Zeitschrift: Programm / Technikum des Kantons Zürich in Winterthur

Herausgeber: Technikum des Kantons Zürich in Winterthur

Band: 28 (1901-1902)

Artikel: Ueber Durchschnittskurven von Flächen zweiten Grades : einige

typische Formen der Kurven mit unpaaren Aesten

Autor: Stiner, G.

DOI: https://doi.org/10.5169/seals-1047765

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber Durchschnittskurven von Flächen zweiten Grades:

Einige typische Formen der Kurven mit unpaaren Aesten.

Von Prof. Dr. G. STINER.

•

Beilage zum Programm des Technikums des Kantons Zürich in Winterthur

für das Schuljahr 1902/1903.

Winterthur
Buchdruckerei von Geschwister Ziegler
1902.

Im Folgenden sind einige typische Formen derjenigen Raumkurven vierter Ordnung erster Art konstruiert, durch welche keine reellen Kegelflächen gehen.¹) Dazu wurde nachstehende Methode verwendet: S_1 sei eine hyperbolische Fläche 2. Grades, ABA_1B_1 die Ecken eines auf ihr liegenden windschiefen Vierseits mit den Gegenkanten $AA_1 = p$ und $BB_1 = g$. Auf p und g ist dann je ein zweites Punktepaar CC_1 und DD_1 gewählt, so dass die Paare AA_1 und CC_1 , sowie BB_1 und DD_1 einander trennen. Die 4 Punkte CDC_1D_1 sind dann als die Ecken eines windschiefen Vierseits einer zweiten Fläche S_2 angenommen, die durch eine weitere Bedingung eindeutig bestimmt wird. Die Geraden beider Flächen wurden dabei so bezeichnet:

$$A B = a, A_1 B_1 = a_1; A_1 B = b, A B_1 = b_1;$$

 $C D = c, C_1 D_1 = c_1; C_1 D = d, C D_1 = d_1.$

 S_1 und S_2 sind so einfach wie möglich gewählt; zur Verwendung kommen bloss das gleichseitige Rotationshyperboloid und das hyperbolische Paraboloid in den einfachsten Lagen gegenüber dem Projektionssystem. Hiebei zeigt sich, dass man bei dem Streben nach möglichst bequemen Dispositionen auf Vierschlussflächen des Büschels geführt wird. Doch soll hier auf die Schliessungsprobleme nicht näher eingetreten werden; ich beschränke mich im wesentlichen auf die Konstruktion von Punkten, Tangenten und Schmiegungsebenen der Durchschnittskurve von S_1 und S_2 .

Die Tafeln sind nach meinen Zeichnungen auf photographischem Wege hergestellt; die Schrift wurde durch die Topographische Anstalt Winterthur besorgt.

Allgemeines.

- 1. Die Durchschnittskurve R_4 von S_1 und S_2 besteht im vorliegenden Fall aus 2 Aesten, von denen jeder von einer beliebigen Ebene in einem Punkt oder in 3 Punkten geschnitten wird. Daraus ergeben sich einige Hauptmerkmale der Projektionen dieser Kurven:
 - a) Jede Projektion von R_4 hat zwei reelle Doppelpunkte. Der eine ist immer ein Knotenpunkt, hervorgehend aus einem scheinbaren Durchschnitt beider Kurvenäste; der andere ist entweder auch ein Knotenpunkt, hervorgehend aus einem scheinbaren

^{&#}x27;) In der Litteratur finde ich sehr wenige Anhaltspunkte für die vorliegende Arbeit. Bekannt sind mir nur: 1. eine Figur von Ch. Wiener in seinem Lehrbuch der darstellenden Geometrie, Bd. II. pag. 306, 2. das schöne Fadenmodell von H. Wiener aus dem Verlag von L. Brill in Darmstadt, 3. einige Bemerkungen in den Lehrbüchern der darstellenden Geometrie von Fiedler (Bd. III) und Rohn und Papperitz (Bd. II), 4. die 20. Figur in der Arbeit von W. Binder: "Ueber Plankurven vierter Ordnung vom Geschlechte p=1 und ihre typischen Formen" im 28. Jahresbericht der niederösterreichischen Landesoberrealschule und Fachschule für Maschinenwesen in Wiener-Neustadt, 1893.

Durchschnitt des nämlichen Astes (Schleife), oder ein Rückkehrpunkt oder ein isolierter Doppelpunkt.

- b) Jede Tangente an eine Projektion von R_4 trifft dieselbe ausser im Berührungspunkt in 2 weitern Punkten, die stets reell sind.
- c) Die Doppeltangenten der Projektionen von R_4 sind imaginär.

Hauptsächlich infolge der Eigenschaften a) und c) ist die Mannigfaltigkeit der Formen der Projektionen von R_4 nicht gross.

