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Aus aktuellem Anlass

Epidemiology in the force field of mathematics and politics

Jurg Frohlich* and Daniel Wyler**

1. Introduction

Since its outbreak, the COVID-19 pandemic occu-
pies a central position in the public discourse, push-
ing aside debates on other more dangerous global
threats, such as climate change, nuclear proliferation,
and growing tensions, internationally and within our
societies. Governments have resorted to unprece-
dented and disputed measures in the name of pub-
lic health, using or refuting ‘Science’. With the media
playing an important role, some scientists have risen
to ‘stardom’, while others are ignored.

The COVID-19 pandemic illustrates how mathematics
and science can be used - or abused - concretely. The
present crisis also sheds some light on how science
and science policy are reacting to external pressure
and urgency in times of a dangerous pandemic. Cases
in point are the fast retraction of two hastily written
papers which turned out to be flawed (Rabin) and the
so-called “covidization” of science (Woolston, Pai 1),
which may threaten the diversity of research.

That invoking scientific arguments to help political
decision-making is not without problems and dangers
(for all parties involved) is well known. During the past
several months, various problems have surfaced, such
as inconsistent communication of ‘scientific’ findings
by political bodies, inconsistent predictions based on
simplistic mathematical models, all contributing to
some unnecessary confusion and fear. Considerable
pressure exerted by politicians, the media and, more
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generally, the public upon scientists to come up with
quick, ready-made statements and advice is creating a
situation that may prevent a serious search for trust-
worthy and stable results, predictions and recom-
mendations (for an overview of different government
responses, see Hale et al). As the great British mathe-
matician Sir Michael Atiyah put it: “Too often we [sci-
entists] have to react to external events, to short-term
crises, to financial cuts or to ministerial changes. In this
semi-political world in which the scientific community
has to operate we are in danger of losing our way and
our identity. The scientific ethos becomes increasingly
hard to discern.” (Atiyah).

When communicating insights and results of their work
to the public, which is often not familiar with the scien-
tific methods that have led to those insights and results,
scientists should respect some basic rules and princi-
ples. The most important one is to be completely open
and honest about the scope and range of one’s insights
and results. For, otherwise, one may raise unjustified
hopes and exaggerated expectations. Another impor-
tant aspect to remember is that almost all predictions
of future trends based on reliable scientific methods
are probabilistic; they can assign a certain likelihood to
certain events; but one can not exclude that different
events might happen. To find out how and when to
communicate uncertain predictions of future events
requires considerable wisdom. Unfortunately, this fact,
too, is often ignored. It is to be expected that violations
of these rules and principles tend to have very unde-
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sirable longterm consequences for the public’s trust in
science and scientists (and for the funding of science).

In fact, the communication of some implausible
claims kindled the interest of the authors in mathe-
matical epidemiology and its methods. The official
curves showing the temporal behavior of the ‘effective
reproductive number’ R (see below) around lockdown
in Switzerland (March 17, 2020) seemed to contradict
naive expectations (see SNTF). Instead of a sudden
falloff around March 17 (a total lockdown for every-
one would have resulted in a jump of R to zero), the
published curve began to fall smoothly considerably
earlier. In this contribution, we report on some of the
things we believe we have learned. We think that our
considerations are important in a time when an alarm-
ingly high percentage of the population appears to be
turning away from scientific reasoning (examples are
the “non-vaccinators”, deniers of climate change and
followers of various conspiracy theories). See (Phalkey,
Pai 2) for thoughts about how to inform the public.

In the following, we try to limit the use of mathemat-
ical language, but we might not always succeed. In
any event, we are convinced that using mathematics
properly prevents one from falling into various traps
originating from too cavalier a treatment.

2. What data may tell us, and how to
interpret them — examples

The data concerning a subject of wide interest and rel-
evance, such as a pandemic or climate change, should
be provided in a consistent, easy to use form. The
present drive for open access and open data (often
referred to as FAIR data) should encourage the cre-
ation of data hubs to replace the present plethora of
data sites and providers; digital tools to enable this
transition will have to be developed.

When dealing with data and using them to predict or
estimate certain developments it is important to bear
in mind the following guidelines.

