
Zeitschrift: Bulletin CILA : organe de la Commission interuniversitaire suisse de
linguistique appliquée

Herausgeber: Commission interuniversitaire suisse de linguistique appliquée

Band: - (1987)

Heft: 46

Artikel: Programming languages, author languages and authoring packages

Autor: Davies, Graham

DOI: https://doi.org/10.5169/seals-978112

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-978112
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Programming languages, author languages and authoring packages

Computers are useless without programs, but programming them can take
an inordinate amount of time - much more time than the average teacher
has available. My own experience suggests it takes about one hundred
programming hours to write a new program which will keep the student
busy for about one hour. Nevertheless, it may be essential for teachers to
create their own CALL materials if there is nothing available commercially.
The teacher may consider three possible ways of creating CALL software:
[1] with a programming language, [2] with a dedicated author language,
[3] with an authoring package.

A computer system can be broadly divided into hardware and software.
Software can be subdivided into programs and data. Of these three
elements data is unquestionably the most important - especially as far as the
language teacher is concerned. Unfortunately, however, the people who
take the decisions about computing in education often have their priorities
upside down. They consider the hardware first, when really they should
consider the software, as the effectiveness of any computer depends entirely
upon the range and quality of the software that runs on it. If the available
software includes a lot of ready-made data then so much the better, but
the teacher venturing into CALL should also be given the opportunity to
use the computer as a data-creation tool. This is why the programming
languages with which it is provided and the authoring possibilities it offers
are so important.

Virtually all microcomputers are capable of «understanding» the
programming language known as BASIC. BASIC - or rather the BASIC
interpreter - is actually a very clever piece of software, the function of which
is to translate BASIC instructions into a special kind of machine language.
Machine language is not easy for human beings to come to terms with,
but BASIC is relatively easy to learn. So BASIC acts as a sort of lingua
franca for man and machine. BASIC is an acronym, standing for Beginners'

All-purpose Symbolic Instruction Code. It began as an instructional
language for training beginners in computer programming, who would
then move on to more complex languages, but now it is a fully-fledged
programming language in its own right. A set of instructions written in
BASIC forms a program, which can be typed at the computer keyboard
and eventually saved on disk and called up whenever it is needed.

BASIC is unpopular amongst many professional programmers. It is said

to be an «inelegant» language and criticised for its lack of structure. Other
languages, such as PASCAL or LOGO, tend to be favoured by profes-

26

sionals. The fact is, however, that BASIC is by far the commonest
microcomputer language and the easiest to access. Most commercial
programs for microcomputers are written in BASIC because it is a standard
feature on virtually all machines. If you wanted to run programs written
in LOGO, for example, you would probably have to pay a good deal extra
for a special LOGO chip in order to make them work. This is one reason
why producers of commercial software avoid writing programs in less common

languages; if customers had to buy extra chips in order to use them,
sales would plummet.

In an ideal world, programmers and linguists would sit down together
and collaborate on programming projects. But programmers are expensive
and not many educational institutions can afford enough of them to satisfy
the demand for new software. There is no reason, however, why a linguist
should not become a competent programmer, given the motivation and
time. The band of polymaths bridging the two disciplines is small but growing.

Even an elementary knowledge of BASIC will enable the linguist to
understand some of the problems faced by programmers and perhaps
modify unreasonable demands. Not that one has to learn how to write
a new program from scratch. Simply knowing how to amend the BASIC
instructions containing text is useful. This is the key to translating simulations

and adventure games - which consist mainly of text - into different
languages. It takes time to achieve real proficiency, however, and one should
beware of glib salesmen who claim BASIC can be learned in «just a few
hours». This is no more true of BASIC than it is of French or German.

BASIC has many similarities to natural language, one of them being
most infuriating: there is no standard version but a multitude of dialects.
Microsoft BASIC is the commonest dialect on microcomputers. It is

important that the user is aware that there are differences between these
dialects and that not all versions of BASIC are suitable for CALL programs.
Of all the current versions of BASIC, the version running on the BBC
microcomputer is probably the best as far as the linguist is concerned.