2. Die Schnittkurve 8. Ordnung der abwickelbaren Tangentenfläche von R_4 mit einer beliebigen Ebene besteht aus 2 Aesten. Die Kurve hat 4 Rückkehrpunkte in den Schnittpunkten von R_4 mit der Querschnittebene, von denen der eine auf dem einen Ast liegt, während die 3 übrigen dem andern Ast angehören; mindestens 2 dieser Punkte sind reell. Ferner besitzt die Schnittkurve 16 nicht reelle Doppelpunkte zu je vieren auf den Schnittlinien der gedachten Ebene mit den Flächen des gemeinsamen Polartetraeders von S_1 und S_2 . Die Zahl der Wendepunkte der Kurve ist 3.8.6-8.4-6.16=16; sie sind die Schnittpunkte der Ebene mit den Tangenten in den Scheiteln der Kurve R_4 , also auch sämtliche imaginär.

Tafel I.

3. S_1 ist ein gleichseitiges Rotationshyperboloid, dessen Axe x auf der 3. Projektionsebene senkrecht steht. Die Gerade p sei der zur 1. Projektionsebene senkrechte Durchmesser z der Fläche mit den Schnittpunkten A und A_1 . Dann ist g die unendlich ferne Gerade der 1. Projektionsebene; ihre Schnittpunkte mit S_1 sind S_2 und S_3 .

Für S_2 sei C der Mittelpunkt der Strecke AA_1 , C_1 der unendlich ferne Punkt von p und D_{∞} und $D_{1\infty}$ die Richtungen der Winkelhalbierenden zu den Richtungen von B_{∞} und $B_{1\infty}$. Zur eindeutigen Bestimmung des hyperbolischen Paraboloides S_2 ist noch die Gerade c_2 angenommen, parallel zur 2. Projektionsebene und gegen die 1. Projektionsebene um 45° geneigt. Aus ihr ergeben sich noch die weitern Geraden c_3 , d_2 und d_3 von S_2 . Jede Ebene parallel zur 2. Projektionsebene enthält ausser d_{∞} eine Gerade c_3 und jede Parallelebene zur 3. Projektionsebene enthält ausser $c_{1\infty}$ eine Gerade d von S_2 .

4. Die Punkte P der Durchschnittskurve R_4 ergeben sich auf Hülfsebenen H, welche zur 3. Projektionsebene parallel sind. Jede solche Ebene enthält von S_1 einen Kreis, dessen Radius gleich der Entfernung zwischen dem Schnittpunkt von H mit der Rotationsaxe und dem Punkt A ist; von S_2 eine Gerade d, welche als Verbindungslinie der Schnittpunkte von c_2 und c_3 mit H zu konstruieren ist. Jede Hülfsebene liefert also 2 reelle Punkte von R_4 ; die beiden andern Punkte sind die imaginären Kreispunkte auf $c_{1\infty}$. Auf Tafel I ist die Konstruktion für 2 symmetrisch zum Mittelpunkt von S_1 liegende Hülfsebenen durchgeführt. Dabei sind, wie in den spätern Figuren, die Punkte des einen Astes mit ungeraden und die Punkte des andern Astes mit geraden Ziffern bezeichnet. Für die 1. Projektion von R_4 sind die Punkte D_{∞}' und $D_{1\infty}'$ Doppelpunkte, herrührend von den Geraden $c_{1\infty}$ und d_{∞} ; für die 2. Projektion sind C''' und $C_{1\infty}''$ Doppelpunkte, entstehend aus den Geraden $c_{1\infty}$ und d_1 ;

für die 3. Projektion endlich sind C''' und $C_{1\infty}'''$ Doppelpunkte, welche hervorgehen aus den Geraden c und d_{∞} der Fläche S_2 . 2)

Die 4 reellen Kurvenpunkte 1 2 4 3, welche auf 2 symmetrisch zum Mittelpunkt von S_1 liegenden Hülfsebenen erhalten werden, bilden die Ecken eines auf S_2 liegenden windschiefen Vierseits; S_2 ist also eine Vierschlussfläche des Büschels. Diese Eigenschaft besitzt aber auch S_1 , weil die Schnittpunkte der Geraden d_{∞} und d_1 mit S_1 die Ecken eines auf S_1 liegenden windschiefen Vierseits bilden. Für jede der 3 Projektionen von R_4 ergibt sich daraus einerseits eine Erzeugung aus 2 projektiven Tangenteninvolutionen auf dem Umrisskegelschnitt und anderseits eine Erzeugung aus 2 projektiven Strahleninvolutionen. 3)

Alle Geraden d von S_2 treffen R_4 in zwei reellen Punkten. Unter den Geraden c gibt es 4 Tangenten an die Kurve. Zwei derselben sind die Geraden c_2 und c_3 , welche die Fläche S_1 im Unendlichen berühren; die beiden andern, c_4 und c_5 , liegen in den Tangentialebenen an S_1 in den Schnittpunkten mit d_1 , ihre ersten Projektionen fallen zusammen mit den Scheiteltangenten der Umrisshyperbel.