(@) Determine which data among a large set of data
are directly measurable/observable, and which data
have to be reconstructed from a basic set of directly
observable data and hence are only indirectly and
usually only approximately known. An example of
data that can be measured (or inferred) directly on
a certain day numbered t is the number of patients
who have carried the Sars-CoV-2 virus and have died
in Switzerland on day t - 2. An example of data that
cannot be measured directly and have to be recon-
structed from other data are the reproductive number
R: on a certain day t, and the total number of people
who, on day ¢, are infected from the Sars-CoV-2 virus

in a country like Switzerland. If, for certain purposes,
one uses data that are not directly measurable, then
it is crucial to disclose which directly measurable data
are used and which algorithms are applied to estimate
them, and in particular, give an honest estimate of the
uncertainties that are thereby generated.

(b) Typically, there are more data available than might
possibly be useful (but most often are not) to predict
certain developments, such as the evolution of an epi-
demic. It is thus crucial to:

— Determine the subset of a possibly huge set of
data that is relevant to carry out a certain task.
For this purpose, one could assign weights to
data and keep only those that have a fairly
large weight. For example, the colour of the
hair of a COVID-19 patient is very unlikely to
be relevant when one tries to estimate his/her
probability to be cured. However, his/her age
and the answer to the question whether she
or he has diabetes are evidently relevant data
and hence must be of large weight.

— Determine how reliable the data are one uses
to carry out a certain task. Answer the follow-
ing questions: Are the sources of one’s data
trustworthy? What are the likely error margins
of the data one works with?

(c) As mentioned, the statistical and systematic errors
of the data and the methods of analysis should be
treated with great care. Often times, these errors can
neither be determined very precisely, nor can they be
neglected. Furthermore, the models and the mathe-
matical algorithms one uses to extract estimates and
predictions of certain developments from a given set
of data tend to have some intrinsic flaws and/or the
data available to us may not suffice to make unam-
biguous predictions on the basis of the models in use.

A famous example illustrating, a posteriori, why it may
take a long time to discover a basic law of nature ena-
bling one to predict certain developments over long
stretches of time concerns the prediction of positions
of the planets in the night sky. Ptolemy’s model of the
solar system (Earth-centred, around 100 AD), involv-
ing epicycles, had some serious intrinsic flaws built
into it, although it could actually be used to predict,
fairly reliably, the positions of planets some years into
the future. It took considerably more than one thou-
sand years until Kepler (heliocentric, around 1600)
found more fundamental and reliable laws of plane-
tary motion. Still there were (numerically rather small)
intrinsic shortcomings, because the perturbations of
the planets’ orbits caused by their mutual gravitational
attraction were neglected. It took another century
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until Newton discovered laws of planetary motion
and gravitation more fundamental than Kepler’s that
enable people who are very strong at calculating or use
large computers to make astonishingly accurate pre-
dictions for the motion of planets in the solar system
over long stretches of time. It then took another three
hundred years until Einstein discovered a law that is
even more fundamental and precise than Newton’s,
that enabled him to explain an observed minute devi-
ation of the motion of Mercury from the Newtonian
prediction, which, before Einstein, was a mystery. This
illustrates the fact that it takes much dedication and
time to discover laws describing the time evolution of
certain phenomena and to then build models express-
ing such laws that are simple enough to be practical,
but sufficiently precise to be trustworthy.

Predictions brought forward on the basis of a scien-
tific reasoning process are almost always afflicted with
smaller or larger uncertainties. They are of the kind that
a process will happen with a certain positive likelihood
(not rarely difficult to estimate); but with a different
likelihood, a different development will be observed.
Unfortunately, firm predictions that are almost cer-
tain to come true are rare. It is crucial to communicate
honestly and transparently how certain and believa-
ble one’s prediction of a certain development is, with
what probability something else might happen, and
how reliable/believable the model and the algorithms
are one has used to arrive at one’s predictions.

Next, we sketch some concrete examples of how
data, typically time series, can be used to come up
with estimates or predictions of future developments.
Our examples are expected to be relevant in connec
tion with the COVID-19 pandemic. We start with a
straightforward and intuitive

Example 1 (extrapolation of data). Suppose we are
given a time series of length N consisting of the num-
bers, kot (t), t = to, ..., to+ N of patients in Swiss hos-
pitals carrying the Sars-CoV-2 virus on day t. Here to
is the time when tests for Sars-CoV-2 were first made
on all patients admitted to Swiss hospitals, and N is at
least twice or thrice the estimated incubation time of
the disease.

