Es kommt
			eine arme niedermarine Foraminiferenfauna vor.
	1903	m	Tonmergelschichten des Rupélien: Dunkelgraue, stark sandige Ton-
	1000	111	mergelsteine und Kalkfeinsandsteine. Sie enthalten eine artenreiche
			marine Foraminiferenfauna.
			Überschiebung bei 1903 m — — — — — — — — —
	1938,5	m	Promberg-Schichten des Chattien: Graue sandige Tonmergelsteine
	1550,5	111	mit einer sehr reichen marinen Foraminiferenfauna des Rainer-
			Mühle-Horizonts, die die Greimelberg-Fauna überdeckt.
	1979,7	m	Oberer Glassand: Mittel- bis grobkörnige Sandsteine, tw. kreuzge-
	10,0,,		schichtet, etwas glaukonitisch, tw. ohne, tw. mit kalkigem Bindemit-
			tel. Im Sandstein sind schlecht erhaltene marine Mollusken und
			Treibholz enthalten.
	2137	m	Schwaig-Schichten: Graue Tonmergelsteine und Kalksandsteine,
			dazwischen mehrere Glanzkohlenflöze und Stinkkalkbänke. Es kom-
			men brackische Mollusken, Foraminiferen und Ostrakoden vor.
	2162	m	Unterer Glassand: Sandstein und Kalksandstein, schwach glauko-
			nitisch.
-	2364,0	m	Hauptcyrenenschichten des Chattien: Vorw. graue Tonmergel-
	,,-		steine, daneben Kalksandsteine, Kohlenflöze und Stinkkalke. Es
			kommen brackische Mollusken, Foraminiferen und Ostrakoden vor.
			2

C7. Eberfing 1

Lage: Bl. Iffeldorf Nr. 8233, r 44 42 813, h 52 94 402, + 663,8 m.

Bohrzeit: 22. 8. 1960—2. 6. 1961. Bearbeiter: B. Paulus, K. Hrubesch.

Die Bohrung steht im S-Teil der Vorlandmolasse und hat deren Schichtenprofil von der OSM bis in die Tonmergelschichten hinein durchsunken. Das Kurzprofil der Bohrung und eine Beschreibung der rd. 840 m mächtigen marin-brackischen Ablagerungen zwischen Oberer und Unterer Bunter Molasse wurde von Kraus & Paulus (1962: 786) veröffentlicht. Eine Profildarstellung gibt Veit (1963: Abb. 3).

11	OTHOCSC	IIICI	oung.
	68	m	Quartär: Moränenschotter.
_	375	m	Öbere Süßwassermolasse, Ob. Helvétien — Unt. Sarmatien:
			Bräunlich bis grünlichgelbe Tonmergel und bräunliche dickbankige
			Süßwasserkalke. Unterhalb 335 m hellgraue Tonmergel mit bunten
			Flecken (= Ob. Helvétien).
-	532	m	Mittleres Helvétien: Grüngraue Glaukonitsandsteine, stark sandige,
			grüngraue Tonmergel, Gerölle, Süßwasserkalke.
	625	m	Unteres Helvétien: Graue sandige Tonmergel und Kalkfeinsand-
			steine. In den unteren 30 m mit einer armen, kleinwüchsigen mari-
			nen Foraminiferenfauna.
	727	m	Burdigalien: Graue sandige Tonmergel und etwas Kalkfeinsand-
			stein. Mikrofauna ähnlich wie im Unt. Helvétien.
-	754	m	Basales Burdigalien bis Aquitanien: Graue Tonmergel mit Einlage-
			rungen von buntgefleckten Tonmergeln. Wenig Feinsandstein, eine
			Bank buntgefleckten Süßwasserkalkes, vereinzelt Kohleflitter. Einige
	1500		kleinwüchsige marin-brackische Foraminiferen und Radiolarien.
	1783	m	Obere Bunte Molasse des Aquitanien: Vorw. hellgrau gelbgrün-
			stichig im höheren Teil, nach unten übergehend in dunkelgrau rot-
			braune Tonmergel und Mergel, sehr wenig Kalkfeinsandstein, ver-
			einzelt Kohleflitter. In den limnisch-terrestrischen Ablagerungen
	1859		wurden nur Characeen gefunden.
-	1839	m	Daser-Schichten: Graue Tonmergel, tw. noch bunt gefleckt, Kalk-
	2129		feinsandsteine. Etwas Pechkohle in zwei dünnen Flözen.
	4149	m	Promberg-Schichten: Graue Mergelfeinsandsteine und sandige Ton- mergelsteine. Nach Mikrofauna im mittleren Teil marin, im oberen
			und unteren Teil mit brackischen Lagen. Vereinzelt Glanzkohle.
	2180	m	Oberer Glassand: Hellgrauer Kalkfeinsandstein, davon ca. 5 m
	2100	111	porös.
	2371,5	m	Schwaig-Schichten: Vorw. graue Tonmergel und Kalkmergel, sehr
	40,1,0		wenig Kalksandstein, zahlreiche Glanzkohleflöze und Stinkstein-
			bänke. Die Mikrofauna besteht aus brackischen Ostrakoden und
			Foraminiferen, vor allem Ammonia beccarii. Aus Kernen hat Hölzl
			folgende Mollusken bestimmt: Polymesoda convexa, Pirenella pli-
			cata var., Psammobia protracta, Arca guembeli, Unio sp. cf. wendli,
			Corbula carinata, Congeria basteroti, Tympanotonus margarita-
			ceus, Melanopsis hantkeni, Potamides cf. lamarcki.
	2390	m	Unterer Glassand: Feinsandstein mit tw. kalkigem Bindemittel, porös.

- 2630 Hauptcyrenenschichten des Chattien: Vorw. mittelgraue Tonmergel- und Mergelsteine, im tieferen Bereich tw. bunt gefleckt, partienweise Einlagerungen von grauen Kalksandsteinen, mehrere Glanzkohlenflöze und Stinksteinbänke. Aus Kernen bei 2481,5— 2497,7 m und 2571,6—2588,5 m hat Hölzl folgende Mollusken bestimmt: Polymesoda convexa, Psammobia protracta, Pirenella plicata var., Congeria basteroti, Cardium sp., Corbulomya bavarica, Tympanotonus margaritaceus, Coretus cornu, Cepaea sp. Aus dem Kern 2600,1—2616,5 m bestimmte Zöbelein: Mytilus cf. aquitanicus juv., Psammobia protracta, Polymesoda convexa, Tympanotonus margaritaceus, Cepaea subsulcosa, Charophyten-Gyrogonit, Knochensplitter. Die Mikrofauna besteht aus brackischen Ostrakoden und Foraminiferen, hauptsächlich Ammonia cf. beccarii. 3805 Untere Bunte Molasse des Chattien: Vorw. buntgefleckte (weinrot, gelbbraun, grünbraun, grüngrau) Tonmergel und Mergelsteine, im tieferen Teil auch weißliche und blaßrötliche, sehr weiche Kalkmergel, selten Kalksandsteine, sehr selten Dolomitbänke. Es wurden nur Characeen gefunden. 3894 Tiefe Cyrenenschichten des Chattien: Mittel- bis dunkelgraue Tonmergelsteine und graue Kalksandsteine, wenig bunte Einschaltungen. Es wurden Characeen und brackische Ostrakoden gefunden. 3951 Höhere Bausteinschichten: Vorw. hellgraue Kalksandsteine, tw. geröllführend, mit Schrägschichtung, und dünnen Lagen, Flasern,
- Glimmer auffällig stark angereichert. Reichlich Pflanzenhäcksel. Fossilien wurden keine gefunden.

 4119,3 m Tonmergelschichten des Rupélien: Vorw. mittelgraue Tonmergelsteine, feinsandig, mit einigen Kalkfeinsandsteinbänken. Fossilien wurden keine gefunden.

Tiefere Bausteinschichten des Chattien-Rupélien: Wechsellagerung von hellgrauen Kalksandsteinbänken und dunkelgrauen Tonmergelsteinlagen, in den Sandsteinen ist auf manchen Schichtflächen

Linsen von dunkelgrauem Tonmergelstein.

D. Übersicht der faziellen Entwicklung und Erörterung stratigraphischer Probleme

D1. Molassebasisschichten

4078

Die Geschichte des Molassetroges begann im Eozän, als das helvetische Meer sich allmählich in das nördliche Vorland ausbreitete. Die Transgression erfolgte im N-Helvetikum mit den mitteleozänen Adelholzen-Schichten (Hagn 1960: 75f.) und erreichte den S-Teil der heutigen Vorlandmolasse, soweit bis jetzt aus Bohraufschlüssen bekannt ist, erst im Obereozän (Oschmann 1957: 693). In der Subalpinen Molasse kann die Molassebasis deshalb von geringmächtigem Mitteleozän oder auch von Obereozän gebildet werden, das sich in der Gesteinsausbildung wahrscheinlich kaum von der im Vorland und im Helvetikum unterscheiden dürfte (Sandsteine, großforaminiferenreiche Kalkmergel, Kalksteine, Lithothamnienkalke). Da in anderen Beckenteilen während des Latdorfien durch ein Absinken des Meeresbodens die Bildung von Lithothamnienkalken zu Ende ging und darüber der Fischschiefer abgelagert wurde,

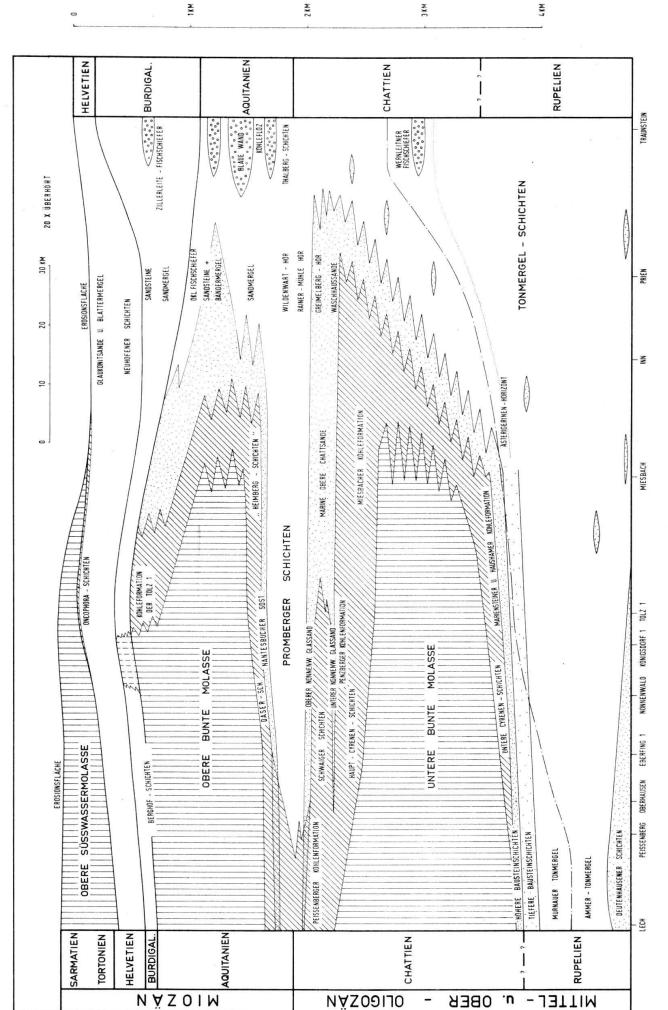
kann dieser auch in der Subalpinen Molasse erwartet werden, zumal ähnliche Sedimente weiter S im kalkalpinen Bereich zu finden sind (inneralpines Tertiär). Dafür spricht auch das erst vor wenigen Jahren entdeckte Vorkommen von Latdorfien in der Überschiebungszone im Mariensteiner Zementstollen. Ob das Rupélien ähnlich wie im Vorland mit hellen Mergelkalken beginnt, und ob die Bändermergel vorhanden sind, ist noch ganz ungewiß, da diese Ausbildung des Rupélien im inneralpinen Tertiär nicht bekannt ist und auf das Vorland beschränkt zu sein scheint. In der besprochenen Serie können in manchen Gebieten Priabonsandstein und Lithothamnienkalk gute Speichergesteine bilden.

D2. Untere Meeresmolasse (UMM)

Zur UMM gehören die Tonmergelschichten, Deutenhausen-Schichten und Bausteinschichten bzw. das ältere marine Chattien.

Das Rupélien liegt meistens in der Ausbildung der Tonmergelschichten vor, die im E hauptsächlich aus grauen, wenig sandigen Tonmergeln bestehen, nach W zu jedoch tw. sandiger werden. Die Tonmergel zeigen oft eine an der Hell-Dunkel-Streifung deutlich erkennbare Feinschichtung. Einschaltungen von Kalksandsteinbänkchen und -flasern sind recht häufig, poröse Sandsteinbänke treten sehr untergeordnet, vor allem in den tiefsten Lagen auf und könnten in geschlossenen Strukturen gute Gaslagerstätten enthalten. Die Tonmergelschichten führen eine sehr reiche, vorwiegend benthonische Foraminiferenfauna, die bis jetzt nur unvollständig beschrieben ist. Ein Faunenbild aus ihren allerobersten Lagen im Lochergraben bei Hausham findet man in Hagn (1960: Taf. 6). Die dazugehörige Fossilliste und eine weitere Liste aus tieferen Horizonten dieser Schichten vom Wehrprofil bei Siegsdorf sind in Hagn & Hölzl (1952: 24, 85) aufgeführt. Das Faunenbild der Tonmergel ist sehr variabel. Örtlich besteht die Möglichkeit, Profile in Faunenhorizonte aufzugliedern (z. B. Feilnbach 1); die Horizonte halten jedoch nicht über größere Entfernungen hinweg an, und es ist deshalb unmöglich, in den Profilen der Traun, der Prien, der Feilnbach 1, des Mariensteiner Zementstollens und der Isar bei Bad Tölz feinstratigraphische Parallelen zu finden. Der Fossilreichtum verliert sich W Bad Tölz sehr rasch, und die Tonmergelschichten der Murnauer Mulde sind ausgesprochen mikrofossilarm (Zeil 1954: 56, Fischer 1960: 44). Mollusken sind in diesen Ablagerungen eines tiefen Meeres nach Hölzl (1962: 26) sehr selten. Sie treten erst in ihrem mit Sandsteinbänken durchsetzten obersten Teil häufiger auf, der in einem flacheren Meer abgelagert wurde. Listen der darin enthaltenen Arten sind bei Hölzl (1961: 71, 1962: 252 -257) zu finden.

Die Mächtigkeit der Tonmergelschichten schwillt im zentralen Beckenteil (z. B. Traunprofil) bis auf über 2000 m an. Mächtigkeitszahlen sind bekannt vom S-Rand der Murnauer Mulde (700—800 m nach Fischer 1960: 44), vom E-Ende der Haushamer Mulde aus der Bohrung Feilnbach 1 (ca. 1800 m) und von der Bohrung Endorf 1 (mindestens 1800 m). Die großen Mächtigkeiten im E sind z. T. auch auf den dort größeren stratigraphischen Umfang der Tonmergelschichten zurückzuführen. Alle Mächtigkeitsangaben von Oberflächenaufschlüssen in den Muldenumrandungen beziehen sich immer nur auf tektonisch reduzierte Teile derselben.