5. Die Tangente in einem Punkt P an R_4 wird erhalten als Schnittlinie der Tangentialebenen in diesem Punkt an S_1 und S_2 . Es ist zweckmässig, die Spuren dieser Ebenen zu bestimmen auf einer durch den Mittelpunkt von S_1 gehenden Hülfsebene E, die zu einer Projektionsebene parallel ist. In Tafel I ist die Konstruktion ausgeführt auf der Parallelebene zur 1. Projektionsebene; die ebenso bequeme Konstruktion auf der Parallelebene zur 3. Projektionsebene soll bloss beschrieben werden.

Die Tangentialebene in P an S_1 wird bestimmt durch die Geraden a und b der Fläche, welche durch diesen Punkt gehen. Diese Geraden schneiden E in 2 Punkten, deren Projektionen die Berührungspunkte von a' und b' mit der Umrisshyperbel der 1. Projektion sind. Die gesuchte Spur s der Tangentialebene in P an S_1 ist also die Polare des Punktes P' in Bezug auf die Umrisshyperbel. Die Geraden c und d von S_2 durch P stützen sich auf die beiden Geraden CD_{∞} und $CD_{1\infty}$ von S_2 in der Ebene E; diese Stützpunkte sind zugleich die Durchstosspunkte von c und d mit E. Die Spur t der Tangentialebene in P an S_2 ist also die Verbindungslinie der Fusspunkte der Lote aus P' auf die Axen der Umrisshyperbel von S_1 . Der Schnittpunkt F von s und t ist der Durchstosspunkt der Tangente in P an R_4 mit E. Aus der entwickelten Konstruktion folgt, dass die Geraden s und t einander in F rechtwinklig schneiden.

6. Der Ort von F ist die Schnittkurve von E mit der abwickelbaren Tangentenfläche von R_4 . Dieser Ort ist eine Kurve 8. Ordnung C_8 , für welche die imaginären Kreispunkte der Ebene E vierfache Punkte sind. Ausserdem besitzt C_8 4 Doppelpunkte, welche paarweise auf den Strahlen aus p' nach jenen imaginären Kreispunkten liegen und 4 Rück-

 $^{^{2}}$) Es ist lehrreich, hier, wie auch bei den folgenden Beispielen, die Formveränderungen der Projektionen von R_{4} zu untersuchen bei veränderlichen Projektionsebenen; besonders beachtenswert sind hier die verschiedenen Formen der 1. Projektion bei Festhaltung der angenommenen 2. Projektionsebene.

³⁾ Man vergl. dazu Fiedler, Lehrbuch der darstellenden Geometrie, III. Aufl., Band III § 55.

kehrpunkte, welche sich paarweise auf den Geraden x und y, den Axen der Umrisshyperbel, befinden; das erste Paar imaginär, das zweite reell. Aus der in 5. erwähnten Eigenschaft, dass die Geraden s und t einander in F rechtwinklig schneiden, ergibt sich eine Konstruktion der Tangente im Punkt F an die Spurkurve C_8 und damit eine Konstruktion der Schmiegungsebene in P an die Raumkurve R_4 . C_8 ist der Ort des Scheitels F eines rechten Winkels, der sich so bewegt, dass seine Schenkel s und t fortwährend 2 feste Kurven Σ_s und Σ_t berühren, nämlich die Enveloppen der Linien s und t. Ist also S der Berührungspunkt von s an Σ_s und T der Berührungspunkt von t an Σ_t , so schneidet die Senkrechte in S auf s diejenige in T auf t im augen blicklichen Drehungszentrum M und die Verbindungslinie M F ist die Normale in F an C_8 , oder: Die Tangente in F an C_8 ist die Tangente in F an den Kreis, welcher durch S, T und F geht. Namentlich die letztere Konstruktion lässt sich bequem projektivisch verallgemeinern für den Schnitt jeder Tangentenfläche mit einer beliebigen durch eine der Gegenkanten p oder g gehenden Ebene.

7. Die Kurven Σ sind noch zu untersuchen und die Konstruktion der Punkte S und T zu ermitteln.

Die Tangentialebenen in den Punkten P von R_4 an eine der beiden Flächen S_i bilden die der Fläche nach R_4 umschriebene Developpable, welche R_4 in Bezug auf die betreffende Fläche zweiten Grades polarreziprok entspricht; sie ist also eine Fläche 4. Klasse, welche von jeder Ebene in einer Kurve 4. Klasse mit 2 Doppeltangenten geschnitten wird. Die Kurven Σ entsprechen also nach dem Prinzip der Dualität den Projektionen von R_4 . Sie sind zweiteilig, derart, dass aus einem beliebigen Punkt der Ebene an den einen Teil eine Tangente geht, während an den andern deren 3 gezogen werden können. In Tafel I ist die Kurve Σ_t gezeichnet.