What could we try to do with this particular set of data?
The most straightforward use is to fit a smooth curve,
K(t), o< t<to+ M, M >N + 1, using, for example,
Gauss’ method of least squares. (How to choose the
ansatz for this curve requires some experience; naive
choices, such as a polynomial of degree < N, often do
not work very well.) This curve enables us to define a set
of non-negative integers, kiot(t), t =to+ N+ 1, to+ 1,
..., to+ M, by setting
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m
keot () Z k(6 t =to+ N+1,.., to+ M, M>N+1.

If ket (t) is well below the number of hospital beds
available to treat patients carrying the Sars-CoV-2
virus, for all days t =to+ N, ..., to+ M, then the situ-
ation looks safe from the point of view of hospitaliza-
tion. If, however, it is larger than the number of such
hospital beds, for some t > N, then there are reasons
to worry, and new measures to lower the infection
rate should be introduced.

In this case (and possibly in many other instances)
simple considerations may vyield useful results, and
one does not have to resort to very sophisticated
methods. Errors in the predictions can be estimated
using well-known methods of statistics.

Example 2. Often, one is facing questions about quan-
tities that are not directly observable and must be
reconstructed from available information. This proce-
dure invariably introduces (possibly large) errors. As
an example, let us assume that we would like to make
an educated guess of the true number n(t), of peo-
ple living in Switzerland who carry the virus on some
day t. Obviously, the numbers n(t), t = to, ti, ... are
not directly measurable. But we can assume that we
know the number, m(t), of people in Switzerland who
are known to be infected on day t, because they have
been tested for the virus on some day t' < t and are
still being treated on day t. Clearly, m(t) < n(t). We
might want to look for a relation of the kind

o))
n(t) = H®)™'m(t) + u(t),

where H(t) is a number smaller than 1 representing
the expected ratio between m(t) and n(t), and u(t)
describes noise (including statistical errors) in the
data. Our task is to estimate H(t) and make a guess
for the form of u(t). This is the type of question one is
often faced with in epidemics. Of course, if we could
test everybody within a very short period of time, we
would know n(t). Without this option, we aim to find
representative groups of people, some of whom have
been tested positive and control how they develop.
Using suitably chosen observable data and statistical
methods (and their uncertainties!) this may allow one
to estimate the total number of infected people.

To proceed, we note that the following data are
measurable: The average number, 7, of days people
remain infectious after having been infected with the
SARS-CoV-2 virus; the average delay, §, between the
infection of a patient with the SARS-CoV-2 virus and
a possible hospitalization; the total number, h(t), of
people hospitalised in Switzerland on day t among
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those people who had previously tested positive for
the SARS-CoV-2 virus on some day t' < t, before being
hospitalised, and are known to be ill on day t; clearly
h(t) < m(t); finally the total number, k(t), of people
who are hospitalized in a Swiss hospital on day t and
are tested positive. To summarize, the following data
would seem to be directly measurable:

3)
7, 6, and the time series m(t), h(t), k(¢),
withto<t<T,

where tg is the time when one started to record these
directly observable data (after the tests for the SARS-
CoV-2 virus were first made available), and T is the
present time, minus a few days.

We claim that using the directly observable data in
Eqg. (3) one can make an educated guess of the total
number n(t) of people in Switzerland who, on day ¢,
are infected. Since this requires taking time averages
and smoothing of data, our guess is afflicted with sta-
tistical errors that depend on quantities such as t and
6; they are not easy to determine precisely.

To be a bit more precise, we suppose that, on average,
people infected with the SARS-CoV-2 virus are infec
tious for t days. We assume that, for several weeks,
namely on days t = tj, ..., t2, with 2t < t2- t1~ 20 to
30, m(t) people have been tested to carry the virus on
day t in Switzerland during recent weeks. We require
that every person tested for SARS-CoV-2 on any day
between t;and t; is tested only once, so that the sam-
ples of tested people on different days t = ty, ..., t2 are
disjoint from one another. It is important to carry out
tests on samples of people that are statistically typi-
cal, for example have a typical age distribution and
whose various health conditions are typical. Every
(statistically typical) sample of m(t) infected people
taken on day t is monitored after day ¢, for at least 2t
consecutive days after day t. In particular, one takes
data of how many among those infected have to be
hospitalized on day t- this number is denoted by h(t)
- and of how many days 6, on average, after a positive
test hospitalization takes place (if necessary, one could
record more accurate data rather than only an average
delay). Apart from m(t) and h(t), we need also the
total number, k(t), of patients who are hospitalized on
day t and are tested positive. Thus the accessible data
are the time series