Die Deutenhausen-Schichten vorzukommen scheinen, eine bis 800 m mächtige Sandstein- und Mergelserie, findet man in Oberbayern nur am S-Rand der Murnauer Mulde. Weiter E grenzt die Molasse meistens mit den Tonmergelschichten oder jüngeren Ablagerungen unmittelbar an die Zone des Helvetikums. Die einzige Stelle, wo noch Deutenhausen-Schichten vorzukommen scheinen, liegt am Sauersberg SW Bad Tölz

(S in Abb. 2). Bei diesem Vorkommen, das erst 1960 in Jodwasserbohrungen entdeckt wurde, soll es sich nach Hagn (in Schmidt-Thomé 1962: 247) um Bausteinschichten handeln. Nach meinen eigenen Beobachtungen reicht jedoch deren spärlicher Mikrofossilinhalt nicht aus, um das jüngere Alter entgegen der aus der Lagebeziehung abzuleitenden Einstufung als Deutenhausen-Schichten beweisen zu können. Angesichts der unsicheren Einstufung des kleinen Vorkommens ist es m. E. zu hypothetisch, darin eine neue Mulde und in den Tonmergelschichten N davon einen Sattelbau zu sehen (Schmidt-Thomé 1962: 243, Taf. 4 Prof. 1a), wie er sonst am ganzen Alpenrand nirgendwo existiert. Auch wenn es wirklich Bausteinschichten sein sollten, handelt es sich dabei auf keinen Fall um die W-Fortsetzung der Mariensteiner Mulde, sondern allenfalls um eine kleine lokal begrenzte Schuppe. Als Alter der Deutenhausen-Schichten wird Latdorfien angegeben (zuletzt von Fischer 1960: 42); sie sollen aber evtl. noch ins Rupélien hinein reichen (Zöbelein 1957: 58). Für letzteres spricht, daß in einigen Bohrungen im Vorland (Unterbrunn, Krailling, Höhenrain, Endorf) geringmächtige Sandsteinlagen in den tiefen Tonmergelschichten vorhanden sind, die als weiteste Ausläufer der Deutenhausener Sandschüttung aufgefaßt werden können und die etwas älter sind als die vermutlich von N geschütteten Isener Sande. Das Alter der ganzen Deutenhausen-Schichten wird erst dann sicher feststehen, wenn in einer Tiefbohrung das normale Liegende dieser Schichten aufgefunden wird. Fest steht bisher nur, daß die von Knipscheer (in Ganss & Schmidt-Thomé 1955: 428) vermutete Beziehung zwischen inneralpinem Latdorfien und Deutenhausen-Schichten nicht existiert, da die von ihm aus der Bohrung Bocksleiten S Bad Tölz angeführte Globigerinenfauna aus den gleichen Tonmergeln des Rupélien stammt, die ca. 400 m N der Bohrung anstehen und von Hagn (1960: 73f.) beschrieben wurden.

W vom Inn beginnen mit dem ersten Auftreten von Sandsteinbänken im Hangenden der Tonmergelschichten die ca. 150 m mächtigen Bausteinschichten. ZÖBELEIN (1962) unterteilte sie in die tieferen Bausteinschichten, eine Wechsellagerung von Tonmergeln mit Sandsteinen, und die höheren Bausteinschichten mit den beiden dickbankigen, eigentlichen Baustein-Horizonten. Als Alter wird Rupélien bis Chattien angegeben, da die Grenze zwischen diesen beiden Stufen nach einer Mitteilung Hölzl's an Zöbelein (1962: 263) an der Basis der höheren Bausteinschichten liegen soll (siehe D3). Für den W kann angenommen werden, daß die Bausteinschichten über ein großes Gebiet hinweg einen annähernd stratigraphischen Horizont bilden. Je weiter nach E man kommt, desto später wird die Tonmergelfazies von der Sandfazies abgelöst, und ganz im E, im Traunprofil, sind Sandsteine vom Typ der Bausteinschichten überhaupt nicht mehr abgelagert worden. Daß der Einsatz der Sandfazies sich nach E in ein immer jüngeres Niveau verlagert, geht aus dem Profilvergleich zwischen den Bohrungen Höhenrain 1 und Endorf 1 hervor, der zeigt, daß die Sandsteinserie des Chattien — bei gleichbleibender Lage der Obergrenze — von 1034 m in Höhenrain auf 577 m in Endorf abnimmt. Eine gleichsinnige Verschie-

Abb. 4 — Schematisches E-W-Faziesprofil durch den S-Teil des Molassetroges. — Der Schnitt folgt dem N-Rand der Subalpinen Molasse, der in Abb. 1 durch eine gestrichelte Linie dargestellt ist. Die Mächtigkeit der Molasse beträgt dort zwischen 4,5 und 5 km. Ins Profil wurden die Schichten mit der ihnen zukommenden Mächtigkeit eingezeichnet, so daß die gegenseitigen Mächtigkeitsverhältnisse mit einem Blick erfaßt werden können. Wo die Mächtigkeiten noch nicht durch Bohrungen unmittelbar nachgewiesen waren, konnten sie mittels seismischer Profile von den am nächsten liegenden Bohrprofilen abgeleitet werden. — Erläuterung der Faziessignaturen: Senkrechte Schraffur = vorw. limnisch-terrestrisch; schräge Schraffur = vorw. brackisch; Punkte = marine Sandsteine; Kreise = Konglomerate; ohne Signatur = vorw. marine Tonmergel. — Die strichpunktierte Linie zeigt an, wie die Grenze Rupélien/Chattien nach den paläontologischen Befunden von Hölzl und Hofmann verlaufen müßte.

Σ

2 KM

3 K M

bung der Faziesgrenze im kleineren Umfang hat W. Stephan bei der Spezialaufnahme des Blattes Tegernsee festgestellt (frdl. mündl. Mitt.). Da also das Auftreten der Bausteinschichten-Fazies vor allem im E-Teil der Haushamer Mulde weit über die Obergrenze der Bausteinschichten des Typusgebietes hinausreicht, hat Hölzl (1962: 219) den stratigraphischen Begriff des «älteren marinen Chattien» eingeführt, das nach oben vom ersten limnisch-terrestrischen, bzw. brackischen Horizont begrenzt wird. Einige noch darüber vorkommende Sandsteine der gleichen Ausbildung werden nicht mehr dazu gerechnet. E vom Inn sollen Bausteinschichten nach Ganss (1955b: 464f.) an mehreren Stellen vorkommen. Zum Teil handelt es sich jedoch um jüngere marine Chattsande, wie Hofmann (1962: 565f.) und Hagn et al. (1962: 434) nachweisen konnten. Aber auch die von diesen Autoren noch als Bausteinschichten betrachteten Blättersandsteine aus dem Priental und deren angebliche Äquivalente bei Dösdorf sind sehr wahrscheinlich jünger als die Bausteinschichten des W.

Die aus kalkig-dolomitischen Feinsandsteinen bestehenden Bausteinschichten sind in der Faltenmolasse nicht als Speichergesteine anzusprechen; im Vorland dagegen besitzen sie tw. ausreichende Porositäten.

D3. Zum Problem der Grenzziehung Rupélien/Chattien

In seiner Monographie der oligozänen Molluskenfaunen Oberbayerns bemühte sich HÖLZL (1962) um eine paläontologische Fundierung der Grenze Rupélien/Chattien. Da für die Unterscheidung der beiden Stufen aber nur wenige Leitfossilien zur Verfügung stehen, und diese außerdem in Grenznähe nur sehr selten zu finden waren, kam Hölzl (:231) zu dem Ergebnis, daß die Grenze nicht scharf gezogen werden könne. Er spricht deshalb von einem «Grenzbereich», dessen Mächtigkeit er im Schmeroldgraben (S-Zufluß der Mangfall, der den N-Rand der Haushamer Mulde quert) mit rd. 55 m angibt. Als tiefster chattischer Leithorizont gilt der sog. Turritellenhorizont, dessen Alter durch die Fauna vom Locus typicus (Isarufer am Kalvarienberg bei Bad Tölz) eindeutig zu bestimmen war (:229f.). Turritellenhorizonte wurden auch noch von verschiedenen anderen Orten beschrieben, doch soll es sich nur bei dem im Schmeroldgraben und bei dem im Mariensteiner Zementstollen um den e cht en Horizont handeln, was aus der einheitlichen Einbettungsart der Schnekkengehäuse geschlossen wurde. Da aber der petrographische Aufbau der verschiedenen Profile keinerlei Übereinstimmung aufweist, erscheint es als sehr zweifelhaft, daß dieselbe Fossilbank sich über 16 km mit gleichartiger Einbettungsart erstrecken kann.* Nach Hölzl (:231) liegt der Faunenschnitt über der lithologischen Grenze, d. h. innerhalb der höheren Bausteinschichten Zöbelein's. Dem widerspricht aber, daß der Turritellenhorizont vom Kalvarienberg, der sich innerhalb der tieferen Bausteinschichten befindet, chattisch ist. Es ist auch nicht möglich, daß an diesem Fundpunkt die höheren Bausteinschichten anders aussehen sollen als sonst, da diese nur ca. 150 m entfernt bei der Taubenlochanlage mit typischen dickbankigen Bausandsteinen anstehen (ZÖBELEIN 1962: 263). Wenn es tatsächlich zutrifft, daß bei den weiter E gelegenen Profilen Rupel-Leitformen noch in die höheren Bausteinschichten hineingehen, dann ist das ein Indiz dafür, daß sich die Reichweiten der Leitfossilien für Rupélien und Chattien tw. überlappen. Diese Vermutung wird aber zur Gewißheit, wenn im Faziesprofil die Grenzziehung nach Leitfossilien in weit voneinander entfernten Gebieten verglichen wird (strichpunktierte Linie in Abb. 4). Im W kommen in den 270 m mächtigen Murnauer Tonmergeln nur chattische Fossilien vor; die Ru-

^{*} In der Profilzusammenstellung Hölzl's (:228) sind leider die echten Turritellenhorizonte überhaupt nicht verzeichnet. Der einzige angegebene im Heuberggraben soll nach Angabe auf S. 229 nicht der echte sein.

pel-Leitformen setzen dort also bereits über 300 m tiefer aus als im Tölzer Profil. Im E dagegen wird der Asterigerinen-Horizont des Traunprofils als Oberes Rupélien eingestuft, womit die Grenze dort um ungefähr 1000 m höher läge als im Tölzer Profil. Korreliert man die bei Tölz fixierte Grenze unabhängig von paläontologischen Befunden in diese Gebiete, dann sind die Murnauer Tonmergel noch zum Rupélien zu stellen (ZÖBELEIN 1962: 264), der Asterigerinen-Horizont aber bereits zum Chattien. Hierbei kann darauf hingewiesen werden, daß das Alter des Asterigerinen-Horizonts ohnehin bereits angezweifelt worden ist. Die ursprüngliche Einstufung dieses Horizonts ins Obere Rupélien durch HAGN & HÖLZL (1952: 27ff.) erfolgte bekanntlich einerseits auf Grund des Vorkommens der Rupel-Leitformen Streptolathyrus multisulcatus, Leda deshayesiana und Chlamys permistus und andererseits wegen der analogen Existenz eines oberrupelischen Asterigerinen-Horizonts in den Niederlanden und in NW-Deutschland. Letzteres Argument ist inzwischen hinfällig geworden, da man den Horizont in NW-Deutschland ins tiefste Chattien verlegt hat (Ellermann 1958, Indans 1958). Bezüglich der Mollusken ist zu erwähnen, daß sich Leda deshayesiana als Fehlbestimmung von schlecht erhaltenen Exemplaren der Gattung Yoldia herausgestellt hat (Hölzl 1962: 30), und daß Zöbelein (1957: 15-17) auf die neben den Rupel-Leitformen auch vorhandenen Arten Astarte concentrica und Cardium kochi hinwies, die anderswo erst im Chattien auftreten. Rupélien ist deshalb keinesfalls gesichert. Das wurde zwar auch von Hölzl (1962: 30f.) zugegeben, der sogar drei auf Chattien hindeutende Formen den beiden Rupelformen gegenüberstellte, aber trotzdem an seiner bisherigen Alterseinstufung festhielt. Zieht man nun in Betracht, daß außer der mehr zum Chattien tendierenden Fauna auch noch die Mächtigkeitsverhältnisse für Chattien sprechen, so kann der Asterigerinen-Horizont nicht mehr beim Rupélien belassen werden. Wo indessen die Grenze genau liegt, läßt sich leider noch nicht angeben.

Die vorgenommene Umstufung bezieht sich nicht nur auf den Asterigerinen-Horizont im Traungebiet, sondern wahrscheinlich auch auf das Obere Rupélien im Sattel N der Bernauer Mulde (Hofmann 1962), was allerdings in der Karte (Abb. 3) nicht berücksichtigt wurde. Auch der aus dem Sulzgraben (Bachriß durch den N-Flügel der Haushamer Mulde im Leitzachgebiet) von Hagn & Hölzl (1952: 33) bekanntgewordene Asterigerinen-Horizont, der allerdings wegen seiner geringeren Mächtigkeit nicht ganz dem des Traunprofils entspricht, liegt, wie bereits aus Hölzl (1962: 15) zu entnehmen ist, im älteren marinen Chattien. Dagegen wird der Asterigerinen-Horizont in der Bohrung Ortenburg CF 1001 (Niederbayern), der auch den hellen Mergelkalk des tiefsten Rupélien und den Fischschiefer des Latdorfien mit umfaßt, von der Umstufung nicht mit betroffen. Diese im E-Molassebecken für das Latdorfien und tiefste Rupélien so typische Horizontfolge wurde von Hagn (1955: 331) wegen der darin vorkommenden Asterigerina praeplanorbis ins Obere Rupélien eingestuft, und bei späteren Erörterungen der Altersfrage hielt Hagn (1960: 162 und in Hagn et al. 1962: 436) ein mit der nach N fortschreitenden Transgression verbundenes Wandern des Fischschiefers und der hellen Mergelkalke als Fazieshorizonte in jüngere Zeitabschnitte hinein für die beste Erklärung. Dem ist aber entgegenzuhalten, daß es sich bei den beiden Horizonten um keine typischen Transgressionsbildungen handelt und daß man sie wegen ihrer zeitlichen Beständigkeit in zahlreichen Bohrungen deshalb richtiger als zeitgebundene Leithorizonte auffassen muß. A. praeplanorbis ist dagegen kein Zonenfossil, sondern ein Faziesfossil, das am besten unter niedermarinen Verhältnissen gedieh, die in Niederbayern bereits vom Latdorfien an geherrscht hatten, während sie im Beckenzentrum (Traunprofil) erst mit Beginn des Chattien einsetzten.

Die Rupélien/Chattien-Grenze wurde schließlich auch in dem Aufschluß bei Dösdorf im Priental fixiert (D in Abb. 3). Hofmann (1962: 595f.) nahm die Grenzziehung nach dem Aussetzen der Foraminiferenarten Asterigerina praeplanorbis, Plectofrondicularia striata und Almaena osnabrugensis vor, was jedoch als ein sehr unzuverlässiges Beweismittel einzuschätzen ist. Das Auftreten dieser Arten ist zu sehr von lokalen Umweltsbedingungen abhängig, als daß man davon stratigraphische Schlußfolgerungen ableiten könnte. Der Lage im Profil zufolge müßte der Fundpunkt einige hundert Meter über der Untergrenze des Chattien (dem Tölzer Profil entsprechend) einzuordnen sein.

Zusammenfassend läßt sich feststellen, daß die Grenze Rupélien/Chattien paläontologisch nur sehr unscharf ist, da sich die Reichweiten der als Leitfossilien geltenden Arten (auf ganz Oberbayern bezogen) in einem weit über 1000 m mächtigen Profilabschnitt überlappen. Andere Indizien, nach denen diese Zeitgrenze mit wünschenswerter Genauigkeit festgelegt werden könnte, sind nicht bekannt. Angaben, die die Grenze Rupélien/Chattien in Bayern betreffen, müssen deshalb mit großer Vorsicht aufgenommen werden.

D4. Cyrenenschichten und Untere Bunte Molasse (UBM) des Chattien

Die Cyrenenschichten sind vorwiegend brackische Ablagerungen. Sie entstanden während der chattischen Regression und sind nach E bis in die Bernauer Mulde nachweisbar. Da diese Schichten auch Glanzkohlenflöze enthalten, die in einigen Gebieten der Faltenmolasse bergbaulich genutzt werden können, wurden im Faziesprofil (Abb. 4) die verschiedenen produktiven Bereiche stratigraphisch eingeordnet. Das Profil zeigt deutlich, wie sehr sich der stratigraphische Umfang und die Mächtigkeiten der Cyrenenschichten in W-E-Richtung verändern. Da der Ablagerungsraum der Cyrenenschichten Grenzbereich zwischen Land und Meer war, erscheinen in den Cyrenenschichten nicht selten limnische oder marine Sedimente, und die namengebenden brackischen Horizonte mit Polymesoda convexa treten zurück (Hölzl 1962: 219—223). Hölzl (:223) war deshalb der Meinung, daß der unzutreffende Schichtname Cyrenenschichten durch den neutralen Begriff «Flözmolasse» ersetzt werden solle. Dieser neue Name ist allerdings auch nur ein Faziesbegriff, weil die untere Grenze der Flözmolasse von dem jeweils ersten nichtmarinen Horizont markiert wird (:242f.) und an der oberen Grenze ein breiter Verzahnungsbereich mit dem «jüngeren marinen Chattien» vorliegt (siehe D5). Die oberen Cyrenenschichten des höheren Chattien werden in den Mulden von Nonnenwald und Kirchbichl durch die Einschaltung des marin-brackischen Unteren Glassandes in die Hauptcyrenenschichten und die Schwaig-Schichten aufgeteilt (Weithofer 1899: 282). Für den Komplex Unterer Glassand, Schwaig-Schichten und Oberer Glassand hat ZÖBELEIN (1957) die Bezeichnung Glassandgruppe verwendet. Das chattische Alter der Cyrenenschichten im Liegenden der Promberg-Schichten steht seit ZÖBELEIN (1953) fest. HÖLZL, der von 1948 bis 1957 Teile der Cyrenenschichten für aquitanisch hielt, schloß sich 1962 der Auffassung Zöbelein's an.