Nun ist der Berührungspunkt S der Tangente s an Σ_s der Durchstosspunkt derjenigen Mantellinie der Developpablen längs des Hyperboloides S_1 , welche in der Tangentialebene mit der Spur s liegt. Diese Mantellinie ist aber die polarreziproke Gerade rücksichtlich S_1 zur Tangente in P an R_4 ; sie liegt also zu dieser Tangente harmonisch in Bezug auf die durch P gehenden Geraden a und b des Hyperboloides. Folglich ist S der vierte harmonische Punkt zu F in Bezug auf die Schnittpunkte von s mit der Umrisshyperbel. Aus den entsprechenden Gründen ist T der vierte harmonische Punkt zu F in Bezug auf die Schnittpunkte von t mit den Geraden t0 und t1, t2, t3, t4, t5, t6, t7, t8, t8, t8, t9, t9,

8. Für die Konstruktion der Tangente in P an R_4 mit der Ebene yz als Hülfsebene sei noch folgendes bemerkt: Die Spur s^* der Tangentialebene in P an S_1 ist die Polare des Punktes P''' in Bezug auf den Umrisskreis von S_1 . Die Spur t^* der Tangentialebene in P an S_2 ist die Parallele zum Durchmesser d''' des Punktes P''' durch den Fusspunkt der Senkrechten aus P''' auf die Gerade $y=d_1'''$; denn die Gerade d des Punktes P ist der Hülfsebene parallel und die Gerade e des Punktes e projiciert sich in die Senkrechte aus e und e und ihr Durchstosspunkt mit der Hülfsebene liegt auf e Der Berührungspunkt e von e mit der Enveloppe ist der vierte harmonische Punkt zu e in Bezug auf die Schnittpunkte

von s^* mit dem Umrisskreis. Der Berührungspunkt T^* liegt symmetrisch zu F^* in Bezug auf die Gerade y, woraus ein einfacher Zusammenhang zwischen der Spurkurve C_8^* und der Enveloppe Σ_t^* folgt.

Die Spurkurve C_8^* besitzt vierfache Punkte in den Doppelpunkten der Involution AA_1 , CC_1 auf p und Rückkehrpunkte in den imaginären Kreispunkten. Weil auch hier s^* und t^* zu einander senkrecht stehen, so kann die Tangente in F^* nach kinematischer Methode konstruiert werden. Anderseits findet man sie auch nach 6. als Tangente in F^* an denjenigen Kegelschnitt, welcher durch S^*T^* und F^* geht und die genannte Involution auf p zu seiner Involution harmonischer Pole hat.

9. In Tafel I ist noch der Schnitt Q_8 ' der Tangentenfläche mit einer beliebigen Parallelebene zur 1. Projektionsebene gezeichnet, indem direkt die Durchstosspunkte der Tangenten an R_4 mit dieser Ebene konstruiert wurden. Q_8 hat ebenfalls vierfache Punkte in den imaginären Kreispunkten; die Tangenten in entsprechenden Punkten F und Q der beiden Spurkurven sind zu einander parallel.

Die hier konstruierte Tangentenfläche von R_4 eignet sich vorzüglich für eine Darstellung mit Niveaukurven parallel zur 1. oder 3. Projektionsebene. Und zwar können aus 2 solchen Kurven die übrigen in einfacher Weise abgeleitet werden. Ist z. B. die Ebene der Kurve Q_8 von der Ebene der Kurve C_8 um z Einheiten entfernt, so hat man nur die Strecke zwischen den Punkten F und Q' auf jeder Tangente in z gleiche Teile zu teilen, so liefern die z—1 Teilpunkte Punkte für die Zwischenkurven und durch Fortsetzung der Teilung über F und Q' hinaus erhält man Punkte für die weitern Kurven. Mit Hülfe der Niveaukurven kann die Fläche auch bequem modelliert werden. 4)

10. Für die analytische Behandlung der Aufgabe sei folgendes bemerkt: Die Gleichungen der Flächen S_1 und S_2 sind

$$-x^2 + y^2 + z^2 - a^2 = 0 (1)$$

$$2 xy - 2 bz = 0 (2)$$

Eine beliebige Fläche S des durch S_1 und S_2 bestimmten Büschels wird dargestellt durch

$$(-x^2 + y^2 + z^2 - a^2) - \lambda (2 x y - 2 b z) = 0$$
 (3)

Die Polarebene des Punktes Z_{∞} in Bezug auf S hat die Gleichung

$$z + \lambda b = 0$$

oder

Der Umriss von S bei einer Orthogonalprojektion auf die Ebene xy ist daher bestimmt durch

$$-x^{2} + y^{2} + \lambda^{2}b^{2} - a^{2} - 2 \lambda x y - 2 \lambda^{2}b^{2} = 0$$

$$\lambda^{2}b^{2} + 2 \lambda x y + x^{2} - y^{2} + a^{2} = 0$$
(4)