)
m(t), h(t+06), k(t+6), t<t<t,
(t1+t3)

and the delay time 6. We set T=-——and define
the average value, m(T), of m(t) by the sum of the
m(t) over theinterval t; < t < t,, divided by t; - t;, and
h(T), k(T) are defined accordingly. We then define

_h(T +6)
k(T +6)
and expect that

n(t) = H(@) 'm(t).

H(T) :

Taking various time averages to eliminate fluctuations
on short time scales and introducing a noise function
u(t) in Eq. (2), describing fluctuations and noise in the
data, is crucial. The noise function can be estimated
by comparing the actual data, m(t), to their averages,
m(t), for sufficiently many days t. This will yield infor-
mation about the variance of u(t). If this variance is
fairly small, as compared to m(t), (meaning that the
epidemic evolves quite smoothly in time, and the
number of new infections does not fluctuate very
much), then one may take p(t) to be Gaussian.

The data reconstructed from the time series in Eq. (3),
in particular H(t) and p(t), along with a (hopefully
plausible) ansatz of an evolution equation for n(t), can
now be fed into a filter, such as a Kalman filter (Kim,
Bang). This will yield an educated guess — but not more
than that(!) - of the true evolution of, for example, daily
infection numbers. From this one might infer the values
of some not directly observable quantities, such as the
reproductive number, R;, and estimate the error bars
within which these quantities can be predicted. It adds
to the confusion that, in public communications, indi-
rectly known quantities, such as Ry, are used as if they
were easily accessible, and without sufficient discussion
of error bars.

3. Modelling the evolution of epidemics

So far, we have discussed two aspects of how to work
with available data. One is, of course, interested in the
causal chain of evolution that regulates the epidemics.
Phenomenological modelling of epidemics (or similar
phenomena, such as insects or diseases) has of course
a long history. In passing, we mention here only the
important series of papers that set the scene for many
epidemiological studies, namely the work of Kermack
and McKendrick, starting in1927 (Kermack, McKen-
ndrick), extending earlier work in (Ross and Hudson,
1917), which led to evolutionary models such as the
well known SIR Models (Luchsinger).

We continue with some basic observations. In order
to come up with an intelligent prediction of the evo-
lution of the COVID-19 epidemic in Switzerland, we
look for approximate laws of evolution of quantities
such as the total number n(t) of people who are
infected with the Sars-CoV-2 virus on day t. In general,
it is necessary to include additional variables next to
n(t) when looking for a proper characterisation of the
‘state’, x(t), of the epidemic on day t.
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A (possibly inadequate) first guess of how one might
define x(t) is as follows: x(t) is a vector with many
components all of which have values in the non-nega-
tive integers; it is given by

)
x(8) = (n(t), n(t - 1), .., n(t - 7), k(£), ..., k(- 1),

p(@), ..., p(t - 1)).

Here, k(t) is the number of patients who are hospital-
ised on day t and test positive for SARS-CoV-2; p(t) is
the number of infected people who have passed away
on day t (recall that 7 is an estimate for the number
of days a patient is sick with COVID-19 after having
been infected with the SARS-CoV-2 virus, before he or
she is cured or has died). If needed, the quantity n(t)
can be split into relevant subclasses, for instance risk
classes. Defining factors of risk classes are the patients’
age, their medical condition, a record of how their
immune system tends to react, etc.

In our definition of the state x(t) of the COVID-19
epidemic, we are obviously neglecting the geographic
distribution and connectedness of people infected
with Sars-CoV-2. This might often be an unacceptable
simplification, corresponding to what physicists call
a “mean field ansatz”. Taking into account the spatial
inhomogeneities of n(t) increases the computational
complexity of the evolution equations considerably.
There is a rich literature on this issue in a variety of
contexts, see, e.g., (Luchsinger)

As the propagation of infections is stochastic, the
simplest ansatz is a linear stochastic evolution equa-
tion for the state x(t) of the epidemic:

(6)
X(6) =T, () - x(t- 1) + w(t- 1),

where w is a random variable afflicting all the param-
eters in the equation (such as the randomness in the
infection process), I, is a (random) transition matrix
depending on w, and w(t) describes statistical noise
in the data, originating from, among other sources of
noise, fluctuations due to people entering or leaving
Switzerland.