Die Cyrenenschichten werden im W von der limnisch-terrestrischen Serie der UBM vertreten. Ihre vorwiegend rotbunten tonmergeligen und sandigen Sedimente zeigen die typische Ausbildung in der mehr rötlichen UBM der Rottenbucher Mulde (Zöbelen 1952), die zeitlich ungefähr den Weißach-Schichten entspricht. Nach E zu wird diese Fazies in zunehmendem Maße von brackischen Ablagerungen verdrängt und keilt schließlich gegen den Inn zu vollkommen aus.

Aus dem E, wohin sich das Meer während des tieferen Chattien vorübergehend zurückgezogen hatte, stieß es im höheren Chattien ziemlich rasch nach W vor. Diese Transgression erfolgte in zwei Etappen. Ein erster Vorstoß bereitete dem brackischen Einfluß im E (Endorf 1 und Prienprofil) ein Ende und ließ im Litoralsaum den zwischen Kirchbichl und Peißenberg bekannten wichtigen Leithorizont des Unteren Glassandes entstehen. Die ungefähre Gleichzeitigkeit der Ereignisse ergibt sich aus dem Mächtigkeitsvergleich. Das Meer zog sich nach sehr kurzer Zeit wieder bis zum Inn zurück, von wo aus es erst mit dem Oberen Glassand den zweiten, weiterreichenden Vorstoß einleitete. Zur gleichen Zeit, als im W die überwiegend brackische Glassandgruppe abgelagert wurde, entstanden im Chiemgau die marinen Kalksandsteine des Waschhaushorizonts und darüber die Sandstein-Tonmergel-Wechsellagerung des marinen Greimelberg-Horizonts (HAGN et al. 1962: 433). Erst der Greimelberg-Horizont schließt im sandig-marinen Bereich die Chattsandserie nach oben ab und ist deshalb kein Äquivalent der «Hangenden Katt-Tonmergel» wie aus Tab. 1 der genannten Arbeit entnommen werden könnte. Ebensowenig wird der Horizont, wie auch der Horizont der Rainer Mühle, in der Haushamer Mulde durch Cyrenenschichten vertreten, denn Ablagerungen aus diesem Niveau sind dort bereits vollständig erodiert worden.

In den marinen Sandsteinen des jüngeren Chattien gibt es einige wichtige Makrofossilfundpunkte, die von Hölzl (1962: 31-38) ausgebeutet und insgesamt dem jüngeren Chattien zugeordnet wurden (:244—248). Hölzl führte in diesem Zusammenhang für ein rd. 10 m mächtiges Vorkommen bei Roßwies am linken Isarufer, auf dessen chattisches Alter bereits Zöbelein (1957: 41) hingewiesen hatte, den neuen Begriff «Roßwieser Schichten» ein. Über die Beziehung dieses Schichtgliedes, das weder zum Liegenden noch zum Hangenden abgegrenzt werden konnte, zur bekannten Schichtenfolge des Gebietes machte Hölzl keine Angaben; das soll deshalb hier nachgeholt werden: Als mariner Horizont können die Roßwies-Schichten, wie aus dem Profil Kirchbichl 1 hervorgeht, nicht tiefer als im Niveau des Unteren Glassandes liegen. Andererseits gibt es im Muldenkern bei Rimslrain N von Roßwies keine jüngeren Ablagerungen als Schwaig-Schichten, die aber noch überwiegend brackisch sind, so daß es sich bei den Roßwies-Schichten nur um einen marinen Horizont in der engsten Nachbarschaft des Unteren Glassandes handeln kann. Für eine solche marine Einlagerung ist aber die Schaffung eines eigenen Schichtnamens nicht notwendig. Ebenfalls im Niveau des Unteren Glassandes liegt der Fundpunkt marinbrackischer Mollusken im ca. 5 km weiter W gelegenen Bernwieser Versuchsschacht (Schmidt-Thomé 1955: 426), wo das Meer bereits stärker ausgesüßt war als bei Roßwies.

Die übrigen von Hölze erwähnten Fundpunkte an der Mangfall N Neumühl, im Oberlauf des Kaltenbachgrabens und im Bleichgraben erfordern eine andere Einstufung als die Fundpunkte bei Roßwies und Bernwies. Sie liegen im Niveau des Oberen Glassandes und des basalen sandigen Teiles der Promberg-Schichten und befinden sich damit um rd. 200 m höher im Profil. Die im Gegensatz zum Roßwieser Vorkommen andere Zusammensetzung der Faunen kann deshalb sowohl mit der verschiedenen geographischen Lage als auch mit dem Altersunterschied erklärt werden. Bei dem von Hölze erwähnten Fundpunkt E von Au handelt es sich allerdings um keinen der beiden Horizonte, sondern um eine wesentlich ältere marine Einschaltung innerhalb der Cyrenenschichten, da in der Fauna neben den marinen auch brackische Formen enthalten sind.

Das oberste Chattien wird von grauen Tonmergeln des Rainer-Mühle-Horizonts (Hagn & Hölzl 1952: 36f.) eingenommen. Die sehr reiche Foraminiferenfauna zeigt tw. starke Ähnlichkeit mit derjenigen der höheren Tonmergelschichten (Faunenbild in Hagn 1960, Taf. 7). Dieser Horizont läßt sich nach meinen Beobachtungen von der Prien bis ans W-Ende der Nonnenwald-Mulde nachweisen (siehe D6).

Die marinen Chattsande und die Glassande sind meistens sehr gute Speichergesteine.

D6. Abgrenzung, Verbreitung und Einstufung der Promberg-Schichten

Im Hangenden der Chattsande wurde von dem weit nach Wübergreifenden Meer eine vorwiegend tonmergelige Serie abgelagert, für die Weithofer (1899: 272) in der Nonnenwald-Mulde den stratigraphischen Begriff der Promberg-Schichten einführte. Als Begrenzung gab er im Liegenden den Oberen Glassand und im Hangenden die brackischen Daser-Schichten an. Der von Zöbelein (1957: 52f.) zum ersten Mal beschriebene Nantesbuch-Sandstein im obersten Teil dieser Schichten, der auch ein gutes Speichergestein ist, war Weithofer in der Nonnenwald-Mulde noch unbekannt; er hat ihn deshalb unbewußt mit in die Promberg-Schichten einbezogen, als er das Daser-Flöz zur Obergrenze erklärte worin ihm Zöbelein gefolgt ist. Im Leitzach-Wasserstollen jedoch hat Weithofer (1912) diesen Sandsteinhorizont mit zu den Heimberg-Schichten gerechnet (siehe E3). Da die Heimberg-Schichten nicht mehr als stratigraphischer Begriff gelten und der Nantesbuch-Sandstein sich deutlich von den überwiegend mergeligen Promberg-Schichten unterscheidet, erscheint es als zweckmäßig, ihn als selbständigen Horizont zu betrachten.

Die Mächtigkeit der Promberg-Schichten in der Nonnenwald-Mulde wurde von Weithofer mit 400 m angegeben, ebenso von Zöbelein (1957: 53). Im Gegensatz dazu konnte Lensch (1961: 18) aus Grubenunterlagen nur ca. 330 m ermitteln. Zur nochmaligen genauen Überprüfung wurde nach Unterlagen der Markscheiderei in Penzberg (Linke 1955) ein Querprofil durch die Nonnenwald-Mulde entworfen (Abb. 10), in dem sich die Einmuldung nach der im Bergwerk genauestens bekannten Lage des Flözes 26 in der Mitte der Schwaig-Schichten richtet. Die Einmuldung ist darin nicht so tief, wie sie Zöbelein (1957: 52) auf Grund des in Aufschlüssen im N-Flügel gemessenen Einfallens angenommen hat. Die Promberg-Schichten fallen mit nur ca. 20° S ein. In ZÖBELEIN's Profilschnitt, der ca. 1 km E der Abb. 10 liegt, ist außerdem noch die Lage des Oberen Glassandes im S-Flügel zu verändern. Entgegen der ungestörten Darstellung erscheint ein Teil der Schichtfolge (Unterer Glassand bis Schwaig-Schichten) durch eine nach E in zwei Äste aufspaltende Rücküberschiebung mehrmals nebeneinander, so daß der Obere Glassand nicht wie normal ca. 200 m N vom Unteren Glassand liegt, sondern ca. 380 m. Nach dieser Korrektur bleiben in den beiden Muldenflügeln zwischen dem Oberen Glassand und den Daser-Schichten für die Promberg-Schichten einschließlich des Nantesbuch-Sandsteins nur noch rd. 330 m Mächtigkeit übrig; für die Promberg-Schichten 280 m, für den Nantesbuch-Sandstein 50 m.

Da das offene Meer zwischen der Nonnenwald-Mulde und der Peißenberger Mulde seine W-Grenze hatte, liegen die zeitlichen Äquivalente der Promberg-Schichten in der Peißenberger und der Rottenbucher Mulde großenteils als brackische, tw. auch limnisch-terrestrische Sedimente vor. Über die Verknüpfung dieser sehr unterschiedlich entwickelten Profile wurde ausführlich von Kraus & Paulus (1962) berichtet, so daß hier nur darauf hingewiesen wird.

Die Einstufung der Promberg-Schichten war bis in die jüngste Zeit umstritten. HAGN & HÖLZL (1954) stellten sie ganz ins Aquitanien; Zöbelein (zuletzt 1957: 43) sah die unteren 290 m als chattisch, die oberen 110 m als aquitanisch an; Knip-SCHEER (1957: 895) hielt nur das untere Drittel der im Hauptquerschlag der 1. Sohle im Nonnenwald-Bergwerk aufgeschlossenen Promberg-Schichten (also rd. 90 m) für chattisch und bezeichnete die Fauna in dem höheren Teil als eine oligozäne/miozäne Mischfauna; Hölzl (1957) stufte sie trotz starker chattischer Hinweise in der Fauna wiederum ins Aquitanien ein. Von Kraus & Paulus (1962: 790) wurde bereits erwähnt, daß F. Oschmann die Grenze Chattien/Aquitanien auf Grund der in den Promberg-Schichten der Bohrung Tölz 1 enthaltenen Mikrofaunen in das gleiche Niveau legen konnte, wie Knipscheer in der Nonnenwald-Mulde. Nach eingehender Durchsicht von zwei Mikroprobenserien aus dem genannten Querschlag, von denen die eine im Bayerischen Geologischen Landesamt, die andere im Geologischen Büro Ampfing der Mobil Oil AG aufbewahrt wird, konnte ich anhand der oft sehr reichen und stratigraphisch gut verwertbaren Foraminiferenfaunen sicher erkennen, daß auf einen geringmächtigen Horizont mit Greimelberg-Fauna der hochchattische Rainer-Mühle-Horizont bis ca. 90 m über die Unterkante der Promberg-Schichten folgt. Unmittelbar darüber schließt eine zunächst sehr arme und kleinwüchsige, bald aber eine reiche und großwüchsige Fauna des Aquitanien an. Die Grenze zwischen Chattien und Aquitanien, die in Bayern nach Zöbelein (1960) zugleich als die Grenze zwischen Oligozän und Miozän gilt, läßt sich demnach vom Prienprofil bis in die Nonnenwald-Mulde übertragen (M-Grenze in Abb. 12). Damit wird zum ersten Mal klar, welcher Abschnitt des Prienprofils als zeitliches Äquivalent der Promberg-Schichten anzusehen ist, nämlich: die obersten ca. 20 m des Greimelberg-Horizonts, die der sandigen Basis entsprechen, der Rainer-Mühle-Horizont und rd. 250 m des Aquitanien (Wildenwart-Horizont). Das gibt zusammen einen Schichtstoß von reichlich 400 m Mächtigkeit, der infolge einer regionalen Mächtigkeitsabnahme nach W den nur 280 m Promberg-Schichten der Nonnenwald-Mulde entspricht. Somit kann man die Altersfrage der Promberg-Schichten als endgültig geklärt betrachten.

Als Verbreitungsgebiet ist der Bereich anzusehen, in dem Promberg-Schichten marin entwickelt sind und von dem Oberen Glassand und dem Nantesbuch-Sandstein begrenzt werden. Das ist von der Bohrung «Auf dem Alta» im W bis etwa zum Inn der Fall. Es kann deshalb gesagt werden, daß die in der Aufrichtungszone am N-Rand der Faltenmolasse, an der Mangfall S Bamer, im Leitzach-Wasserstollen und im Kaltenbachgraben anstehenden marinen Schichten von Weithofer mit Recht als Promberg-Schichten eingestuft wurden. Die dagegen von Hagn et al. (1962: 435) vertretene Meinung, daß es dort keine Promberg-Schichten gäbe, beruhte auf der irrigen Annahme, daß die aufgerichteten Schichten mit der Vorlandmolasse einerseits und andererseits die Faltenmolasse, auf die die Promberg-Schichten beschränkt sein sollten, ursprünglich getrennte Ablagerungsräume gewesen seien. Eine Grenzlinie längs des N-Randes der Faltenmolasse wurde deshalb angenommen, weil Faunen der Horizonte von Greimelberg, Rainer Mühle und Wildenwart S der Aufrichtungszone nicht bekannt waren und daraus auf eine Faunenscheide geschlossen werden konnte (frdl. mündl. Mitt. von K. Hrubesch). Dieses Argument hat sich jetzt durch den Nachweis dieser Horizonte in der Nonnenwald-Mulde als hinfällig erwiesen. Die Ablagerungen der Vorlandmolasse und der Faltenmolasse entstanden in einem einheitlichen Becken, und die Aufteilung in zwei Molassezonen ist lediglich tektonisch be-

Zur Rechtfertigung Weithofer's ist es noch nötig, einigen Bemerkungen Hölzl's (1962) entgegenzutreten: Hölzl erwähnte (:32) zwar zutreffend, daß die Roßwies-

Schichten nicht als Promberg-Schichten angesprochen werden dürften; diese gegen Weithofer gerichtete Feststellung war jedoch unnötig, weil dieser selber das niemals behauptet hatte. Tatsache ist, daß Weithofer (1903: 58) das Roßwieser Vorkommen bereits richtig für «eine der nicht seltenen marinen Einlagerungen zwischen den brackischen Cyrenenschichten der Nonnenwald-Mulde» gehalten hat. Weithofer hat auch nicht, wie von Hölzl weiter behauptet wird, die marinen Sandsteine im Miesbacher Schacht und im Leitzach-Wasserstollen den Promberg-Schichten gleichgestellt, sondern ausdrücklich mit den Glassanden der Nonnenwald-Mulde parallelisiert (1899: 274, 1912: 349). Bezüglich der Vorkommen in der Aufrichtungszone, die Weithofer nun tatsächlich als Promberg-Schichten bezeichnet hat, sind Hölzl's Einwände jedoch nicht berechtigt. Weithofer's Einstufung erwies sich als richtig (siehe E3—4).

D7. Cyrenenschichten und Obere Bunte Molasse (OBM) des Aquitanien

Nach der Ablagerung des Nantesbuch-Sandsteins zog sich das Meer relativ rasch nach E zurück, so daß an brackischen Ablagerungen nur die geringmächtigen Daser-Schichten (in Tölz 1 115 m mächtig) mit zwei unwirtschaftlichen Kohlenflözen entstehen konnten. An der Leitzach entspricht den Daser-Schichten der höhere Teil der Heimberg-Schichten. Da deren Obergrenze im Stollen, dem einzigen Aufschluß in dieser Gegend, tektonischer Natur ist, kann die wahre Mächtigkeit des brackischen Komplexes dort nicht angegeben werden (siehe E3). Außerdem wurde bereits der tiefere Teil der Heimberg-Schichten als Nantesbuch-Sandstein identifiziert (siehe D6), so daß nur ein nach oben nicht abgrenzbares Cyrenenschichten-Paket übrig bleibt, für das dieser Schichtname nicht mehr angebracht erscheint. Die Heimberg-Schichten sind auch zu sehr mit Fehlinterpretationen belastet (siehe Zöbelein 1957: 21f.), weil sie sowohl mit den Berghof-Schichten parallelisiert wurden, die jünger sind, als auch mit dem gesamten Aquitanien oberhalb der Promberg-Schichten gleichgesetzt wurden (zuletzt bei Schmidt-Thomé 1963, Abb. 5). Im mittleren Aquitanien des Stollens treten Cyrenenschichten-Horizonte in Wechsellagerung mit Glaukonitsanden und limnischen, gefleckten Mergeln auf. Im obersten Aquitanien verlagerte sich der brackische Bereich wieder nach W, wo z. B. in Tölz 1 rd. 300 m Cyrenenschichten mit mehreren unwirtschaftlichen Glanzkohleflözen erbohrt wurden. Nur wenige Kilometer weiter W, in Königsdorf 1, wurden die brackischen Ablagerungen schon fast völlig von der Fazies der OBM verdrängt. Das bisher westlichste brackisch-marine Aquitanien ist der nur 17 m dicke untere Teil der Berghof-Schichten E Peißenberg (Hölzl 1953a, 1960: 146).