 4) Es ist interessant, die Schnitte der Tangentenfläche von R_4 mit Parallelebenen zur 1. Projektionsebene zu vergleichen mit den Schnitten der Tangentenfläche, welche bei folgender Anordnung der Durchdringung entsteht: S_1 und S_2 sind 2 Kegelflächen, deren Leitkurven in der nämlichen Ebene E gleichseitige Hyperbeln mit demselben Mittelpunkt sind und deren Spitzen mit diesem Mittelpunkt in einer Geraden liegen. Auch hier sind die Schnittkurven der Tangentenfläche mit E und den dazu parallelen Ebenen Kurven 8. Ordnung mit vierfachen Punkten in den imaginären Kreispunkten. Jedoch sind diese Kurven einteilig und besitzen stets 4 reelle Wendepunkte auf den Paaren reeller Tangenten aus den Kegelspitzen an die Durchschnittskurve und 2 reelle Rückkehrpunkte. Zu diesen Kurven gehören auch die 2 reellen Doppelkurven der Tangentenfläche, welche Bernoullische Lemniskaten sind.

Bei veränderlichem λ stellt diese Gleichung eine Kegelschnittreihe vom Index 2 dar; jedes Exemplar der Reihe berührt die Projektion der Durchdringungskurve von S_1 und S_2 auf xy in 4 Punkten, welche unpaar auf die beiden Aeste verteilt sind. Die Gleichung dieser Projektion lautet:

$$x^2 y^2 - b^2 (x^2 - y^2 + a^2) = 0.$$

In gleicher Weise ergeben sich die Gleichungen der Projektionen von R_4 auf die Ebenen xz und yz; sie sind:

$$x^{2} (x^{2} - z^{2} + a^{2}) - b^{2} z^{2} = 0$$

 $y^{2} (y^{2} + z^{2} - a^{2}) - b^{2} z^{2} = 0$.

Stellt die Gleichung (4) für einen bestimmten Wert des Parameters λ ein Linienpaar dar, so ist die diesem Parameterwert entsprechende Fläche des Büschels ein Kegel. Zur Bestimmung der Parameter der 4 Kegel des Büschels erhält man somit die Gleichung

oder

und

woraus folgt, dass alle 4 Kegel des Büschels nicht reell sind.

Tafel II.

11. S_1 ist ein gleichseitiges Rotationshyperboloid mit zur 1. Projektionsebene senkrechter Axe z. Auf diesem ist das windschiefe Vierseit A B A_1 B_1 so gewählt, dass dessen 1. Projektion das dem Umrisskreis umschriebene Quadrat ist, dessen Seiten zur 2. resp. 3. Projektionsebene, d. h. zu den Axen x und y, parallel sind.

 S_2 enthält das windschiefe Vierseit CDC_1D_1 , wo C' und D' die Mittelpunkte der Radien nach A' und B_1' und C_1 und D_1 die unendlich fernen Punkte von p und g sind. Setzt man noch fest, dass Z_{∞} auf S_2 liegen soll, so ist die Fläche eindeutig bestimmt. Auf S_2 liegen noch die ausgezeichneten Geraden c_2 , c_4 , c_3 und c_5 , deren Konstruktion aus der Figur leicht ersichtlich ist; sie sind Tangenten von R_4 und zwar c_3 und c_5 mit unendlich fernen Berührungspunkten. Weil c_2 durch Z_{∞} geht, so muss die 1. Projektion von R_4 eine Kurve mit Rückkehrpunkt sein.

12. Da $C_1 D_1 = c_1$ die unendlich ferne Gerade der 1. Projektionsebene ist, so schneidet jede Parallelebene zur 1. Projektionsebene S_2 noch in einer Geraden d. Diese Ebenen werden daher zweckmässig als Hülfsebenen für die Konstruktion der Punkte P von R_4 verwendet: man schneidet jede Gerade d mit dem Kreis von S_1 , welcher in der nämlichen Hülfsebene liegt. Jede Hülfsebene liefert also ausser den unendlich fernen Kreispunkten 2 reelle Punkte von R_4 , einen für jeden Ast. In der Figur sind ausser den 3 ausgezeichneten Hülfsebenen durch d, d_1 und d_2 2 weitere durch d_3 und d_5 gewählt, welche symmetrisch zum Mittelpunkt von S_1 liegen und die vierten harmonischen zu ihnen durch d_4 und d_6 in Bezug auf die durch p und p gehenden Hülfsebenen.