Learning BASIC requires an introductory course of some 20-30 hours,
followed by hundreds of hours of practice. Courses designed for people
from the non-mathematical disciplines are still relatively rare. Anyone with
a background in language teaching embarking upon a course designed
mainly for mathematicians or scientists will probably find it impossible
to follow, not because BASIC itself is difficult but because the programming

tasks to which it is applied will be incomprehensible. This is why
a course tailored to the needs of a linguist is essential. Although there are
still relatively few courses appropriate to linguists, there are a number of

27

textbooks now available which are aimed at the non-mathematician. A
selection is listed at the end of this article.

The following program gives an indication of what BASIC looks like.
It is a simple gap-filling exercise, the logic of which is more or less self-
explanatory. A question is presented to the user (lines 10-30); the user
enters a response at the keyboard (line 40); the response is matched with
the correct answer (line 50); if it is incorrect then the program branches
to line 80; if not, the program continues with line 60. Finally the program
stops at line 90.

10 PRINT «Type the correct form of 'spielen' in»
20 PRINT «the Present Tense:»

30 PRINT «Mein Bruder Tennis.»
40 INPUT A$
50 IF A$ «spielt» THEN 80

60 PRINT «Sorry, wrong, the answer is 'spielt'.»
70 GOTO 90

80 PRINT «Well done!»
90 END

Although BASIC is the commonest microcomputer language, it suffers
from the weakness that it attempts to be all things to all men. It is a general-

purpose programming language. If you aim to produce CALL programs
then a dedicated author language is much more suitable. One well-established

author language is TUTOR, which has been used for many years
to create material for the mainframe PLATO system. A version of TUTOR
is also used on PLATO's stand-alone microcomputer systems.

Two popular author languages are PILOT and MICROTEXT, both of
which are suitable for CALL. It must be borne in mind, however, that the
uninitiated computer user will need a lot of time to achieve complete
fluency in an author language and will require a good deal of determination
in order to get the best out of it. Users must have a good sense of logic
and understand concepts of variables, matching and conditional/unconditional

branching. It is nevertheless true that the conventions of author
languages are much easier to learn than those of BASIC.

PILOT is available for most popular microcomputers. It is probably the
easiest author language to learn, its set of instructions comprising mainly
single letters - the initial letters of the words they represent. The following
is an example of a PILOT program which achieves the same result as the
BASIC program above:

28

T:
T:

T:

A:
M.
TY
TN
E:

Type the correct form of «spielen»
in the Present Tense:

Mein Bruder Tennis.

spielt
Well done!

Sorry, wrong, the answer is «spielt».

The logic of the program is reasonably transparent even to someone who
has had no experience with an author language. The letters followed by
a colon on the left are the instructions which cause the computer to behave
in a particular way. They are interpreted as follows:

The program gives no indication, however, of the full power of PILOT'S
matching facilities. PILOT allows the user to anticipate specified wrong
answers, accept answers in upper or lower case letters, accept alternative
answers, ignore minor spelling errors, and so on. Branching and scoring
are other features, and in some versions elaborate graphics can be created.
It is an ideal author language for the beginner.

MICROTEXT was developed at the National Physical Laboratory,
Teddington, Middlesex. The most recent and best version runs on the BBC
microcomputer1. MICROTEXT is designed to simplify the production of
person-computer dialogues. It is quite suitable for creating simple tutorial
or interactive material for CALL.

MICROTEXT is based on a series of frames of information, each of
which is numbered. This facilitates branching and remedial runs conditional

upon the learner's performance. The following MICROTEXT
program shows how the dialogue is set up:

*1

What is the capital of the
United States?

NEW YORK - 2, WASHINGTON -3,-4

1 Published 1985 by Acornsoft Ltd, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ.

T:

A:
M:
TY:
TN:

display Text on this line on screen

Accept input from keyboard
Match item on this line against input
display Text on this line on screen if match succeeds (Yes)

display Text on this line on screen if match fails (No)

t

29

*2
No, although New York is the largest
city, it is not the capital.

- 1

*3

Yes, well done.

- 5

*4
No, the capital is Washington.

- 5

*5
That is the end of this lesson.

SEND

The logic of the program is fairly transparent. The numbers preceded
by asterisks represent the frame numbers, and the numbers preceded by
arrows indicate the frames to which the program must branch. Where, for
example, NEW YORK precedes the arrow, the program must branch to
frame 2 if the learner gives the answer NEW YORK. Unconditional branching

is indicated by an arrow followed by a frame number. A question mark
at the beginning of a line causes the program to wait for an input from
the keyboard.