Die limnisch-terrestrische OBM, die im W mit rd. 1200 m Mächtigkeit fast das ganze Aquitanien vertritt, reicht mit ihren östlichsten Ausläufern bis in das Leitzachprofil. Bemerkenswert ist die in Eberfing 1 gemachte Beobachtung, daß im tieferen Teil der OBM rotbunte Sedimente auftreten, wie sie auch für die UBM typisch sind, während in ihrem höheren Teil grünlich-bräunlichgelbe Tonmergel vorherrschen, die nur schwer von den bräunlichgelben Tonmergeln der OSM zu unterscheiden sind.

Im Übergangsbereich zu dem vollständig marinen Aquitanprofil der Molasse des Chiemgaues treten litorale Sandsteine auf, die eine dem Burdigalien ähnliche marine Molluskenfauna führen. Diese Fauna wurde von Höller (1958: 31) am E-Hang des Leitzachtales bei Jedling entdeckt und als Burdigalien eingestuft, was aber nicht zutreffen kann (siehe E3).

D8. Die Schichtfolge Rupélien bis Aquitanien im marinen E-Gebiet

Die fast vollständig marin ausgebildete Molasse des E ist in den Tälern der Prien und der Traun aufgeschlossen und wurde ausführlich in den Arbeiten von Hagn & HÖLZL (1952), Ganss (1955b) und Hofmann (1962) beschrieben. Die beiden rd. 25 km entfernten Profile unterscheiden sich sowohl in petrographischer als auch in faunistischer Hinsicht sehr. Gemeinsam haben sie nur die an Foraminiferen reichen Tonmergelschichten des Rupélien bis tiefen Chattien. Diese waren früher im Wehrprofil der Traun über eine große Strecke hinweg gut aufgeschlossen und sind heute in wenigen verstreuten Aufschlüssen, u. a. im Priental S der Autobahn zu finden. Im Chattien der Traun setzten sich niedermarine Verhältnisse durch, von denen die artenarme und kleinwüchsige Fauna des Asterigerinen-Horizonts zeugt. Gleichzeitig erscheint in den Tonmergeln ein merklicher Sandgehalt, und es treten nicht selten auch Makrofossilien auf. Gelegentlich sind Geröllschüttungen zu beobachten, z. B. im Paul-Fischer-Graben. Diesen immerhin noch vorwiegend tonmergeligen Schichten steht im Prienprofil die rd. 800 m mächtige marin-brackische Sandsteinserie des mittleren Chattien gegenüber. Nur das oberste Chattien, der Rainer-Mühle-Horizont, ist dort wieder tonmergelig. Das Aquitanien an der Prien besteht hauptsächlich aus sandigen Mergeln und feingeschichteten Fischschiefern. Eine bezeichnende Mikrofauna bildete Hagn (1960, Taf. 8) ab. Im höheren Aquitanien der Endorf 1 sind in die gebänderten Fischschiefer zahlreiche gut poröse Sandsteine eingeschaltet, die allerdings in den obersten rd. 50 m, die von einem schwarzbraungrauen Tonstein eingenommen werden, fehlen. Dieser Tonstein enthält eine eindeutig aguitanische Mikrofauna (mit Uvigerina semiornata), und damit erweist sich seine Einstufung ins Burdigalien durch Ganss (1955b: 471), der ihn im Priental entdeckt hatte, als Irrtum. Da bis jetzt aus diesem Fischschiefer keine Faunen gefunden worden waren, begründete sich seine Alterseinstufung allein auf den petrographischen Vergleich mit einem Burdigal-Fischschiefer des Traunprofils. Ungefähr dem Aquitanien von Wildenwart entsprechen im Traunprofil die wegen ihres Fossilreichtums berühmt gewordenen tonmergeligen Thalberg-Schichten. Umfangreiche Fossillisten von den beiden Fossilhorizonten im Tollberggraben, die Hölle nach langen intensiven Schürfarbeiten zusammengestellt hat, findet man in Hagn & Hölzl (1952: 42ff.) und Ganss (1956: 84ff.). Das darüber folgende Aquitanien wird von Konglomeraten beherrscht, die besonders eindrucksvoll an der Blauen Wand aufgeschlossen sind.

D9. Obere Meeresmolasse (OMM)

Mit dem Beginn des Burdigalien setzte die dritte und letzte Transgression des Molassemeeres ein, von der Oberbayern im Helvétien völlig überflutet wurde. Während des Burdigalien lagerte sich in einem in E-Bayern rasch einsinkenden Becken eine sehr mächtige Gesteinsserie ab, die an der Traun etwa 800 m mißt. Es besteht unten aus schlecht aufgeschlossenen Tonmergeln, die an der Zillerleite und im Röthelbach-Oberlauf als gebänderte Fischschiefer vorliegen. Darüber befindet sich der jüngste Geröllhorizont des Profils, der im Pechschnaitgraben ansteht. Dann folgen wieder mikrofossilreiche Tonmergel und zuoberst Sandsteine im Unterlauf des Röthelbachs.

Die Transgression ist bemerkenswerterweise sogar im durchgehend marinen Profil der Endorf 1 mit einem sandig-kiesigen Basishorizont vertreten. W vom Inn ist das Burdigalien nur noch ca. 120 m mächtig. In den küstennahen Sandsteinen des Kaltenbachgrabens kommt eine reiche Strandfauna vor, die von Hölzl in jahrelanger Arbeit aufgesammelt und 1958 beschrieben wurde. Die Küstennähe macht sich im

Raum um Königsdorf 1 durch bunte Einschwemmungen bemerkbar, in die jedoch auch Sandsteine mit einer vollmarinen Molluskenfauna eingelagert sind. Weiter nach W treten die bunten Tonmergel wieder zurück. Ein Faunenbild der auftretenden Foraminiferen gibt Hagn (1960, Taf. 9).

Mit dem Helvétien stellten sich im ganzen Gebiet gleichförmige Faziesverhältnisse ein. Das sandig-tonmergelige Untere Helvétien in Schlierfazies führt oft die hochmarine Mikrofauna der niederbayerischen Neuhofen-Schichten (Faunenbild in Hagn 1960, Taf. 10). Das mittlere Helvétien wird hauptsächlich von Glaukonitsanden vertreten, die Hölzl (1958: 14) im Kaltenbach mit der Grunder Fazies verglich. Das obere Helvétien, die brackischen Oncophora-Schichten, ist in Gräben am NW-Hang des Ratzinger Berges zu finden (Hagn & Hölzl 1952: 74f.) und im Kaltenbachgraben, wo es von Hölzl (1958) als Kirchberg-Fazies bezeichnet wurde. Nach W zu (Eberfing 1) gleicht es sich mit zunehmender Aussüßung der Fazies der OSM an. Die Mächtigkeit des Helvétien schwillt von ca. 300 m im W auf ca. 480 m bei Endorf 1 an; ein Wert von über 2000 m, wie Ganss (1955b: 472, Prof. 16) annahm, wird dort nicht erreicht.

D10. Obere Süßwassermolasse (OSM)

Das Hauptsenkungsgebiet befand sich während der OSM im W, wo Mächtigkeiten von rd. 1000 m erreicht wurden (Lemcke 1955: 526). Bedingt durch die spätere Hebung im E wurde die nicht sehr mächtige OSM SE-Bayerns bereits wieder vollständig abgetragen. Sie erscheint deshalb im Faziesprofil (Abb. 4) nur W vom Inn. Die OSM ist vorwiegend aus gelbbraunen Flinzmergeln und Sanden aufgebaut, in die Nagelfluhen und nach W zunehmend auch bräunliche, dolomitische Süßwasserkalke eingelagert sind. An Fossilien sind Land- und Süßwasserschnecken und gelegentlich auch Vertebratenreste enthalten. Das Schichtenprofil der Subalpinen Molasse endet im unteren Sarmatien. Das jüngste bekannte Tertiär, das in der Molassekarte von der Dehm-Linie begrenzte obere Sarmatien bzw. untere Pontien, ist auf das Tiefste der flachen OSM-Wanne im Vorland beschränkt. Die Mächtigkeiten der OSM sind am Rand der Subalpinen Molasse mit höchsten 400 m nicht sehr groß.

E. Stratigraphische und tektonische Profildeutungen im N-Randgebiet der Faltenmolasse

E1. Allgemeines

Im N-Randgebiet der Faltenmolasse sind Probleme stratigraphischer und tektonischer Art zu lösen gewesen. Das stratigraphische Interesse richtete sich vor allem auf die Untersuchung der Profile durch das Aquitanien, das weiter S nur mit seinem tiefsten Teil in den Mulden von Nonnenwald und Kirchbichl erhalten geblieben ist (siehe Abb. 2). Von besonderem erdölgeologischen Interesse aber war der tektonische Bau dieser Zone. Nach den Darlegungen von Ganss & Schmidt-Thomé (1955) soll die N-Grenze der Faltenmolasse in der Nonnenwald-Mulde von einer Überschiebung gebildet werden, die nach E ausklingt und dort von einem normalen Sattel abgelöst wird. Diese in den Profilen 12 und 15 dargestellte Sattelzone würde, falls vorhanden, ein ölgeologisch bevorzugtes Untersuchungsobjekt sein. Leider ließ sich ein solcher Sattel mit hoch aufgefalteten Tonmergel- und Bausteinschichten im Kern nicht bestätigen. Bereits aus dem Profil der Tölz 1 geht hervor, daß der Aufschiebungsbetrag der Kirchbichler Mulde mit rd. 1800 m wesentlich größer ist als Schmidt-Thomé (1955: 433) in seinem Profil 10 angenommen hat. Auch die Untersuchungen in den

östlicher gelegenen Profilen führten zu dem Ergebnis, daß der N-Randsattel dort ebenso wie im W in seinem Kern aufgerissen ist und daß die Mulden um ca. 2000 m aufgeschoben wurden. Da die Auffassung von Ganss & Schmidt-Thomé auf vorangegangenen paläontologischen Untersuchungen in den Tälern der Mangfall, der Leitzach und des Bleichgrabens beruht, muß ich meine abweichende Deutung durch eine Revision der Stratigraphie dieser Profile im folgenden begründen.

E2. Mangfallprofil

Die Mangfall quert in N-Richtung die steilstehende, tw. etwas nach N überkippte Aufrichtungszone zwischen Beiwerk und der Schlierachmündung (Abb. 5). Von den wenigen Aufschlüssen wurde der ca. 150 m NW Beiwerk liegende durch GÜMBEL (1894: 324) irrtümlich für UMM gehalten. Weithofer (1903: 51) jedoch stufte ihn bereits richtig in die Promberg-Schichten ein. Einige Aufschlüsse im Helvétien, die es heute nicht mehr gibt, wurden von Gümbel (1861: 757) und Weithofer (1903: 52) erwähnt. Zur vollständigeren Erfassung der Schichtenfolge wurden 1953 im Auftrag des Kohlenbergwerkes Hausham mit Unterstützung durch die Staatliche Gesellschaft zur Aufsuchung von Bodenschätzen (GAB) Schurfarbeiten durchgeführt, die O. Hölze & H. Müller auswerteten. Der von diesen Bearbeitern abgefaßte Bericht wurde zwar nicht publiziert, sein wesentlicher Inhalt ist jedoch tw. durch Ganss (1955b: 439) und tw. durch Hölzl (1958: 30f., 1961: 66, 1962: 34) der Öffentlichkeit bekannt geworden. Da man den Ausführungen von Ganss über die Schurfergebnisse ohne Kartenunterlage schwer folgen kann, wurden die einzelnen Schürfe in Abb. 5 eingezeichnet. Für die Angabe der Schurfstellen bin ich Herrn Markscheider Geissler sehr zu Dank verpflichtet. Außer Hölzl's Molluskenbestimmungen sind von Ganss für seine Profildeutungen auch Mikrobefunde von Knipscheer verwendet worden. Das Probenmaterial, das im Bayerischen Geologischen Landesamt hinterlegt ist, hat die Archiv-Nummern A37/53 usw. Die im folgenden angegebenen Seitenzahlen beziehen sich auf die Arbeit Ganss (1955b). Für die Schürfe ergaben sich von S nach N folgende Einstufungen:

Die Schürfe 1a—d wurden wegen der Foraminiferen- (A37—39/53) und Mollusken-Fauna (Fossilliste S. 440) als marines Chattien bezeichnet. Der Schurf 1e, der nur Foraminiferen lieferte (Fossilliste S. 439 Fußnote 7 für A40/53), wurde in das tiefe marine Chattien gestellt und galt damit als der älteste im Sattelkern anstehende Horizont. Im Schurf 1f sollten die Foraminiferen (Fossilliste S. 441 für A41/53) wiederum auf jüngeres marines Chattien hinweisen. Eine aquitanische Foraminiferenfauna wurde aus dem weiter entfernten Schurf 4 beschrieben (Fossilliste S. 441 Fußnote 9 für A47/53). Der Schurf 3b, in dem auch wieder Mollusken aufgesammelt werden konnten (Fossilliste S. 441), wurde hauptsächlich wegen der Foraminiferen (A45—46/53) ins Aquitanien gestellt. Der in einem Sandstein gegrabene Schurf 3a lieferte nur schlecht erhaltene Mollusken (Fossilliste S. 442), die für Burdigalien sprechen sollen, was Hölzl (1958: 30f.) noch einmal bestätigte. In der Schurfreihe 2 sind brackische Cyrenenschichten mit Süßwassereinlagerungen angetroffen worden, die man für chattisch hielt.

Seine auf Grund der paläontologischen Befunde gewonnene tektonische Vorstellung hat Ganss in dem Profil 12 niedergelegt, von dem ein nur in unwesentlichen Punkten veränderter Ausschnitt in Abb. 6 (oben) wiedergegeben wird. Demzufolge nahm Ganss an, daß sich an das tiefe marine Chattien im Sattelkern beim Schurf 1e sowohl nach N als auch nach S fortlaufend jünger werdende Schichtfolgen anschließen (S. 438, 441f.). Da aber die angeblich gleich alten Schichtfolgen der beiden Sat-

Abb. 5 — Geologische Übersichtskarte des Mangfallgebietes N von Neumühl zwischen Beiwerk und Reisach. Maßstab 1:15 000. — In der Aufrichtungszone liegen an der W-Talseite die von Hölle und Müller bearbeiteten Schurfstellen 1a—e, 4, 3b—a und 2. S von Beiwerk verläuft im Sattelkern die Überschiebung, an der die Cyrenenschichten der Miesbacher Mulde aufgeschoben wurden.