Die 4 Kurvenpunkte, welche auf 2 symmetrischen Hülfsebenen liegen, bilden die Ecken eines windschiefen Vierseits, welches auf S_2 liegt. Die 4 Punkte auf 2 harmonischen

Hülfsebenen sind die Ecken eines Vierecks, von welchem 2 Gegenseiten auf S_2 liegen und 2 andere Gegenseiten sich auf die Geraden p und g stützen, also jener ausgezeichneten Fläche 4. Ordnung angehören, welche gebildet wird durch die Bisekanten von R_4 , welche p und g schneiden. Das letztere wird am einfachsten dadurch bewiesen, dass man die Kurve R_4 auf eine neue 2. Ebene projiciert, welche senkrecht zu p steht. Dann wird die geschaarte Involution von R_4 rücksichtlich der Axen p und g als zentrische Involution der Projektion mit dem Punkt p" als Zentrum und der Geraden g" als Axe projiciert. Entsprechende Punkte der Involution liegen daher auf Parallelen zu g", welche durch p" und g" harmonisch getrennt werden.

13. Erwähnt sei noch eine Konstruktion der 1. Projektion von R_4 , welche sich ergiebt aus der Betrachtung der Projektion der Vierseite von S_2 , welche R_4 eingeschrieben sind. Sie lautet: Gegeben sei ein Kreis mit dem Mittelpunkt O und den Durchmesserendpunkten S und T; zu OS errichte man das Mittellot, welches den Kreis in A und B schneidet. Von O und T aus bewegen sich 2 Punkte O' und T' in gleicher Richtung, der zweite mit der doppelten Geschwindigkeit des ersten. Um den Mittelpunkt O' zieht man den Kreis durch A und B, welcher den angenommenen Durchmesser in Y und Y_1 schneidet und durch diese Punkte die Senkrechten y und y_1 zum angenommenen Durchmesser. In T' errichtet man die Senkrechte zum Durchmesser und verbindet deren Schnittpunkte X und X_1 mit dem gegebenen Kreis durch die Strahlen x und x_1 mit S. Der Ort der Schnittpunkte der Strahlenpaare y y_1 und x x_1 ist die erste Projektion unserer R_4 .

Durch Aenderung der Projektivität zwischen O' und T', durch Aenderung der Punkte A und B, durch Ersetzen des Kreises durch einen andern Kegelschnitt oder durch Aenderung der Richtung von y und y_1 können andere Formen der ebenen Kurve und damit wieder neue Formen von R_4 gefunden werden. Folgende einfache Anordnungen führen auf interessante ebene Kurven 4. Ordnung mit unpaaren Aesten:

- a) A und B seien die Endpunkte des zu TS senkrechten Durchmessers des Kreises; O' und T' fallen immer zusammen.
- b) A und B liegen auf der Tangente in T an den Kreis in einer Entfernung von T gleich dem Radius des Kreises; O' und T' fallen immer zusammen.
- c) A und B wie in a), aber O' und T' symmetrisch zu O.
- d) A und B liegen auf der Tangente in S an den Kreis in einer Entfernung von S gleich dem Radius des Kreises; O' und T' fallen immer zusammen.
- e) An Stelle des Kreises tritt eine gleichseitige Hyperbel, S und T sind die Scheitel derselben. A und B liegen auf der Scheiteltangente in T, in einer Entfernung von T gleich der halben Axe der Hyperbel. O' und T' bewegen sich von T aus in gleicher Richtung, T' mit der doppelten Geschwindigkeit von O'.

Dabei sind die Strahlen y und y_1 immer senkrecht zu ST zu nehmen.

14. Die Tangenten in den Punkten von R_4 sind konstruiert mit Benützung der Spuren s und t der Tangentialebenen in der Parallelebene E zur 1. Projektionsebene durch die Gerade p.

Es ist zweckmässiger, diese Ebene zu benützen als die Mittelebene, weil man auf ihr nach 6. die Spur der Schmiegungsebene bestimmen kann.

Die Tangentialebene in P an S_1 ist bestimmt durch die Geraden a und b dieses Punktes; ihre Projektionen sind die Tangenten aus P' an den Umrisskreis und ihre Durchstosspunkte mit der Ebene E liegen auf dem in dieser Ebene enthaltenen Parallelkreis von S_1 . Die Kurve Σ_s ist in der Figur punktiert. Einfacher gestaltet sich die Konstruktion der Kurve Σ_t : Die Gerade d des Punktes P ist zu E parallel, also eine Spurparallele der Tangentialebene in P an S_2 . Die Gerade c durch P stützt sich auf die in E liegende Gerade d_1 , der Stützpunkt ist ein Punkt von d_1 . Diese Gerade wird also erhalten, wenn man durch den Schnittpunkt der Parallelen zur d_1 0 mit d_1 0 eine Gerade zieht, welche mit der Verbindungslinie des Rückkehrpunktes von d_1 1 mit d_1 1 gleich gerichtet ist. d_1 2 ist eine Doppeltangente von d_1 3 die andere Doppeltangente ist die unendlich ferne Gerade. Der Zusammenhang der Geraden d_1 3 welche den 8 reellen Punkten einer Gruppe von 4 Hülfsebenen entsprechen, ist aus der Figur zu ersehen.