Using MICROTEXT, the program creator has considerable control over
the appearance of each frame. Colour changes, underlining, fixed messages
and scrolling are possible. A wide range of matching facilities, like those
for PILOT described above, are also provided. Graphs and charts can also
be created. Scoring is easily handled.

MICROTEXT is more complex than PILOT, but it offers greater flexibility.

Versions for creating interactive video material have also been
produced2. The newcomer to computing should be able to write simple CALL
routines without too much difficulty, but a degree of perseverance is needed

to create really interesting dialogues.
The problem with CALL software is that one needs so much of it in

order to make it effective. As already indicated, creating new software with
a general-purpose programming language is very time-consuming, and

although a dedicated author language is easier to learn it does not make

2 A cassette-based interactive video system using MICROTEXT has been developed by
David Little, Trinity College, Dublin. A system using videodiscs has been developed by
Paul Bangs, Information Technology Unit, Buckinghamshire College of Higher Education,

High Wycombe.

30

the job of software creation that much quicker. So what is the solution?
A view I have expressed on numerous occasions3 is that the most efficient
way in which an educational institution can build up a reasonable software
library is by using a range of authoring packages (sometimes known as

authoring systems). An authoring package designed specifically for creating

CALL software enables the non-programmer to create usable material
exceptionally quickly, reducing the time taken to create one hour of learning

material to about three to five hours.
An authoring package opens the door to do-it-yourself software, shielding

the user from the complexities of the logic of programming, and offering

a simple framework into which the CALL material can be slotted. The
disadvantage ofauthoring packages is that they can be restrictive and result
in rather unimaginative courseware. The user is saddled with the framework
set up by the creator of the authoring package, and although the content
can be infinitely varied, the form of presentation tends to become
monotonous. Nevertheless, authoring packages do enable pedagogically
sound courseware to be produced at an impressive rate, and if a variety
of packages is used the problem of monotony can be overcome.

TEACHER'S TOOLKIT was the first authoring package I wrote. It was
simple in concept and enabled the teacher to set up a series of questions
with a range of possible answers. It was later rechristened QUESTION-
MASTER4. In the light of recent developments, it is not a package which
I regard with much pride. However, it has served its purpose. Apart from
forming the basis of APFELDEUTSCH5, it has also been used (by a
linguist with no knowledge of programming) to produce two revision packages

for learners of French, LOGIFRENCH 1 and LOGIFRENCH 26.

There is now a good selection of authoring packages available for the
BBC microcomputer, which is the most widely used computer in education
in the United Kingdom. Using a range of authoring packages, it is quite
feasible to build up a decent CALL library in a relatively short space of
time. I say «relatively», because creating any kind of software is a time-
consuming process, even with an authoring package; APFELDEUTSCH
took six months of solid work to produce with QUESTIONMASTER.

One of the easiest authoring packages to use is GAPKIT7. A good number

of reinforcement exercises used by language teachers rely on the tech-

3 See Davies (1982a, 1982b, 1985a, 1986).
4 Published 1982 by Hutchinson Software, 17-21 Conway St, London W1P6JD. See Holmes

(1984), Last (1984).
5 Published 1981 by Wida Software, 2 Nicholas Gardens, London W5 5HY.
6 Published in 1983 and 1984 by Wida Software (see Note 5).
7 Published 1983 by Camsoft, 10 Wheatfield Close, Maidenhead, Berks SL6 3PS.

31

nique of presenting the student with a series of sentences or a continuous
piece of text in which specific categories of words or parts of words, have

been deleted: for example, prepositions, articles, verb endings, suffixes and
prefixes. This technique of selective deletion is easily implemented with
GAPKIT. The teacher uses one program in the package to create a new
exercise or revise an old exercise. Creating a new exercise is easy. All the
teacher has to do is type the text, indicating where the gaps are to appear
by placing the «slash» character (/) at the beginning and end of each gap,
thus:

D/er/ Rhein ist e/in**/ europäisch/er/ Fluss. Er entspringt /in/ /der/
Schweiz und

Explanatory notes to precede the exercise are also created by the teacher.
These can be summoned up by the student at any time during the exercise.