For Eq. (6) to be useful in making predictions we
ought to know something about the law of the ran-
dom matrix [, (t). Often, people guess the mean val-
ues of its matrix elements

)
G(t) = T (1)),

where {(-)) denotes an average (mean) over the random
variable w. Taking subsequently an average over w on
both sides of equation (6), one arrives at a deterministic
evolution equation. But averaging leads to a simple lin-
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ear equation only if I, (t) and x(t - 1) are independ-
ent random variables, which is a property that often
remains unchecked. Note that if one assumes a non-lin-
ear stochastic evolution equation, taking means would
usually not make sense at all, unless one knows a lot
about the law of the random matrix I%,. More material
on the convergence of stochastic to deterministic equa-
tions can be found, e.g, in (Luchsinger).

Taking the stochastic nature of the evolution equa-
tion (6) seriously will enable one to guess the statis-
tical distribution, i.e,, the error bars, of one’s predic
tions. Reliable estimates of error bars appear to be rare
in analyses publicly debated in recent months.

For (5) to be useful, at all, one has to relate the state
x(t), which is not directly observable, to observable
data with the help of relations of the kind of (2) or
generalizations thereof. One is then ready to feed
one’s data into a filter equation, such as the Kalman
filter. Here, we will not elaborate on this method; but
it would be useful if authors disclosed more transpar-
ently what they are doing in their analyses. This would
induce some confidence in the reliability of their
results.

To conclude we mention the three most important
questions to be reckoned with:

(a). Is the model one uses (that is the evolution equa-
tions) trustworthy/reliable? As the example of plan-
etary motion shows, this is usually difficult to assess
and can lead to considerable uncertainties.

(b). What are the values and errors of parameters used
in the model? This is actually a core topic of statistics.
(c). What are the stochastic uncertainties, what is the
law or randomness (for stochastic models)?

4. The effective reproductive number R;
“...of course, everyone in the universe and their dog
knows about the R-number now...”
www.bbc.co.uk/sounds/play/m000I267, ca. at 10:15 min

Loosely speaking, the reproductive number is the
expected number of secondary infections produced
by one primary infection. If the reproductive number
exceeds 1, public measures may be called for in order
to keep control of an epidemic. This simple interpre-
tation explains why the reproductive number has
attracted wide attention. Within the SIR model, the
basic reproductive number Ry describes the initial
increase of infected individuals.

During an epidemic, one works with time dependent
quantities, such as the “case reproductive number”, or,
alternatively, the “effective reproductive number”. The
case-reproductive number at time t is defined as the
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average number of secondary cases that a primary case
infected at time t will eventually infect, thereby taking
into account the impact of control measures and deple-
tion of susceptible persons during the epidemic (Wall-
inga). The effective reproductive number R:at time &,is
defined as the ratio of new infections on day ¢, to the
infectivity-weighted average of infected cases of the
days prior to day t (Cori). While the case reproductive
number is simpler to understand and conceptually easy
to define, it is difficult to estimate and is measurable
only much later. On the other hand, while the meaning
of the effective reproductive number is not obvious, it
is more amenable to quasi-instantaneous estimation.

A major problem here is that the number of infected
people at time ¢t is not known at that time and cannot
be measured directly. In fact, only a fraction of infected
people will be detected, namely those who later show
symptoms and, even later, are tested positive (after 10
days or so, say). Thus, we are confronted with the need
to calculate ‘backwards’, not knowing precisely the
time and place of infection. We now understand why
Example 2 discussed above is important.

The determination of R; is thus highly indirect, involv-
ing various statistical tools. Further, as shown in
Example 1 of Section 3, important information can be
gained directly from data, without knowledge of R.
Nevertheless, as the various choices of R have gained a
high visibility and play such a prominent role in com-
municating to the public any necessary measures to
contain the pandemic, it seems worthwhile to look at
this quantity in some more detail.