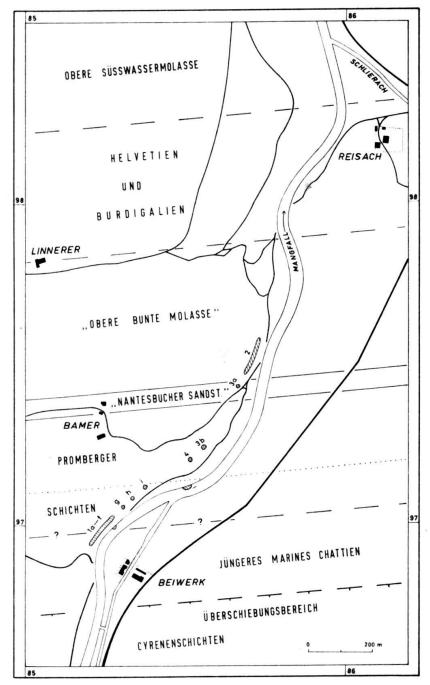


Abb. 6 — Mangfallprofil. Maßstab 1:50 000. — Gegenüberstellung der Profildeutungen von Ganss und Höll mit der in der vorliegenden Arbeit begründeten neuen Auffassung. Da der Verlauf des Profils 12 bei Ganss nur annähernd angegeben ist, wurde die Profillinie für den vorzunehmenden Vergleich möglichst genau den geographischen Anhaltspunkten der Arbeit neu festgelegt. Bei der Wiedergabe der Ganss'schen Zeichnung mußte der um 300 m zu kurze Abstand zwischen den Brücken bei Neumühl und bei Müller am Baum korrigiert werden, so daß die Miesbacher Mulde hier um 300 m breiter erscheint. Der Profilverlauf ist durch folgende Punkte festgelegt:

In der nach Ganss wiedergegebenen Zeichnung sind folgende Zusätze eingefügt worden: Marines Chattien = senkrecht schraffiert; chattische Cyrenenschichten = weiß; aquitanische Cyrenenschichten (entsprechend der Farbgebung in der Molassekarte 1:300 000 und den Angaben im Text) = schräge Striche. — Bei der unteren Profilzeichnung wurde die Signatur für Bausteinschichten auf das «ältere marine Chattien» im Sinne von Hölzl, bzw. auf die Bausteinschichten im Sinne von Zöbelein (1962) beschränkt.

Abb. 6

telschenkel verschieden ausgebildet sind, mußte für die höheren Horizonte des Chattien und des Aquitanien auf kurze Entfernung ein Fazieswechsel, verbunden mit einer beträchtlichen Mächtigkeitszunahme nach S vorausgesetzt werden: Im S-Schenkel sollte auf die tiefchattischen Tonmergel höheres sandiges marines Chattien und darüber hohes brackisches Chattien und Aquitanien in Form mächtiger Cyrenenschichten der Miesbacher Mulde folgen. Im N-Schenkel dagegen sollte die marine Fazies bis ins Aquitanien hinein angedauert haben, und dann erst soll es zur Bildung der Obersten Cyrenenschichten gekommen sein. Für die nicht ins fortlaufende Schichtenprofil passenden, da für chattisch gehaltenen, Cyrenenschichten der Schurfreihe 2, die im N und S an burdigale Meeresmolasse grenzen sollten, nahm Ganss die kühne Hypothese einer synsedimentären Schollengleitung von der Steilküste des Burdigalien-Meeres zu Hilfe. Dieser Vorgang wurde als Indiz für sehr frühe «positive Schollenbewegungen» in der Faltenmolasse gewertet, deren N-Rand infolgedessen ein bereits synsedimentär angelegtes Scharnier gewesen sein mußte, das großen Einfluß auf die Faziesverteilung zu haben schien (Ganss 1955a: 304).

Eine von dem obigen tektonischen Bild abweichende Version legte Hölle (1958: 31) vor (Abb. 6., Mitte). Darin werden die angeblich allochthonen Cyrenenschichten als tektonische Klippe dargestellt und außerdem ein wirres Störungssystem angenommen.

In den letzten beiden Jahren wurden die marinen Ablagerungen NW von Beiwerk erneut stratigraphisch beurteilt. Höllt (1961: 66, 1962: 34) stuft die Fauna der Schürfe 1a—d jetzt in das jüngere marine Chattien ein. Für die N vom Schurf 1d anstehenden Tonmergel, die bisher für Tonmergelschichten gehalten wurden, wiesen Hagn et al. (1962: 434) nach Untersuchungen an den Mikrofaunen hohes Chattien (Rainer-Mühle-Horizont) nach. Bei einer Durchsicht der im Bayerischen Geologischen Landesamt aufbewahrten Mikrofaunen stellte ich fest, daß die Proben von den Schürfen 1e—f die Fauna des Rainer-Mühle-Horizonts enthielten, also kein tieferes marines Chattien sein konnten. Die Proben aus den südlicheren Schürfen 1b—d, die früher für das Hangende gehalten wurden, enthalten eine an Almaena osnabrugensis reiche Fauna. Es handelt sich dabei um den Greimelberg-Horizont, also um das Liegende. Die Einstufungen von Hagn et al. ließen sich damit auch am Originalmaterial bestätigen. Dieser Profilteil gehört deshalb, im Gegensatz zur Auffassung von Ganss, noch dem Sattel-N-Schenkel an.

Die Faunen der Schürfe 4 (A47/53) und 3b (A45-46/53) wurden bereits von Knipscheer richtig ins Aquitanien eingestuft. Eine mikropaläontologische Überprüfung des angeblichen Burdigaliens im Schurf 3a war wegen Mangel an Fauna nicht möglich. Die nördlichste Probe aus der Schurfreihe 2 mit den angeblich chattischen Cyrenenschichten enthält hauptsächlich Exemplare von Ammonia beccarii, deren Erhaltung für Miozän spricht (A42/53). Die Cyrenenschichten lassen sich deshalb zwanglos ins Aquitanien stellen. Da nun mit größter Wahrscheinlichkeit eine fortlaufende Schichtenfolge von Promberg-Schichten bis in brackisches Aquitanien angenommen werden kann, erscheint auch das Burdigalien des Sandsteins im Schurf 3a als fraglich, zumal die dort gefundene Fauna sehr schlecht erhalten ist und keine genauere Altersbestimmung als tiefes Miozän zuläßt. Hölzl's Einstufung ins Burdigalien (1958: 30) erfolgte offensichtlich in der Annahme, daß solche marine Sandsteine nur auf diese Stufe beschränkt seien. Auf Grund seiner Stellung im Profil scheint mir die Zuordnung zum Nantesbuch-Sandstein richtiger zu sein. In dem aufschlußlosen Profilteil zwischen dem Schurf 2 und dem Helvétien bei Reisach ist höheres Aquitanien und Burdigalien zu vermuten. Das Aquitanien muß dort tektonisch reduziert sein, weil nur für die knappe Hälfte seiner Gesamtmächtigkeit Platz vorhanden ist.

Meine tektonische Vorstellung vom Mangfallprofil ist in Abb. 6 (unten) dargestellt. Ich nehme an, daß der Randsattel der Faltenmolasse im Kern aufgerissen wurde und daß die Miesbacher Mulde an der Sattelkernstörung um ca. 2,5 km steil nach oben aufgeschoben wurde. Der überkippte N-Schenkel des Randsattels erscheint durch Nebenüberschiebungen in mehrere Schuppen zerteilt, die nur wenig aufgeschoben wurden. In der Abbildung kann selbstverständlich nur eine schematische Darstellung des Bauprinzips erfolgen. Die tatsächliche Zahl der Störungen wird größer und ihr Verlauf kann etwas anderes sein als in der Zeichnung.

In dem vorliegenden Profil gliedert sich die Subalpine Molassezone in die Mulden von Hausham und Miesbach und in die Aufrichtungszone. Im Übergang von der Aufrichtungszone in die flach lagernden Schichten wurde eine punktierte Linie eingezeichnet, die die Grenze zwischen der Faltenmolasse und der ungefalteten Molasse anzeigt. Die Teufenlage der Schichten in der ungefalteten Molasse wurde mit Hilfe von seismischen Reflexionshorizonten ermittelt, die im Bohrprofil der ca. 12 km N stehenden Höhenrain 1 stratigraphisch geeicht sind. Abschließend möchte ich darauf hinweisen, daß Weithofer (1935: 4) die tektonische Situation der gestörten Aufrichtungszone richtig deutete, da er in ihr «den Rest des Nordflügels eines zerrissenen Schleppungssattels» sah.

E3. Leitzachprofil

Beim Bau des 7 km langen Leitzach-Wasserstollens (siehe Abb. 2) war 1911 vorübergehend ein vollständiges Profil durch die Miesbacher Mulde und die Aufrichtungszone aufgeschlossen, dessen interessanter, 4332 m langer Teil zwischen Mühlau und dem Gehrergraben von Markscheider Schluge im Maßstab 1:1000 geologisch aufgenommen und von Weithofer (1912) beschrieben wurde. Da die Kenntnis dieses nicht mehr existierenden Aufschlusses von allgemeinem Interesse sein dürfte, habe ich das Stollenprofil in Abb. 7 nach Schluge's Originalzeichnung angefertigt, die mir in entgegenkommender Weise von Herrn Markscheider Geissler zur Einsicht überlassen wurde. In der Übersichtskarte des Heimberg-Gebietes (Abb. 8) wurden außer der Stollenspur auch die Gräben eingezeichnet, in denen der Stollen teilweise zu Tage tritt, und die Weithofer (1912) als Orientierungspunkte verwendete. Ich behalte diese Grabenbezeichnungen bei, um keine Verwirrung zu stiften*.

Der Stollen beginnt am S-Rand der Miesbacher Mulde im tiefen Teil der Flözmolasse, die dort ein 35 m mächtiges Konglomerat enthält. Er durchfährt den überkippten S-Flügel und den normal liegenden N-Flügel der Miesbacher Mulde und in der Nähe vom Kern des N-Sattels eine spezialgefaltete Zone. Im Sattel-N-Schenkel wurden zunächst auf 71 m Länge Cyrenenschichten mit zwei konglomeratischen Quarzsandsteinen angetroffen, die Weithofer für den Oberen Glassand hielt. Diese Einstufung kann jedoch nicht mehr beibehalten werden, da in dessen Hangenden nur marine Ablagerungen erscheinen dürften, nicht aber ein Kohleflöz. Da außerdem von Kirchbichl 1 her bekannt ist, daß die Schwaig-Schichten nach E ihren brackischen Charakter verlieren, dürfte es sich wegen der die Quarzsande begleitenden brackischen Horizonte um Sandstein-Einschaltungen im Liegenden des Unteren

^{*} Ganss (1955b: 450) bezeichnete Weithofer's südlichen (1.) Heimberggraben als Riedgasteiggraben und verwendete die Namen «südlicher Heimberggraben» bzw. «rechter Ast des Heimberggrabens» für Weithofer's mittleren (2.) Heimberggraben; als «linker Ast des Heimberggrabens» wurde Weithofer's nördlicher (3.) Heimberggraben genannt. Teilweise behielt er auch Weithofer's Bezeichnungen bei.

Glassandes handeln. Nach einer Störung folgen auf 325 m Stollenlänge Promberg-Schichten, die mit 310 m gegenüber 280 m in der Nonnenwald-Mulde etwas an Umfang zugenommen haben. Im dritten Heimberggraben beginnt eine knapp 150 m mächtige Folge, in der sich nach Weithofer der brackische Charakter nach oben verstärkt, und die er 1918 (: 53) als Heimberg-Schichten bezeichnete. Bezüglich dieser Schichten konnte ich Schluge's Zeichnung entnehmen, daß nur ihr oberer Teil, der den Daser-Schichten entspricht, in Cyrenenschichtenfazies mit Kohleflözen vorliegt, während der untere Teil von einem 53 m mächtigen Sandstein eingenommen wird. Da der Sandstein nach Fossilbefunden Hölzl's (1962: 35 und in Ganss 1955b: 451*) vorwiegend marin ausgebildet ist, und seine Lage zwischen Promberg- und Daser-Schichten hat, handelt es sich offensichtlich um den Nantesbuch-Sandstein. Auf 80 m Daser-Schichten folgen in einer stark gestörten, 224 m breiten Zone, Cyrenenmergel, limnisch-terrestrische gefleckte Mergel und weiße, teilweise glaukonitische Quarzsande in Wechsellagerung. Die bunten Mergel (OBM-Fazies) stufte Weithofer bereits richtig als «jüngere bunte Molasse» ein. Dieser ganze gestörte Bereich läuft in den Abb. 7 und 8 unter der Bezeichnung «Obere Bunte Molasse». Die OBM mit hier ca. 200 m Mächtigkeit gegenüber 855 m in Tölz 1 ist, wie auch im Mangfallprofil tektonisch stark reduziert. In der nun folgenden 81 m langen Stollenstrecke kommen marine und teilweise brackische Sandsteine und Mergel mit zwei dünnen Kohleflözen vor, die entweder dem Aquitanien oder bereits dem Burdigalien angehören können. Das nächste 337 m lange Profilstück besteht aus Helvétien, was mit Hölzl's Fossilfunden E des Stollens übereinstimmt. Als Grenze zur Oberen Süßwassermolasse gab Weithofer eine Störung an; diese ist jedoch in Schluge's Profil nicht verzeichnet. Die aus gelbbraunen gefleckten Mergeln und Nagelfluhhorizonten aufgebaute OSM ist anfangs nach N überkippt, nimmt bald normales N-Fallen an und geht 600 m N vom Gehrergraben in horizontale Lagerung über.

Das Alter des im Stollen als OBM bezeichneten Komplexes wurde von Hölzl (1958: 31f.) angezweifelt. Hölzl fand nämlich in den Sandsteinen der OBM, die sich morphologisch erkennbar am gegenüberliegenden Talhang fortsetzen, eine marine Molluskenfauna mit Pecten aff. pseudobeudanti und Pitaria schafferi, die er (1961: 75ff.) als Leitformen im engeren Sinne für Burdigalien bezeichnete. Der Einstufung ins Burdigalien möchte ich aber nicht zustimmen, da erstens die Beweiskraft der Fauna nicht stichhaltig ist (P. schafferi kommt nämlich nach Hölzl [1958: 110] auch in den tiefaquitanen Thalberg-Schichten vor) und zweitens der bergrechte Abstand des Vorkommens von der OSM mit 550-650 m zu groß ist, da die Gesamtmächtigkeit der OMM im Kaltenbachgraben nur 545 m beträgt. Diese Indizien und die Tatsache, daß die Sandsteine im Stollenprofil mit gefleckten Mergeln der OBM wechsellagern, sprechen sehr für Aquitanien. Glaukonitische Sandsteine im Niveau der OBM sind übrigens keine Besonderheit, wie ein Blick auf das Profil der Tölz 1 zeigt. Die Jedlinger Sandsteine wurden wohl unter ähnlichen Bedingungen abgelagert wie die des Burdigalien im Kaltenbachgraben und es überrascht deshalb nicht, daß sich deren Faunen gleichen.

HÖLZL (1962: 35f.) zog Weithofer's Profilbeschreibung nochmals in Zweifel als er am Zusammenfluß des zweiten und dritten Heimberggrabens einen dort angeblich auftretenden großen *Pectunculus* suchte, aber nur wenige kleinwüchsige Mollusken fand. Da großwüchsige Faunen tatsächlich nur im basalen Teil der Promberg-Schichten vorkommen, ist Weithofer's Fundpunktangabe offensichtlich falsch. Dieser Irr-

^{*} Ganss verlegte diesen Fundpunkt irrtümlich in den «rechten Ast des Heimberg-Grabens», dem 2. Heimberggraben der Abb. 8.

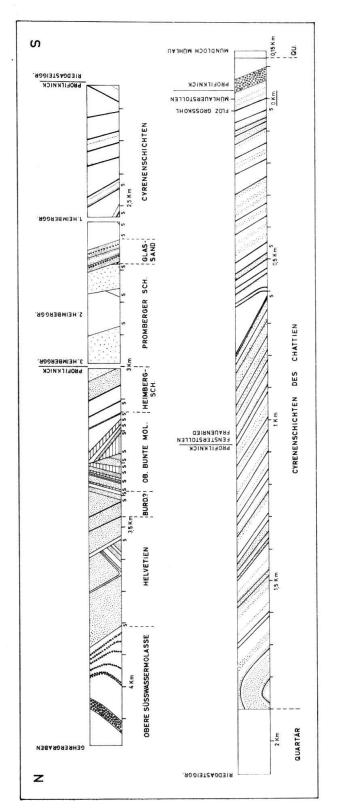
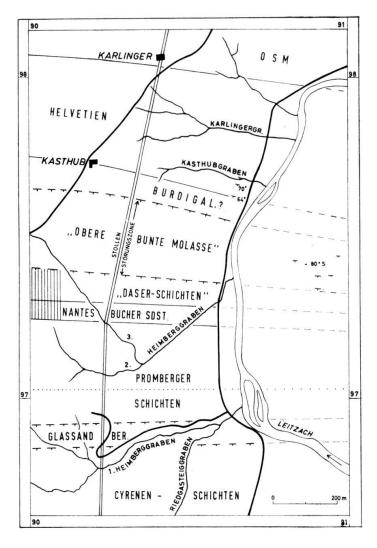



Abb. 7 — Geologisches Profil des Leitzach-Wasserstollens zwischen Mühlau und Gehrergraben. Maßstab 1:15 000. —

Die Zeichnung wurde nach SCHLUGE's Profilaufnahme im Maßstab 1:1000 angefertigt. Die maßstabsgerechte Darstellung des Stollenprofils war nicht möglich; deshalb wurde der Stollen stark überhöht gezeichnet, allerdings unter Beibehaltung der wahren Schichtneigungen. Da hierdurch die Schichtgrenzen am oberen Rand beträchtlich versetzt er-

scheinen, dürfen alle Strecken- und Ortsangaben nur auf die Grundlinie bezogen werden. Gestörte Stellen wurden mit s gekennzeichnet. Der Stollen quert die Aufrichtungszone zwischen dem Gehrergraben und dem 1. Heimberggraben, S davon die Miesbacher Mulde. — Erläuterung der Signaturen: weiß: = vorw. Tonmergel; weit punktiert = sandige Tonmergel; eng punktiert = Sandstein; kleine Kreise = Konglomerate; breite Striche = Kohleflöze; Schraffen = buntgefleckte Tonmergel der OBM.