Discrete clues can also be built into the data: for example, indicating the
case or gender of a noun. The gapped text, together with the explanatory
notes and clues is stored on disk and can immediately be used by the student
by means of another program.

The above extract would be presented to the student like this:
D— Rhein ist e europäisch— Fluss. Er entspringt Schweiz

und
The computer works out where the gaps are positioned on the screen,

and locates the cursor in turn at the point where each gap begins. The
student can then attempt to fill in the gap, ask for a clue, or make the
computer fill in the gap itself. Errors are reviewed over and over again,
until the student has produced a perfectly correct «page».

The current version of GAPKIT allows the teacher to «disguise» the
length of the anticipated response by padding out the answer with any
number of asterisks. The above extract contains an example of this: e/in**/.
When the student completes this gap, the RETURN key has to be pressed
after entering the «-in» of «ein», in order to indicate that no ending is

required. This feature makes it possible to produce exercises which would
be pointless if the student could work out the answers just by counting
the dashes.

Allied closely to the selective gap-filling exercise is Cloze procedure. Flav-
ing been neglected by foreign-language teachers in the United Kingdom
for so many years, Cloze is now coming into fashion - although teachers
of English as a Foreign Language realised its potential a long time ago.
Two authoring packages, my own CLOZEWRITE8 and Chris Jones's

CLOZEMASTER9, enable the teacher to create and store texts which are

8 Published 1985 by Camsoft (see Note 7).
9 Published 1982 by Wida Software (see Note 5).

32

then used by the student to generate computerised Cloze exercises. In Cloze
exercises words are removed at regular intervals and replaced by numbered
blanks.

In CLOZEWRITE, the student can choose any regular deletion interval
from 2 to 9, and also specify the deletion starting point, so that a variety
of different exercises can emerge from one text. The length of each deleted
word is not revealed to the student, until at least one attempt at the word
has been made. A partial matching routine reveals minor typing or spelling
errors. At any stage, the student can ask for individual letters or whole
words to make the task easier. CLOZEWRITE can be used interactively
or to produce printed handouts for use in class.

CLOZEMASTER works in a similar way, but permits the creation of
longer texts - up to 50 lines, compared with the 18 lines allowed by
CLOZEWRITE - and has less elaborate error diagnostic routines. The
longer texts are handled by means of a «scrolling screen» facility, which
is built into the program.

It can be argued that CLOZEWRITE and CLOZEMASTER do not
produce «true» Cloze exercises, because the computer accepts as answers
only those words which appear in the original texts. Ideally, the student
should be able to enter any semantically and syntactically correct words
in the numbered blanks. The main problem is that the computer is unable
to recognise what words make sense in a particular context. In a «true»
Cloze exercise every possible alternative would have to be anticipated and
built into the data. Field-testing indicated, however, that although teachers
felt it would be wonderful if the computer could accept a range of alternative

responses, scarcely anyone was prepared to invest the necessary time
in setting up the data accordingly. A CLOZEWRITE/CLOZEMASTER
text can be typed in about twenty minutes, but it would take hours to
prepare a text that allowed for every possible alternative rendering of every
word which might be deleted. Above all, it must be borne in mind that
the ease with which the teacher can create material means that new and
topical texts can constantly be produced, so that the data never goes out
of date.

It is debatable to what extent students would benefit from more elaborate
preparation. Most words which are removed in a Cloze exercise of this type
are function words, and there is usually little argument over what fits. The
few content words that disappear can be guessed by most students by the
third attempt. Teachers often talk about the frustration students experience
when they are told they are wrong after producing an acceptable answer.
In the author's experience it is teachers who tend to get frustrated rather
than students. Most students willingly make several successive attempts

33

at a word without exploding with indignation if acceptable answers are

rejected. The mind-searching which goes on at each attempt is in itself
a valuable activity. In any case, CLOZEWRITE and CLOZEMASTER do

not display messages indicating that the student is «wrong»; the computer
merely signals that the student's answer does not match the original word.