Der Berührungspunkt von s mit Σ_s ist der vierte harmonische Punkt zu F in Bezug auf die Schnittpunkte von s mit dem Kreis in der Ebene E; der Berührungspunkt von t mit Σ_t liegt symmetrisch zu F in Bezug auf den Schnittpunkt von t mit der Doppeltangente d_1 .

Die Spurkurve C_8 der Tangentenfläche von R_4 hat vierfache Punkte in den Doppelpunkten der Involution auf p. Die Tangenten an diese Kurve werden konstruiert nach dem in 6. entwickelten Verfahren.

Einfach werden hier die Schnitte der Tangentenfläche mit den Ebenen zy und zx. Beide sind Schmiegungsebenen von R_4 , schneiden also die Tangentenfläche in 2 unendlich benachbarten Mantellinien und einer Kurve 6. Ordnung mit 8 imaginären Doppelpunkten und einem Rückkehrpunkt. Die Kurve in yz besteht aus einem Oval und einem kardioidenförmigen Ast; diejenige in xz besteht aus einem hyperbolischen Ast mit den Asymptoten x+z=o und x+2 z=o, und einem andern Ast, für welchen die z-Axe Asymptote und die unendlich ferne Gerade Rückkehrtangente ist.

15. Es sollen noch die wichtigsten Gleichungen aufgestellt werden. Die Gleichung von S_1 ist

$$x^2 + y^2 - z^2 = a^2$$
.

 S_2 enthält die Schnittlinien folgender Ebenenpaare:

$$egin{array}{lll} z-a=o & & \mbox{und} & y=-x-a \ z+a=o & & y=x-a \ y=-x-a & & z+a=o \ y=-x-a & & y=x-a \ \end{array}$$

Also muss die Gleichung von S_2 die Form haben

$$(z-a)(x-y-a)-u(z+a)(x+y+a)=o.$$

Beachtet man, dass auf S_2 der Punkt mit den Koordinaten $x=o,\ y=o,\ z=o$ liegt, so folgt $\alpha=1$ und daraus die Gleichung von S_2

$$yz + a (x + z) = 0.$$

Die Gleichungen der Projektionen von R_4 lauten:

1. Projektion:
$$(x^2 + y^2 - a^2) (y + a)^2 - a^2 x^2 = a^2$$

Die Parameter der 4 Kegelflächen sind die Wurzeln der Gleichung

$$\lambda^4 + \lambda^2 + 1 = o,$$

insofern die Gleichung des Büschels lautet

$$x^2 + y^2 - z^2 - a^2 - 2 \lambda (yz + ax + az) = 0,$$

woraus folgt

$$\lambda = \pm \sqrt{\frac{-1 \pm i \sqrt{3}}{2}}$$

Tafel III.

16. S_1 ist ein gleichseitiges Rotationshyperboloid, dessen Axe z zur 1. Projektionsebene senkrecht steht. Auf diesem Hyperboloid ist das windschiefe Vierseit A B A_1 B_1 angenommen, durch welches die Geraden p und g bestimmt sind.

C ist der Mittelpunkt von A A_1 , C_1 der unendlich ferne Punkt von p; D ist der Mittelpunkt von B B_1 , D_1 der unendlich ferne Punkt von g. Für die Fläche S_2 ist also die Gerade c die Axe von S_1 ; die Gerade c_1 ist die unendlich ferne Gerade der 1. Projektionsebene. Zur eindeutigen Bestimmung des hyperbolischen Paraboloides S_2 ist noch die Gerade c_2 gegeben, deren eine Projektion beliebig angenommen werden kann, während die andere Projektion durch die Bedingung, dass c_2 die Geraden d und d_1 schneiden muss, bestimmt ist. Die erste projicierende Ebene von c_2 ist die eine Richtungsebene von S_2 ; die 1. Projektionen der Geraden c sind daher zu c_2 parallel. Die 2. Projektionen der Geraden c gehen durch den Schnittpunkt von c und c_2 , weil die projicierende Gerade dieses Punktes eine Gerade d von S_2 ist.

Die Punkte von R_4 werden konstruiert mit Hülfsebenen, welche zur 1. Projektionsebene parallel sind. Jede solche Ebene schneidet aus S_1 einen Kreis und aus S_2 die unendlich ferne Gerade c_1 und eine Gerade d, welche Durchmesser des Kreises ist. R_4 geht also durch die Kreispunkte auf der Geraden $c_{1\infty}$. Die Kurve besitzt eine orthogonale Axensymmetrie in Bezug auf die Axe z, d. h. die Gerade c; diese Symmetrie projiciert sich als zentrische Symmetrie für die 1. und als Axensymmetrie für die 2. und 3. Projektion.

Speziell zu beachten sind die Punkte 5, 6, 13, 14, die Ecken eines auf S_1 liegenden Vierseits P_5 P_{14} P_6 P_{13} .