Abb. 8 — Geologische Übersichtskarte des Heimberggebietes im Leitzachtal. Maßstab 1:15 000. — Die Festlegung der Schichtgrenzen erfolgte nach dem geologischen Profil des Wasserstollens. Durch die Schraffen über Teilen des Nantesbuch-Sandsteins und der Daser-Schichten wurde der stratigraphische Umfang der Heimberg-Schichten angedeutet. Die eingetragenen Fallzeichen E der Leitzach, die der Abb. 6 in Hölzel (1958) entnommen wurden, geben die Lage des «Burdigalien» bei Jedling an; diejenigen am W-Ufer Fossilfundpunkte im Helvétien.

tum kann jedoch nicht die Konstatierung eines schroffen Gegensatzes zum Stollenprofil begründen. Durch die schließlich an derselben Stelle von Hagn et al. (1962: 434) nachgewiesene Wildenwart-Mikrofauna mit *Uvigerina urnula* ist tiefes Aquitanien bestätigt worden. Da es sich hierbei um höhere Promberg-Schichten handelt, erweist sich Weithofer's stratigraphischer Befund als richtig.

Ganss (1955b) rechnete einen Teil des OBM-Komplexes mit zu den Heimberg-Schichten, die unmittelbar von Burdigalien überlagert werden sollten. Er veröffentlichte zugleich (:449—452) aber auch Ergebnisse von Schürfen im 2. und 3. Heim-

Abb. 9 — Leitzachprofil. Maßstab 1:50 000. — Gegenüberstellung der Profildeutung von Ganss mit der in der vorliegenden Arbeit begründeten neuen Auffassung. Auch für den Ausschnitt aus Profil 14 nach Ganss wird der genaue Verlauf mit Fixpunkten angegeben:

A: r 44 91 170, h 52 99 560; B: r 44 90 730, h 52 93 580; C: r 44 90 050, h 52 91 040; D: r 44 90 050, h 52 90 000.

Beim Vergleich der beiden Profile fällt auf, daß die Miesbacher Mulde im oberen Profil um 700 m schmäler ist. Der Grund liegt offensichtlich darin, daß der Heimberggraben zu weit S und das Mundloch Mühlau zu weit N ins Profil hineinprojiziert wurde. Der Kern der Miesbacher Mulde liegt um 280 m, der Streitauer Stollen um 400 m zu weit im N. Die einzige Änderung an der Ganss'schen Zeichnung ist die Ausscheidung von aquitanischen Cyrenenschichten in den Mulden von Miesbach und Hausham entsprechend der Farbgebung in der Molassekarte 1:300 000. Die Signatur der Bausteinschichten wurde in der unteren Zeichnung wie in Abb. 6 auf das «ältere marine Chattien» beschränkt.

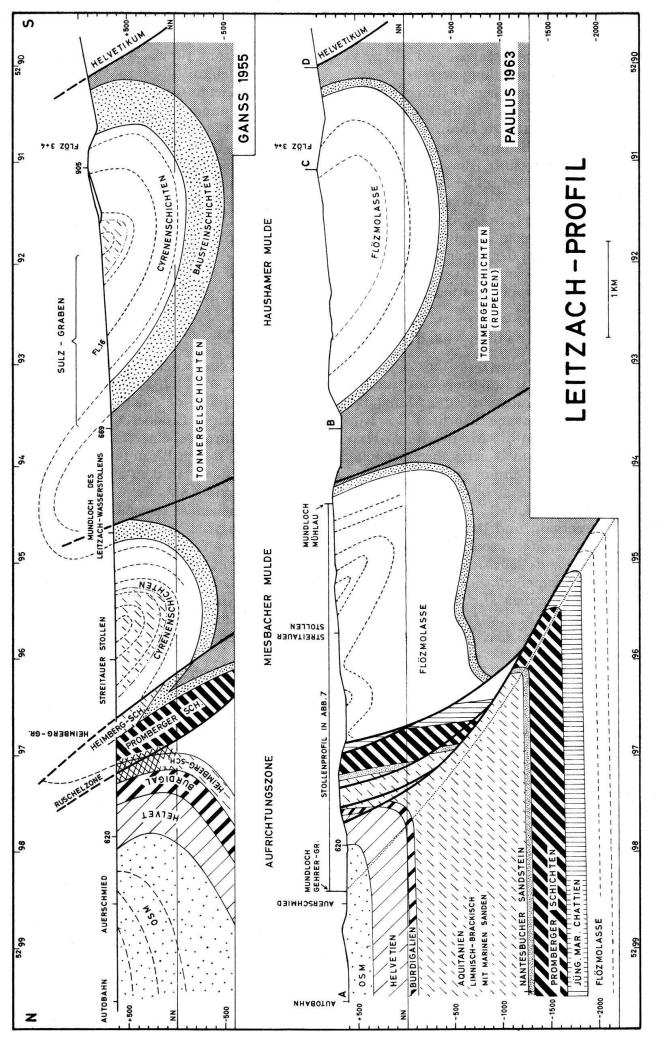


Abb. 9

berggraben, deren Makro- und Mikrofaunen eine Bestätigung für die Richtigkeit von Weithofer's Beurteilung derselben Schichten im Stollen liefern.

Bei der tektonischen Deutung des Leitzachprofils versuchte Ganss (Abb. 9 oben) in ähnlicher Weise wie im Mangfallprofil, einen ausgedünnten, hochgepreßten und überkippten Sattel zu konstruieren. Die Darstellung wirkt aber auch hier nicht überzeugend. Die Schuppe mit Quarzsanden wurde ohne Begründung in Heimberg-Schichten umgestuft, die im Sattelsüdschenkel unmittelbar von Bausteinschichten unterlagert werden sollten, obwohl dazwischen ca. 2000 m Sedimente liegen müßten. Im Sattelnordschenkel wurden zwar zwischen die beiden Horizonte Promberg-Schichten eingezeichnet, trotzdem fehlen auch dort noch über 1500 m Cyrenenschichten des Chattien. Aus meiner tektonischen Deutung in Abb. 9 (unten) ist zu ersehen, daß fast genau so wie an der Mangfall die Hauptaufschiebung der Miesbacher Mulde im Sattelkern erfolgte, an den sich nach N die tektonisch reduzierte, fortlaufende Schichtfolge des überkippten Sattelnordschenkels anschließt.

E4. Bleichgraben- und Kaltenbach-Profil

Im Bleichgraben (B in Abb. 2) NW des Ortes Au liegt ein weiteres Aufschlußprofil durch die Aufrichtungszone vor, das Ganss (1955b: 458, 460) im Profil 15 in ähnlicher Weise deutete wie das Mangfallprofil. Als Beweis für seine Annahme, daß im Sattelkern Tonmergelschichten des Rupélien fast bis an die Erdoberfläche heraufreichen, wurden die Mikrobefunde Knipscheer's aufgeführt. Bei einer Exkursion am 14. 10. 1959 zum Bleichgraben zweifelte Herr Dr. Höllze dessen Einstufungen bereits an, und seine Vermutung wurde dann durch Untersuchungen an dem aufgesammelten Probenmaterial bewiesen. Die Nachprüfung des durch Knipscheer eingestuften Materials ergab, daß die Probe A429/52 kein Oberes Rupélien ist, da sie Greimelberg-Fauna enthält, und daß die Proben A428/52 und A486/52 nicht aus dem Unteren Chattien stammen, sondern aus dem Rainer-Mühle-Horizont (siehe auch HAGN et al. 1962: 434). Es läßt sich somit im Sattelkern nur oberstes Chattien bis tiefes Aquitanien in Tonmergelfazies nachweisen, also Promberg-Schichten. Das von Hölzl vermutete Aquitanien N davon ist als sicher anzunehmen. Auch in diesem Profil ist also die nördliche Mulde (hier Auer Mulde genannt) über 2000 m gehoben und aufgeschoben worden. Das Bild in der Aufrichtungszone gleicht denen von der Mangfall und der Leitzach.

Im Oberlauf des Kaltenbachs (K in Abb. 2) ist die Aufrichtungszone sehr viel schmäler als W und E davon. Helvétien und Burdigalien sind mit voller Mächtigkeit vorhanden (Hölzl 1958: 14—25). Von den Promberg-Schichten und dem brackischen Aquitanien sind jedoch nur schmale Schuppen in der Überschiebungszone erhalten.

F. Die makropaläontologischen Grundlagen für die Grenzziehung Chattien/Aquitanien im marinen Bereich und deren Beziehung zur Landschneckengrenze des W-Gebietes

Die Chattien/Aquitanien-Grenze wurde im marinen E unseres Gebietes mit Mollusken und Foraminiferen ermittelt, wogegen sie im limnisch-terrestrischen W allein mit Landschnecken gezogen werden konnte. Nach Zöbelein (1952: 41 Fußnote) ließ sich die Landschnecken-Grenze im N-Flügel der Rottenbucher Mulde ziemlich genau auf einen 60 m mächtigen Profilabschnitt einengen. Im marinen Bereich des Prienprofils lagen dagegen die durch Foraminiferen einstufbaren nächsten Chattien- und

Aquitanien-Aufschlüsse noch ca. 150 m voneinander entfernt, was zugleich dem Mächtigkeitsabstand entspricht. Maßgeblich altersweisende Molluskenfaunen gibt es dort außerdem nur an wenigen Fundstellen, so daß die Foraminiferengrenze damit nur unzureichend bestätigt werden konnte.

In den folgenden Ausführungen soll der Nachweis erbracht werden, daß die Chattien/Aquitanien-Grenze in unserem Gebiet auch mit marinen Mollusken stark eingeengt werden kann und daß sie genau mit der Foraminiferengrenze zusammenfällt. Außerdem wird die Korrelation der Grenze im marinen Bereich mit derjenigen im limnisch-terrestrischen Bereich unter neuen Gesichtspunkten erörtert. Dazu erweist es sich als notwendig, alle vorhandenen Daten zur Grenzziehung zusammenzustellen und

die bisherige Einstufung einiger wichtiger Fundstellen zu revidieren.

Im marinen E wurde die Chattien/Aquitanien-Grenze in den Profilen längs der Traun und der Prien durch Hagn & Hölzl (1952) mit Foraminiferen und marinen Mollusken zum ersten Mal nach modernen Gesichtspunkten festgelegt. Die beiden Profile weisen jedoch eine so unterschiedliche petrographische und faunistische Horizontierung auf, daß eine genaue Parallelisierung nach Horizonten nicht möglich ist (vgl. D8). Die stratigraphischen Fixpunkte des Traunprofils können nur ungenau in das Prienprofil, das für die am weitesten verbreitete Schichtfolge der marinen Molasse in Bayern repräsentativ ist, übertragen werden. Dem engeren, hier zur Diskussion stehenden Grenzbereich gehören im Traunprofil die fossilreichen Thalberg-Schichten an, deren Aquitanien-Alter seit Hölzl (1948: 400) feststeht. Die genaue stratigraphische Zugehörigkeit der im Liegenden anstoßenden Schichten ist jedoch noch unklar. Von Hagn (in Hagn & Hölzl 1952: 41) wurde eine kleine Foraminiferenfauna aus einem Grabenriß an der Blaue-Wand-Straße im S des Tollberggrabens ins Aquitanien eingestuft. Im Gegensatz zu HAGN, der einige in den Proben enthaltene für Chattien bezeichnende Formen als aus dem Oligozän umgelagert hielt, möchte ich annehmen, daß die Fauna nicht umgelagert ist und in ihrer Gesamtheit dem obersten Chattien angehört. Die Fauna zeigt Anklänge an die Greimelberg- und Rainer-Mühle-Fauna, wenn auch diese Horizonte hier nicht sicher identifiziert werden können. Die Faunen hingegen, die Hagn ursprünglich dem Rainer-Mühle-Horizont zugeordnet hatte, stammen in Wirklichkeit aus tieferen chattischen Horizonten (Hagn et al. 1962: 435). Obwohl die Schichten des Hochberges eine dürftige Makrofauna führen, deren stratigraphische Aussagekraft nur ausreicht, um «nicht gegen ein Katt-Alter» zu sprechen, dürfte deren Einstufung ins Chattien richtig sein.

Anders als an der Traun liegen die Verhältnisse im Prienprofil, da dort das Chattien-Alter der Sandsteine von Reit und vom Waschhaus von Hölzl (in Hagn & Hölzl 1952: 34f.) sicher mit marinen Mollusken belegt werden konnte. Diese Aufschlüsse liegen allerdings noch ca. 300 m unter der Oberkante des Chattien, die im Hangenden der Tonmergel bei der Rainer Mühle angenommen wurde, weil deren Foraminiferenfauna nach Hagn noch einen «oligozänen Charakter» trägt. Auch die Mergel vom Schloßberg Wildenwart, die gleichfalls keine Mollusken enthalten, wurden nur anhand der Foraminiferen-Vergesellschaftung eingestuft, und zwar ins tiefe Aquitanien, so daß sie altersmäßig den Thalberg-Schichten entsprechen dürften.

Neuerdings wurden marine chattische Mollusken auch noch in der aufschlußlosen Strecke zwischen den Waschhaus-Sandsteinen und dem Rainer-Mühle-Horizont erschürft (Hagn et al. 1962: 433), wo der Greimelberg-Horizont ansteht. Somit bleiben nur noch die ca. 150 m mächtigen Tonmergel der Rainer Mühle durch Makrofossilien altersmäßig nicht belegt.

Für weitere Untersuchungen im Gebiet W der Prien kommt uns der glückliche Umstand zu Gute, daß die Grenzschichten bis ans W-Ende der Nonnenwald-Mulde in mariner Tonmergelfazies abgelagert wurden. So haben wir von der Prien bis über die Loisach hinaus auf einer 75 km langen Strecke die Möglichkeit, mit Hilfe von Foraminiferen die Profile horizontmäßig zu gliedern. Als bester Leithorizont hat sich bisher der Horizont der Rainer Mühle erwiesen, dessen zeitlicher Umfang über das ganze Gebiet hinweg ungefähr gleich bleibt. Er beginnt über den letzten Sandschüttungen des Chattien, die zumindest im Raum zwischen Prien und Loisach gleichzeitig aussetzen, mit dem Aufblühen einer sehr reichen benthonischen Foraminiferenfauna, die erst am Ende des Chattien wieder aussetzt, als nämlich eine — auch wieder im ganzen Meeresbecken gleichzeitig zur Auswirkung kommende — Verschlechterung der Lebensbedingungen eintrat. Die Mächtigkeit dieses Horizonts nimmt von ca. 150 m im E (Endorf 1) auf ca. 80 m im W (Nonnenwald-Mulde) allmählich ab, wobei es sich nach Diagrammkorrelation, zumindest zwischen Endorf 1 und Höhenrain 1, um eine echte Mächtigkeitsreduktion handelt und nicht etwa um eine Verdrängung der vollmarinen Fauna durch niedermarine Faunen im Liegenden und Hangenden. Letzteres ist der Fall bei den Horizonten von Greimelberg und von Wildenwart, bei denen nur die Grenzen zum Rainer-Mühle-Horizont hin echte Zeitmarken darstellen. Die Untergrenze des Greimelberg-Horizontes verlagert sich nämlich mit zunehmender Aussüßung des Meeres gegen W nach oben, unter gleichzeitiger Verdrängung der marinen Fauna durch eine brackische. Spiegelbildlich hierzu erfolgt die Verdrängung der marinen Wildenwart-Fauna durch brackisches Aquitanien. Da also Greimelberg- und Wildenwart-Horizont je nach der geographischen Lage einen zeitlich sehr verschieden großen Abschnitt umfassen, darf man sie nicht als Faunenzonen ansprechen (Hagn et al. 1962: 433). Die Faunen vom Typ Greimelberg, Rainer Mühle und Wildenwart lassen sich bis ans W-Ende der Nonnenwald-Mulde nachweisen (vgl. D6). Mit ihnen können die Promberg-Schichten untergliedert werden.