CLOZEWRITE is part of a planned package of exercises centred on the

mutilation, transformation and reconstruction of texts. It was conceived
as a companion to my earlier COPYWRITE package10, which I describe

below, and uses the same teacher's authoring/editing program. Texts

created for COPYWRITE are thus completely compatible with
CLOZEWRITE. The other similarly compatible programs in the package
are provisionally known as ENIGMA, SCRAMBLER, PREDICTION and
TEXTSALAD. ENIGMA is a sort of decoding game in which the learner
tries to decipher a text in which all the letters are replaced by other letters.
SCRAMBLER jumbles each word in the text and invites the user to
unscramble them. PREDICTION aims to exercise the learner's ability to
anticipate what is likely to come next in the text. Starting with a blank screen
the learner is offered a selection of words, four of which are taken at
random from the text and one of which is the original first word. The idea
is to rebuild the original text word by word by making accurate predictions.
TEXTSALAD shuffles the lines of the original text and asks the learner
to re-arrange them.

COPYWRITE was derived from John Higgins's STORYBOARD1 Like
CLOZEWRITE and CLOZEMASTER, it enables the teacher to create and
store texts which are then mutilated by the computer and presented to the
student for reconstruction. COPYWRITE takes the Cloze idea to its
extreme. The text is displayed on the computer screen, and after a time
reduced to punctuation marks and dashes indicating the length of the missing

words. The student then attempts to reconstruct the text. This seemingly
impossible task is easier than it looks, because any word anywhere in the

text can be chosen. Each time a correct word is entered, every occurrence
of it appears on the screen. Different strategies may be adopted. Students

may begin with low-frequency content words they remember from the first
reading, or high-frequency words such as articles, common verbs, prepositions,

conjunctions and pronouns. A partially completed screen might look
like this:

10 Published 1983 byESM, Duke St, Wisbech, Cambs PE13 2AE. The new package is provi¬

sionally known as FUN WITH TEXTS and due to be published by ESM in 1986.

11 See Higgins & Johns (1984), p. 107.

34

a a he

the he

to He
is — is — the i

the I

the Are you a

Are you a

—. He Are you
The

—, I the
You I

A scoring facility is provided, the maximum number of points being
the number of words in the text multiplied by 10. If the student gets stuck,
it is possible to call up the first letter of a word as a clue, to request the
computer to fill in a whole word or to read the text again. This, however,
causes points to be deducted: 5 for a letter, 10 for a word and 50 for reading
the text again. The original STORYBOARD had no scoring facility, but
field-testing by the publishers indicated that some kind of points system
provided a powerful incentive.

COPYWRITE encourages intensive reading and gives the student valuable

insight into language redundancy and the way words tend to combine
and suggest what is coming next. If several students work together, it is

interesting to note how much conversation the exercise generates about
both the content and the language of the text.

Creating new COPYWRITE texts is simplicity itself. The teacher
chooses a passage of suitable length, calls up the teacher's authoring/editing

program and just types the text line by line. The completed text is stored
on disk, and can immediately be made available to students. It is therefore
possible to produce a constant supply of up-to-date material; a text from
the morning newspaper can be ready by lunchtime.

Teachers have also discovered that students can benefit by using the
authoring/editing program. The student uses the program to create a short
essay, which the teacher corrects on the computer screen. The essay is thus
marked as it is actually written, and can also be used by other students
as a reading exercise.

SPEEDREAD12 is a package designed for producing material to improve
reading skills. The principle of authoring and editing the text for storage
on disk is much the same as described for COPYWRITE. But in addition
SPEEDREAD enables the teacher to insert sets of multiple-choice ques-

12 Published 1984 by Wida Software (see Note 5).

35

tions at any point in the text in order to test the student's comprehension.
The text can be presented to the student at different specified speeds, thus
providing a controlled and flexible environment for the development of
rapid reading skills.

There are a number of packages for authoring multiple-choice exercises

and tests. One easy-to-use package is Chris Jones's CHOICEMASTER13.
The teacher simply types in the questions, answers and distractors, and
leaves the computers to organise the storage of the data on disk and present
it to the student. CHOICEMASTER offers two modes to the student:
tutorial and test. In tutorial mode, the student is given immediate feedback
as each question is attempted, and offered clues or explanations when

wrong answers are selected. In test mode, the student attempts the questions

but is offered no feedback until the whole test has been completed.
Some teachers are prone to disparage multiple-choice exercises, but my own
experience indicates that students perceive them as beneficial, particularly
if they have to tackle examinations in which multiple-choice tests play a

significant part. One advantage of making computerised multiple-choice
tests available to students as examinations approach is the free time which
the teacher thereby gains to concentrate on other activities which cannot
be handled by the computer.