We start by commenting on the determination of R
Consider the following evolution equation featuring Rs:

Ii=R; th-nwm

where I; is the number of people newly infected on
day t etc. and wy, the infectivity, is the probability that
a secondary infection was contracted from a person
who got infected n days earlier. Whereas the infec
tivities can be fitted to available data, the I; are not
observable directly, unless representative proportions
of the population were tested on a daily basis (see
Example 2 of Section 3). Therefore, they need to be
inferred indirectly from some other data. For exam-
ple, R: can be thought of as the ratio between the
number of true and expected infections.

Because of the stochastic character of the infection
process, the time spans X from the infection to the
onset of symptoms (incubation time), and from there
to a test (confirmation), Y, are distributed with a char-
acteristic time lag. The distributions (laws) of X and
Y are obtained by fitting these quantities to avail-

able data; see (SNTF) and references therein. Then,
for every confirmed case a one samples a number xg
from the distribution of X and a number y, from the
distribution of Y.

The reconstructed infection day, ig,0f this case a is
then defined as the day when the virus infection was
confirmed minus (X + ya). Counting the number of
cases that fall on day t gives the reconstructed value
of I; that we denote by I:. The reproductive numbers
calculated from the numbers It are denoted by R:.

The scheme sketched here introduces noise into the
true data (Petermann). We denote the true infection
day by i,, the true incubation period by x4, and the
true time between symptom onset and confirmation
by ya. Then we have iq = iq + Xa + Yo — Xa - Yo As the
sampled values of x; and y, are independent of the
true values of x, and y, (because we don’t know these;
we just know that they are approximately distributed
in the same way as X and Y, respectively), the recon-
structed infection day iz equals the true “signal” i,
plus some "noise” given by do = Xa + Yo - Xa - Ya.

This noise results in a smoothing of the behaviour of
R:. As a result, the effects of ‘sudden’ measures, such
as a lockdown, are less visible in the reported behav-
iour of R. Furthermore the errors introduced in R; are
underestimated.

There are of course ways to avoid this artificial smooth-
ing. A natural way is to assume that R; is constant,
except for steps at ‘points of change’ where abrupt
new measures (lockdown, limits on gatherings, etc.)
are imposed (Flaxman). The height of the steps is
fitted to account for observed data. This procedure,
applied to times of new social measures, also gives a
picture of the effectiveness of the measures imposed.
Of course, model assumptions must be checked and
uncertainties estimated. lllustrative examples show
that errors less than about 20% are unrealistic.

Concluding this section, we note that R; may not be
particularly useful for monitoring the pandemic and
communicating its course to the public, because of
the large uncertainties in this quantity’s determina-
tion and meaning.

5. Conclusions

The present pandemic has given rise to an enormous
amount of activity in COVID-19-related research. Spe-
cial grants have been offered, and many people have
redirected their research efforts into areas promising
some impact on the handling of the crisis. It has also
raised the interest of the authors of this contribution
to look more closely at the situation, in particular at
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mathematical issues related to modelling and under-
standing the crisis, but also thinking about strategies
to control the damage done to the economy by the
pandemic and about the well-being of Swiss society.

The urgency of taking appropriate measures has led to
the inclusion of scientists into policy-making bodies,
such as national task forces. The hunger of the mass
media for good stories has propelled some scientists
to star status. This may have contributed to the fact
that the media have not offered an accurate, balanced
and critical picture of the status of our understanding
of the crisis.

Time constraints and policy pressures have often been
responsible of the circumstance that advisory groups
have not been assembled with the required breadth
of expertise. Error-awareness and critical assessment
of results (to be made before results are released into
the public domain) appear to have suffered in the
course of this crisis. As a result, some communica-
tions may have conveyed the impression that no (or
only very tiny) errors are involved in the results that
are being communicated, leading to unrealistic expec-
tations and, as a consequence, to a lack of credibility
of scientists.

There are lots of data published every day on several
websites; but there does not appear to exist much
coordination and consistency between them. We feel
that, in view of this situation, plans to establish a Swiss
data centre — considered in connection with the trend
towards open access and open (FAIR) data — deserve
to be strongly promoted.

Despite the plethora of data, itis not clear to us whether

the data are treated in adequate ways (see Example 1,
above), and whether reliable use is made of them.
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this is a short-term phenomenon, we fear that this
trend might end up in a certain depletion of the diver-
sity of research and, in the long term, will not help to
overcome crises such as COVID-19.1
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