Aus den Promberg-Schichten sind bis jetzt nur wenige Molluskenfundpunkte bekannt: Jungchattische marine Mollusken aus dem oberen Teil des geschrumpften Greimelberg-Horizonts wurden W vom Inn von Hölzl (1962: 34, 36f.) an der Mangfall N von Neumühl (Schürfe 1a—d) und im Oberlauf des Kaltenbachs gefunden. Zwei Fundstellen schlecht erhaltener und kleinwüchsiger Kümmerfaunen im Aquitanien-Anteil erschürfte Hölzl (in Ganss & Schmidt-Thomé 1955: 450) im 2. Heimberggraben an der Leitzach und im Schurf 3b an der Mangfall (vgl. E2). In der ehemaligen Ziegeleigrube S Promberg im Kern der Nonnenwald-Mulde fand Hölzl (in Schmidt-Thomé 1955: 423) schließlich einen Pecten burdigalensis im tiefsten Aquitanien, wodurch weiterhin die nicht ganz zutreffende Auffassung gestützt wurde, daß die ganzen Promberg-Schichten aquitanisches Alter hätten.

Die bisher aufgezählten Molluskenfundpunkte bestätigen zwar deren Einstufung nach Mikrofaunen, lassen aber wegen ihres Abstandes von der Grenzlinie noch keine weitergehende Einengung der Grenze zu. Diese gelingt erst am W-Ende der Nonnenwald-Mulde bei Iffeldorf, wo 1954 mehrere Kohleschürfbohrungen im Auftrag des Bergwerks Penzberg niedergebracht wurden (Abb. 11). Von den 17 Bohrungen, deren geologische Bearbeitung in den Händen von O. Hölzl und H. C. G. Knipscheer lag, interessieren uns vor allem die vier in Promberg-Schichten abgeteuften Bohrungen 9W, 10W, 8W und 16W (vom Liegenden zum Hangenden). Der S-Flügel der Mulde ist dort steil überkippt, so daß die Schichten mit 60—90° nach S einfallen und von den Bohrungen nur relativ geringmächtige Schichtpakete erfaßt wurden.

In der südlichsten Bohrung 9W wurden unter 29 m quartärem Kies und Sand bis 82 m marine Schichten, und bis zur Endteufe 169,5 m brackische Schichten angetroffen, die mit 60—80° einfallen. Die Mikrofaunen aus den Teufen 30 m und 60 m setzen sich hauptsächlich aus Almaena osnabrugensis, Bolivina antiqua und Ostrakoden

zusammen und stellen damit eine Fauna vom Greimelberg-Typ dar. Diese Vergesellschaftung ist zwar nicht gerade für Chattien typisch, da sie auch im Aquitanien auftreten kann, hier jedoch liegt sicheres Chattien vor, wie ein Vergleich mit der aus dem gleichen Niveau stammenden Probe A238/54 aus dem Hauptquerschlag der 1. Sohle zeigt, die ca. 3 m im Hangenden des Oberen Glassandes im Muldennordflügel entnommen wurde. Die nächstnördliche Bohrung 10W hat unter 68 m quartärem Kies und Sand bis 300 m marine Ablagerungen mit geringen brackischen Einschaltungen erbohrt, die mit 80-90° einfallen. Die Mikroprobe aus 84 m Teufe enthält eine verarmte Fauna des Rainer-Mühle-Horizonts mit vor allem: Cibicides haidingeri, Robulus inornatus, Bolivina plicata, Robulus cultratus, Pyrulina pyrula, Nonion sp. Die Makrofauna der beiden vollständig gekernten Bohrungen wurde von Höllze zusammengestellt und in Ganss & Schmidt-Thomé (1955: 422) abgedruckt. Die Einstufung erfolgte seinerzeit ins Aquitanien, da die endemische Art Yoldia varians bis dahin nur aus den Thalberg-Schichten bekannt war (Hölzl 1962: 74). Die Fauna enthält andererseits mit Nucula compta, Pitaria (Paradione) beyrichi und Cylichna lineata (diese Art kommt nach Hölzl 1962: 204 sehr selten auch noch in Thalberg-Schichten vor) drei Formen, die nach Hölzl (1961: 72, 1962: 40, 91) Leitformen für das Oligozän sind. Es liegt also eine Mischfauna von oligozänen und miozänen Arten vor, in der die oligozänen Arten überwiegen, so daß eine Einstufung ins Chattien (auch nach der Meinung von Dr. Hölzl) richtig ist.

Die nächste Bohrung 8W steht ca. 50 m stratigraphisch höher. Sie hat unter 20 m quartärem Kies und Sand bis zur Endteufe 120 m marine, leicht sandige Tonmergel, oben mit brackischen Lagen, angetroffen, die mit 72° nach S einfallen. Interessant ist, daß die Kerne Kümmerfaunen enthalten, die Hölzl und Knipscheer nur aus dem

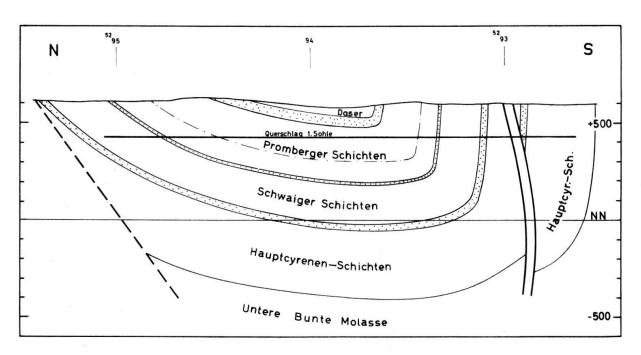


Abb. 10 — N-S-Profil durch die Nonnenwald-Mulde. Maßstab 1:25 000. — Die Zeichnung wurde nach dem Schnitt 0 der Schnittserie Linke's und der Karte Zöbelein's (1957: 52) angefertigt. Der Schnitt 0 folgt dem Hauptquerschlag der 1. Sohle, in dem die Grenze Chattien/Aquitanien (strichpunktierte Linie in den Promberg-Schichten) auf Grund der Untersuchung von Foraminiferenfaunen genau festgelegt werden konnte. Die drei im Bild nicht näher bezeichneten Sandsteine sind von oben: der Nantesbuch-Sandstein, der Obere und der Untere Glassand.

marinen Helvétien kannten, in das die Schichten schließlich eingestuft wurden. Der geologischen Situation nach hätte man allerdings nur Aquitanien erwarten können, da im Kern der Nonnenwald-Mulde als jüngste lediglich Daser-Schichten erhalten geblieben sind. Die von Hölzl bestimmte Makrofauna war in Bayern und Österreich bis dahin nur im marinen Helvétien gefunden worden; die Mikrofauna enthält neben untypischen Kleinformen mit Sigmoilina? asperula eine Art, die in E-Bayern auch heute noch als Leitfossil für Unteres Helvétien gilt (HAGN & HÖLZL 1952: 141, und frdl. mündl. Mitt. von Dr. Brockert). Da auch weitere von Hölzl eingeholte mikround makropaläontologische Befunde für Helvétien-Alter sprachen, schien die Einstufung vollkommen gesichert. Ein Helvétien-Vorkommen läßt sich jedoch an dieser Stelle beim besten Willen nicht auf tektonischem Weg erklären. Nach einer erneuten Nachprüfung der Mikrofaunen kam ich tatsächlich zu einem anderen Ergebnis. In der Probenserie aus dem Hauptquerschlag der 1. Sohle machte ich zunächst die Entdeckung, daß Sigmoilina? asperula in den obersten 20 m des Rainer-Mühle-Horizonts auftritt (Probe A219/54) und offensichtlich auch im tiefsten Aquitanien, mit dem nach Faunenvergleich die in der Bohrung 8W angetroffenen Schichten korreliert werden müssen. Außerdem fand ich in der Probe aus 86 m Teufe Vaginulinopsis pseudodecorata, die in den Promberg-Schichten der Nonnenwald-Mulde äußerst häufig auftritt, dagegen im Helvétien völlig fehlt. Angesichts dieser sicheren Beweisführung läßt sich für die Schichten der Bohrung 8W ein Helvétien-Alter nicht mehr aufrecht erhalten. Das bedeutet für die Makrofauna, die sich zweifellos von der in 9W und 10W als jünger unterscheidet, daß sie bereits im Aquitanien auftritt, also keinen Leitwert für Helvétien allein besitzt. Das unerwartet tiefe Auftreten an dieser Stelle läßt sich damit erklären, daß die Promberg-Schichten dort in Schlierfazies entwickelt sind, die der des marinen Helvétien E-Bayerns und Österreichs gleicht, so daß sich unter ähnlichen Umweltsbedingungen dieselben Molluskengemeinschaften entwickelten. In E-Bayern ist dagegen eine solche Fauna aus dem Aquitanien noch nicht bekannt ge-

Bezieht man also die Aquitanienfauna der Bohrung 8W auf die Probe A217/54 aus dem Hauptquerschlag der 1. Sohle, die ca. 100 m über dem Oberen Glassand des Muldennordflügels entnommen wurde, und die Chattienfauna der Bohrung 10W etwa auf die Mitte des Rainer-Mühle-Horizonts im Hauptquerschlag, dann ergibt sich daraus eine Einengung der Chattien/Aquitanien-Grenze bis auf ca. 50 m. Das dazwischen liegende, durch Makrofossilien nicht belegte Stück gehört nach Foraminiferen eindeutig dem Rainer-Mühle-Horizont an und wird daher zum Chattien gestellt. Auf Grund meiner Nachforschungen läßt sich also die 1952 im Prienprofil vorgenommene stratigraphische Zuordnung der Mikrofaunen-Horizonte von Rainer-Mühle und Wildenwart bestätigen.

Zuletzt sei noch die Bohrung 16W erwähnt, in der von 32 m bis 130 m niedermarine Ablagerungen des Aquitanien angetroffen wurden, die hoch in die Promberg-Schichten eingestuft werden können. Ähnliche Faunen wurden aus den Promberg-Schichten des 3. Heimberggrabens unmittelbar im Liegenden des Nantesbuch-Sandsteins ausgeschlämmt.

Nachdem nun die Lage der Chattien/Aquitanien-Grenze auf Grund mariner Faunen in der Nonnenwald-Mulde ca. 90 m über dem Oberen Glassand fixiert werden konnte, bietet sich die Möglichkeit des Vergleichs dieser Grenze mit der im Wermittelten Landschneckengrenze an. Infolge des günstigen Umstandes, daß durch genaue Verfolgung petrographischer und fazieller Horizonte zwei so gegensätzlich entwickelte Schichtfolgen genau miteinander verknüpft werden können, soll hier der Vergleich der Maringrenze mit der Landschneckengrenze sehr ins Detail gehend er-

örtert werden. Als Grundlage hierfür dient die von Kraus & Paulus (1962) erarbeitete Profilverknüpfung zwischen Peißenberg und Nonnenwald.

Den ersten Versuch, das Alter der Promberg-Schichten durch Übertragung der Landschneckengrenze aus der Rottenbucher Mulde zu ermitteln, unternahm bereits Zöbelein (1952, 1953). Entgegen der bis dahin vorherrschenden Meinung, daß die Promberg-Schichten ganz dem Aquitanien angehören, kam er zu dem Ergebnis, daß die Chattien/Aquitanien-Grenze innerhalb dieser Schichten läge. Da sich seit dem Erscheinen dieser Arbeiten aber die Kenntnis über die exakten Schichtmächtigkeiten, Horizontverknüpfungen und auch die mikropaläontologische Grenzziehung geändert

hat, ist eine neuerliche Erörterung des Grenzvergleichs notwendig.

ZÖBELEIN (1952: 52) übertrug den 240—280 m großen Abstand der Landschnekkengrenze vom Topp des wahrscheinlichen Oberen Glassandes in der Rottenbucher Mulde und später (1953: 126f.) auch den 2200 m betragenden Abstand vom Topp der Bausteinschichten in die Nonnenwald-Mulde und ermittelte, daß rd. 2/3 der seinerzeit noch mit 400 m angenommenen Promberg-Schichten dem Chattien angehören müßten. Gegen diese Grenzziehung wandten sich sehr entschieden Hagn & Hölzl (1954), die nach einer umfassenden Diskussion der paläontologischen Grundlagen, der Methode des Schichtvergleichs und der Grundsätze zur Grenzziehung überhaupt glaubten, die Grenze um 500-700 m tiefer legen zu müssen als Zöbelein. Den Autoren stand aber aus der Nonnenwald-Mulde nur wenig Material aus den Promberg-Schichten zur Verfügung, so daß sie nicht erkennen konnten, daß sie die Grenze entsprechend der von ihnen 1952 selber im Prienprofil vorgenommenen Abgrenzung eigentlich nur um 150-190 m hätten tieferlegen dürfen. Zöbelein (1957: 39) bestand in einer Entgegnung auf der Richtigkeit seiner Grenzübertragung und zog (:55f.) noch als zusätzlichen Beweis für seine Auffassung die mikropaläontologischen Befunde Knipscheer's der von ihm selber in den Promberg-Schichten aufgesammelten Mikroproben und der Probenserie aus dem Hauptquerschlag der 1. Sohle heran. ZÖBELEIN fand, daß die Grenzen angesichts des 2200 m mächtigen Chattien-Profils nur gering voneinander abweichen. Es ist jedoch dagegen einzuwenden, daß von den beiden berechneten Differenzbeträgen, die sich zwischen Landschnecken- und Foraminiferenbefunden ergaben, sich der kleinere (40-90 m) auf unrichtig ins Chattien eingestufte aquitanische Oberflächenproben bezog, so daß nur noch die größere Differenz (110—160 m) zu der Grenze im Hauptquerschlag noch gültig ist (KNIPSCHEER 1957: 89 und in Ganss & Schmidt-Thomé 1955: 423). Aber auch dieser Betrag ist etwas zu niedrig, denn Knipscheer's Angabe, 1/3 der Promberg-Schichten sei Chattien, darf nur auf die im Hauptquerschlag tatsächlich aufgeschlossene Mächtigkeit bezogen werden, die aber nicht 400 m, sondern nur ca. 250 m beträgt. Da also der Chattienanteil (s. o.) nur ca. 90 m groß ist, errechnet sich die Differenz auf 150-200 m (Bereich Z in Abb. 12). Diese Differenz ist aber nur unter der Voraussetzung richtig, daß der Rottenbucher Glassand zeitlich genau dem Nonnenwalder Glassand entspricht. Jedoch auch das ist nicht sicher erwiesen, denn mehrere Argumente sprechen dafür, daß der Rottenbucher Glassand etwas jünger ist. Schon bei Zöbelein's Mächtigkeitsvergleich (1957: 39) ergab sich für das Dach des Rottenbucher Glassandes gegenüber dem Dach des Nonnenwalder Oberen Glassandes eine um 30 m höhere Lage. Außerdem bedeutet das Auftreten der tiefsten marinen Fauna 40 m S des Rottenbucher Glassandes im Ammerprofil ein fazielles Argument gegen eine Gleichaltrigkeit der beiden Glassande, da diese marine Fauna in einem tieferen Niveau erscheinen würde als in der Nonnenwald-Mulde, wo sie — wie auch in den Bohrungen Oberhausen und Auf dem Alta (nach GILLITZER 1957: 64f.) — erst innerhalb des Oberen Glassandes einsetzt. Denn bei der von E nach W zunehmenden Aus-

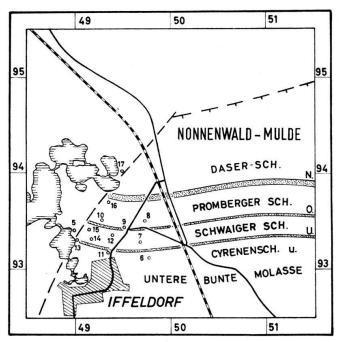
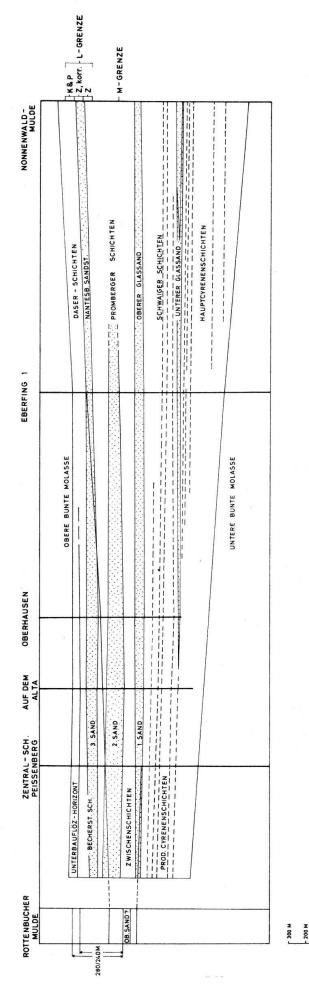