A completely different type of authoring package, entitled VOCAB and
also written by Chris Jones'4, attempts to move away from the tutorial
approach to CALL by offering the teacher the facility to create files of words
in suitable contexts, which are used in a variety of linguistic games. The

games include SKULLMAN, a variation of HANGMAN; ANAGRAMS;
MINDWORD, a word game based on the Word Mastermind principle; AL-
PHAGAME, a game in which the student has to guess what word the
computer is thinking of; WHICH WORD?, a multiple-choice exercise; WORD
ORDER, a game in which the student has to sort a set of jumbled words
into order to form a meaningful sentence. All the teacher has to do is to
enter a series of words together with sentences containing them. The words
and sentences are then used as bases for all the above games.

So authoring packages are by the far the easiest route to do-it-yourself
software and it is likely that this is the area of CALL which will to expand
most. It is easy to see why. A program that offers just a few words and

phrases is of very limited value, however cleverly executed, and most off-
the-peg CALL programs do not make it easy for the teacher to amend
the data to suit his/her curriculum and teaching style. Authoring packages

13 Published 1983 by Wida Software (see Note 5).
14 Published 1984 by Wida Software (see Note 5).

36

may not produce imaginative software but they produce it quickly. Perhaps
the ideal solution is a judicious mix of software produced by means of
a programming or author language in combination with a large quantity
of material produced with authoring packages. At present this seems to
be the only way in which CALL software can be produced quickly enough
to satisfy the demand - or before the hardware goes out of date.

National Centre for Computer-Assisted Graham Davies
Language Learning Project Leader
Ealing College of Higher Education, London

Bibliography

Davies, G. D. (1982a): Authoring Techniques and Computer-Assisted Language Learning,
INTUS NEWS 6, 2, pp. 46-57.

Davies, G. D. (1982b): Doing II Yourself, EFL Gazette 37, pp. 6-7.
Davies, G. D. (1985a): Computers in Modern Language Learning and Teaching. In: Wellington,

J. J. (ed.) Children, Computers and the Curriculum, Harper and Row, pp. 134-151.
Davies, G. D. (1986): Authoring CALL Courseware. In: Leech, G. & Candlin, C. (eds.)

Computers and the English Language, Longman.
Higgins, J. & Johns, T. (1984): Computers in Language Learning, Collins.
Holmes, G. (1984): Creating CA I Courseware: Some Possibilities. In: Wyatt, D.H. (ed.)

Computer-Assisted Language Instruction, Pergamon, pp. 21-32. (First published as a special

issue of System 11, 1, 1983.)
Last, R. W. (1984): Language Teaching and the Micro, Blackwell.
Books on BASIC:
Davies, G. D. (1985): Talking BASIC: an introduction to programmingfor users of language,

Cassell. This is a comprehensive introduction to BASIC for the non-scientist. All the listed
programs were written in a common version of Microsoft BASIC and tested on the
Commodore 64 and BBC microcomputer.

Higgins, J. & Johns, T. (1984): Computers in language learning, Collins. A useful book on
CALL in general, which includes numerous program listings for the Sinclair Spectrum.
The Spectrum's dialect of BASIC is very different from most others, so the reader may
need to work quite hard to convert the programs to run on other computers.

Kenning, M. J. & Kenning, M.-M. (1983): An introduction to computer assisted language
teaching, Oxford University Press. This is geared mainly to CALL and guides the reader
step by step through the process of creating CALL programs in BASIC. The version of
BASIC presented to the reader is one found on mainframe computers, but the listed
programs can be converted to run on microcomputers without too much difficulty.

Last, R. W. & Johnston, I. (1986): BBC micro programmingfor the language teacher, Black-
well. This book was still in preparation at the time of writing. It aims to present BBC
microcomputer BASIC to the non-scientist, specifically the CALL user.

37

	Programming languages, author languages and authoring packages