Abb. 11 — Geologische Karte des W-Endes der Nonnenwald-Mulde bei Iffeldorf. Maßstab 1:50 000. — Die Lagepunkte der Kohleschürfbohrungen wurden Kartenunterlagen der Markscheiderei Penzberg entnommen. Die Nonnenwald-Mulde wird im N durch die N-Randüberschiebung, im W von der Iffeldorf-Antdorf-Störung begrenzt.

süßung kann eine marine Fauna in der Rottenbucher Mulde nicht tiefer als im Niveau des Nonnenwalder Oberen Glassandes auftreten. Daraus ergibt sich, daß nicht der Rottenbucher Glassand, sondern die erste marine Lage in seinem Liegenden mit dem Nonnenwalder Oberen Glassand gleichgesetzt werden darf. Da man außerdem noch mit der Wahrscheinlichkeit rechnen sollte, daß die weitesten marinen Vorstöße mit dem Höhepunkt der Transgression während des Rainer-Mühle-Horizonts im E zusammenfallen, kann man das Dach des Rottenbucher Glassandes am wahrscheinlichsten um 50 m über dem Niveau des Dachs des Nonnenwalder Oberen Glassandes annehmen. Dadurch vergrößert sich die Differenz zwischen Landschnecken- und Maringrenze auf 200-250 m (Bereich Z, korr. in Abb. 12), d. h. der Grenzbereich nach Landschnecken kommt in das Niveau des Nantesbuch-Sandsteins zu liegen. Zieht man zusätzlich noch eine angemessene Mächtigkeitszunahme, wie sie in Abb. 12 zum Ausdruck kommt, in Betracht, dann rückt der Grenzbereich sogar noch in die Daser-Schichten hinauf (Bereich K & P in Abb. 12). Das wurde bereits von Kraus & Paulus behauptet, als sie den stratigraphisch höchsten Fund des chattischen Leitfossils Pomatias antiquum antiquum in der Bohrung 14 bei Peißenberg (ZÖBELEIN 1957: 42) nach Nonnenwald korreliert hatten. Die Differenz würde dann ungefähr 250—300 m betragen. Der von Kraus & Paulus (:790) angegebene Wert von 350 m lag etwas zu hoch, da seinerzeit noch mit zu mächtigen Promberg-Schichten gerechnet worden war.

Es läßt sich abschließend feststellen, daß sowohl die Korrelation von Rottenbuch als auch die von Peißenberg nach Nonnenwald zu dem gleichen Ergebnis führt, nämlich: Die Landschneckengrenze Chattien/Aquitanien liegt in der Nonnenwald-Mulde um ca. 250—300 m über der mit marinen Mollusken und Foraminiferen ermittelten Grenze. Dieser Betrag ist zwar angesichts des 3600 m mächtigen Schichtpaketes von Chattien und Aquitanien zusammen gering, kann jedoch bei feinstratigraphischen Betrachtungen nicht vernachlässigt werden.

DER VERSCHIEDENEN CHATTIEN / AQUITANIEN - GRENZEN KORRELATION

Dieser umfaßt im E den Bereich vom Unteren Glassand bis zum Nantesbuch-Sandstein. Sein nach W abnehmender Umfang wird durch die absteigende Linie W Eberfing I und die aufsteigende Linie W von «Auf dem Alta» sind die marinen Faunen nur noch auf geringmächtige Lagen zwischen überwiegend brackischen und limnisch-terrestrischen Gesteinen beschränkt. — Am linken Bildrand geben Pfeile die Entfernung der Landschneckengrenze Chattien/Aquitanien vom Rottenbucher Glassand an. Am rechten Bildrand ist die Marin-(M)-Grenze und darüber die Lage der Landschnecken-(L)-Abb. 12 — Korrelation der Schichtenprofile zwischen den Mulden von Nonnenwald und Pei-Senberg nach Kraus & Paulus und mit der Mulde von Rottenbuch nach dem Marin-Horizont. Grenze entsprechend der verschiedenen (im Text ausführlich dargestellten) Korrelationsmöglichkeiten eingezeichnet.

Schriftenverzeichnis

- Ellermann, C.: Die mikrofaunistische Gliederung des Oligozäns im Schacht Kapellen bei Moers (Niederrhein). Fortschr. Geol. Rheinld. Westf., 1, S. 205—214, 3 Taf., 3 Tab.; Krefeld 1958.
- FISCHER, W.: Stratigraphische und tektonische Beobachtungen im Gebiet der Murnauer Mulde und Steineberg Mulde (Oberbayern, Allgäu und Vorarlberg). — Bull. Ver. Schweiz. Petrol.-Geol. u. -Ing., 27 Nr. 72, S. 39—57, 6 Abb.; Riehen/Basel 1960.
- GANSS, O.: Das Süddeutsche Molassebecken ein Überblick. Z. deutsch. geol. Ges., 105, 3, 1953, S. 303—306, 1 Abb.; Hannover 1955. — (1955a).

(1955b) siehe Ganss, O. & Schmidt-Thomé, P.

Geologie des Blattes Bergen. — Geol. Bavarica, 26, 164 S., 7 Abb., 5 Beil., 1 Prof.-Taf.

u. 1 geol. Karte 1:25 000; München 1956.

Ganss, O. & Schmidt-Thomé, P.: Die gefaltete Molasse am Alpenrand zwischen Bodensee und Salzach. — Z. deutsch. geol. Ges., 105, 3, 1953, S. 402—495, 8 Abb., 1 Prof.-Taf.; Hannover 1955.

GILLITZER, G.: Geologische Neuaufnahme des Peißenberger Kohlenreviers. — Geol. Bavarica,

- 23, 64 S., 14 Abb., 2 Taf., 1 geol. Karte 1:25 000; München 1955. Geologische Lagerung der Pechkohlenformation im Peißenberger Ost- und Penzberger Westfeld sowie mutmaßlicher Zusammenhang der Flözzüge. — Geol. Jb., 72, S. 639—
- 650, 1 Abb.; Hannover 1957. Gümbel, C. W. v.: Geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes. 950 S., 25 Abb., 42 Prof.-Taf., 1 Bildtaf., 5 geol. Kart. 1:100 000; Gotha (J. Per-

Geologie von Bayern, II. 1184 S., zahlr. Abb., 1 geol. Karte 1:1 000 000; Kassel (Th. Fi-

scher) 1894.

- HAGN, H.: Paläontologische Untersuchungen am Bohrgut der Bohrungen Ortenburg CF 1001, 1002 und 1003 in Niederbayern. — Z. deutsch. geol. Ges., 105, 3, 1953, S. 324—359, 4 Abb., Taf. 10; Hannover 1955.
- Die stratigraphischen, paläogeographischen und tektonischen Beziehungen zwischen Molasse und Helvetikum im östlichen Oberbayern. — Geol. Bavarica, 44, S. 3—208, 10 Abb., 1 Tab., 12 Taf.; München 1960.
- HAGN, H. & HÖLZL, O.: Geologisch-paläontologische Untersuchungen in der subalpinen Molasse des östlichen Oberbayerns zwischen Prien und Sur mit Berücksichtigung des im Süden anschließenden Helvetikums. — Geol. Bavarica, 10, 208 S., 7 Abb., 8 Taf., 2 Tab.; München 1952.
- Zur Grenzziehung Katt/Aquitan in der bayerischen Molasse. Neues Jb. Geol. Paläont.,
- Mh., 1954, 1, S. 1—40, 2 Tab.; Stuttgart 1954. HAGN, H., HÖLZL, O. & HRUBESCH, K.: Zur Gliederung des Oligozäns im östlichen Oberbayern und in Nordtirol. - Neues Jb. Geol. Paläont., Mh., 1962, 8, S. 423-447, 1 Abb., 1 Tab.; Stuttgart 1962.

Hölze, O.: Molluskenfaunen der subalpinen Molasse Oberbayerns. (Vorläufiger Bericht.) — Neues Jb. Mineral. usw., Mh., 1945-1948, B, 9/12, S. 385-400; Stuttgart 1948.

Ein neues Profil durch das Unter- und Mittel-Miozän der oberbayerischen Molasse bei Peißenberg und deren Fauna. (Ein Beitrag zur Grenzziehung Aquitan-Burdigal in der Subalpinen Molasse). — Geol. Bavarica, 17, S. 181—215, 1 Abb., 1 Taf.; München 1953. — (1953a).

Eine neue Fauna aus dem Burdigal der Subalpinen Molasse Oberbayerns. — Geol. Ba-

varica, 17, S. 216—222; München 1953. — (1953b).

- Die Corbiculidae der oligozänen und miozänen Molasse Oberbayerns sowie Bemerkungen zu den oberbayerischen Cyrenenschichten nebst Beschreibung neuer Arten. — Geol. Bavarica, 29, 84 S., 6 Abb., 7 Taf.; München 1957.
- Die Mollusken-Fauna des oberbayerischen Burdigals. Geol. Bavarica, 38, 348 S., 6 Abb., 22 Taf.; München 1958.
- Zur Faunenkenntnis der oberbayerischen Miozänmolasse und ihren Beziehungen zu Oberösterreich und dem Wiener Becken. Mitt. geol. Ges. Wien, 52, 1959, S. 143—148, 3 Tab.; Wien 1960.
- Leitende Molluskenarten aus der marinen und brackischen Molasse Oberbayerns. Paläont. Z., 35, 1/2, S. 62-78; Stuttgart 1961.
- Die Molluskenfauna der oberbayerischen marinen Oligozänmolasse zwischen Isar und Inn und ihre stratigraphische Auswertung. — Geol. Bavarica, 50, 275 S., 13 Abb., 12 Taf.; München 1962.

- HOFMANN, G. W.: Der Muldenbau in der subalpinen Molasse des Prienprofiles im östlichen Oberbayern. — Z. deutsch. geol. Ges., 113, 2/3, 1961, S. 557—570, 4 Abb.; Hannover
- Indans, J.: Mikrofaunistische Korrelationen im marinen Tertiär der Niederrheinischen Bucht.
- Fortschr. Geol. Rheinld. Westf., 1, S. 223—238; Krefeld 1958.

 Knipscheer, H. C. G.: Beitrag zur Einstufung der Promberger Schichten der Subalpinen Molasse Oberbayerns nach Kleinforaminiferen. Abh. hess. L.-Amt Bodenforsch., 23, S. 87-89; Wiesbaden 1957.
- Kraus, L. & Paulus, B.: Neue Erkenntnisse über die Promberger Schichten und die kohleführenden Ablagerungen der Subalpinen Molasse zwischen Isar und Lech. — Erdöl u. Kohle. Erdgas. Petrochemie, 15, 10, S. 783-790, 3 Abb., 3 Texttaf.; Hamburg 1962.
- LEMCKE, K.: Zur Gliederung und Paläogeographie der ungefalteten Molasse im westlichen Alpenvorland. — Z. deutsch. geol. Ges., 105, 1953, S. 525—527; Hannover 1955.
- Lensch, G.: Stratigraphie, Fazies und Kleintektonik der kohleführenden Schichten in der bayerischen Faltenmolasse (Peißenberg, Peiting, Penzberg, Hausham, Marienstein). — Geol. Bavarica, 46, S. 3—52, 19 Abb., 4 Tab., 6 Beil.; München 1961.
- LINKE, J.: Schnittserie durch die Nonnenwald-Mulde 1:10 000, angefertigt in der Markscheiderei des Bergwerks Penzberg (Z. Nr. 66/55) am 1. 9. 1955.
- OSCHMANN, F.: Stratigraphie, Paläogeographie und Fazies in der ostbayerischen Molasse und deren oberkretazischem Untergrund. — Erdöl u. Kohle, 10, 10, S. 692—693; Hamburg
- RICHTER, M., CUSTODIS, A., NIEDERMAYER, J. & SCHMIDT-THOMÉ, P.: Geologie der Alpenrandzone zwischen Isar und Leitzach in Oberbayern. Z. deutsch. geol. Ges., 91, 1939,
- S. 649—704, Prof.-Taf. 15, 1 geol. Karte 1:25 000; Berlin 1939.
 Schluge, F.: Geologisches Profil des Leitzach-Wasserstollens 1:1000 und 1:5000, angefertigt in der Markscheiderei des Bergwerks Penzberg am 27. 12. 1912.
- Schmidt-Thomé, P.: Neuere Kenntnisse über die Kalkalpenzone und die Alpenrandstrukturen in Südbayern. — Geol. Rdsch., 37, S. 18-24, 1 Abb.; Stuttgart 1949.
- (1955) siehe Ganss, O. & Schmidt-Thomé.
- Paläogeographie und tektonische Strukturen im Alpenrandbereich Südbayerns. Z. deutsch. geol. Ges., 113, 2/3, 1961, S. 231-260, 6 Abb., 1 Taf.; Hannover 1962.
- Le bassin de la molasse d'Allemagne du Sud avec des considérations particulières sur la molasse plissée de Bavière. — Livre a la mémoire du Professeur Paul Fallot, II, S. 431-452, 7 Abb.; Paris 1963.
- VEIT, E.: Der Bau der südlichen Molasse Oberbayerns auf Grund der Deutung seismischer Profile. — Bull. Ver. Schweiz. Petrol.-Geol. u. -Ing., 30, Nr. 78, S. 15—52, 16 Abb.; Riehen/Basel 1963.
- Weithofer, K. A.: Zur Kenntnis der oberen Horizonte der oligozänen Brackwassermolasse Oberbayerns und deren Beziehungen zur miocänen (oberen) Meeresmolasse im Gebiet zwischen Inn und Lech. — Verh. k. k. geol. Reichsanst., 1899, S. 269—282; Wien 1899.
- Einige Querprofile durch die Molassebildungen Oberbayerns. Jb. k. k. geol. Reichsanst., 52, 1902, S. 39-70, 1 Abb., Prof.-Taf. 2-4; Wien 1903.
- Über neuere Aufschlüsse in den jüngeren Molasseschichten Oberbayerns. Verh. k. k. geol. Reichsanst., 1912, S. 347-356; Wien 1912.
- Die Oligozänablagerungen Oberbayerns. Mitt. geol. Ges. Wien, 10, 1917, S. 1—125, 1 Abb., Prof.-Taf. 1-2; Wien 1918.
- Die Promberger Schichten der oberbayerischen Molasse. Zbl. Mineral. usw., 1935, B, S. 3—21; Stuttgart 1935.
- W.: Geologie der Alpenrandzone bei Murnau in Oberbayern. Geol. Bavarica, 20, 85 S., 5 Abb., 9 Taf., 1 geol. Karte 1:25 000, 1 Prof.-Taf., 1 tekt. Karte; München 1954.
- ZÖBELEIN, H. K.: Die Bunte Molasse bei Rottenbuch und ihre Stellung in der Subalpinen Molasse. — Geol. Bavarica, 12, 86 S., 9 Abb., 1 Lageplan mit Prof.; München 1952.
- Zur Altersdeutung der Cyrenenschichten in der Subalpinen Molasse Oberbayerns. Geol. Bavarica, 17, S. 113—134, 2 Abb.; München 1953.
- Kritische Bemerkungen zur Stratigraphie der Subalpinen Molasse Oberbayerns. Abh. hess. L.-Amt Bodenforsch., 23, S. 5-76, 2 Abb.; Wiesbaden 1957.
- Über die chattische und aquitanische Stufe und die Grenze Oligozän/Miozän (Palaeogen/Neogen) in Westeuropa. — Mitt. geol. Ges. Wien, 52, 1959, S. 245-265, 2 Abb.; Wien 1960.
- Über die Bausteinschichten in der Subalpinen Molasse des westlichen Oberbayerns. -Z. deutsch. geol. Ges., 113, 2/3, 1961, S. 261—265, 2 Abb.; Hannover 1962.
- Geologische Übersichtskarte der Süddeutschen Molasse, 1:300 000, München 1954.

ē