17. Die unendlich fernen Punkte von R_4 sind die Schnittpunkte der in der unendlich fernen Ebene liegenden Geraden c und d mit dem unendlich fernen Querschnitt des Hyperboloides. Zwei dieser Punkte sind die schon erwähnten unendlich fernen Kreispunkte auf der Geraden c_1 . Um die Richtungen der zwei andern zu ermitteln, schneidet man die zur 1. Projektionsebene senkrechte Ebene über m, parallel c_2 , mit dem Richtungskegel des Hyper-

boloides von der Spitze L; wobei L so bestimmt ist, dass der Grundkreis des Richtungskegels auf der Parallelebene zur 1. Projektionsebene durch den Mittelpunkt von S_1 dieselbe 1. Projektion hat, wie die Kreise des Hyperboloides in den Hülfsebenen durch 9 und 10 oder 11 und 12. Die Schnittlinien u_1^* und u_2^* der Richtungsebene mit dem Richtungskegel geben die Richtungen der reellen Asymptoten von R_4 . Man leitet daraus die Geraden c_3 und c_4 ab, deren unendlich ferne Punkte auf R_4 liegen. Die 2. Projektionen derselben sind parallel zu u_1^* und u_2^* ; die 1. Projektionen können aus den 2. gefunden werden durch Benützung der Beziehung, dass die Geraden c die Geraden d schneiden.

Die Tangentialebenen in den unendlich fernen Punkten von c_3 und c_4 an S_2 gehen durch die Gerade d_{∞} ; sie stehen also senkrecht zur 1. Projektionsebene, folglich sind c_3 und c_4 auch die 1. Projektionen der Asymptoten u_1 und u_2 von R_4 . Die Tangentialebenen in jenen unendlich fernen Punkten an S_1 gehen durch den zu m senkrechten Durchmesser s des Kehlkreises des Hyperboloides. Die Schnittpunkte von s mit den Geraden c_3 und c_4 sind die Durchstosspunkte der Asymptoten u_1 und u_2 mit der Kehlkreisebene xy.

18. Um die Tangente in P an R_4 zu konstruieren, sucht man am besten den Durchstosspunkt derselben mit der Ebene xy oder mit einer Parallelebene dazu durch p oder g. In Tafel III sind die Tangenten einzelner Punkte konstruiert durch Bestimmung der Durchstosspunkte mit der zuerst genannten Ebene. Die Gerade s für die Tangentialebene des Punktes P an S_1 ist die Polare des Punktes P' in Bezug auf den Umrisskreis. t wird erhalten als Parallele zum Durchmesser des Punktes P' durch den Schnittpunkt der Geraden t' durch t' mit der Geraden t' in der Ebene des Umrisskreises. Auch hier stehen entsprechende Gerade t' auf einander senkrecht; für die Konstruktion der Spur der Schmiegungsebene ist daher das frühere kinematische Verfahren anwendbar.

Besonders zu beachten sind die Tangenten in den schon erwähnten Punkten 5, 6, 13 und 14. Die Gerade d_2 ist symmetrisch zu m in Bezug auf g und p. Also bildet die Gerade c durch einen dieser Punkte, z. B. 5, mit d_2 und g ein gleichschenkliges Dreieck. Die Spitze dieses Dreiecks, d. h. der Schnittpunkt von c und d_2 oder der Durchstosspunkt der Geraden c mit der Ebene xy, liegt auf dem Mittellot des Radius von 5, welches zugleich die Linie s für den Punkt 5 ist. c liegt also in der Tangentialebene des Punktes 5 an S_1 , ist daher selbst die Tangente dieses Punktes. Die Tangenten in S_1 , S_2 , S_3 , S_4 ,

Fig. a gibt die neue 2. Projektion von R_4 auf eine Ebene, welche zu d_4 senkrecht steht; Fig. b diejenige auf eine Normalebene zu m. In der letzten Figur sind die Projektionen der Geraden c parallel zur z-Axe; speziell haben also auch die Tangenten in 5 " 6 " 13 " 14 " diese Richtung. Interessant ist noch die Projektion von R_4 aus dem unendlich fernen Punkt von p oder g, wo eine Kurve entsteht, die mit sich selbst in einer zentrischen Involution steht, jedoch bei wesentlich anderer Form als in Art. 12.

19. Auch hier sollen die Gleichungen der sich durchschneidenden Flächen aufgestellt werden. S_1 ist gegeben durch

$$x^2 + y^2 - z^2 = a^2$$

Auf S_2 liegen die Schnittlinien folgender Ebenenpaare:

$$z-a=o$$
 und $x+y=o$
 $z+a=o$ $x-y=o$
 $z-a=o$ $x+a=o$
 $x-y=o$

Also lautet die Gleichung von S_2 :

wo α einen Parameter bedeutet, der durch eine weitere der Fläche auferlegte Bedingung bestimmt werden kann.

Die Richtungsebenen von S_2 sind z=o und x-y-a (x+y)=o. Die ersten Projektionen der Geraden c sind daher parallel zur Linie

$$y = \frac{1-a}{1+a} x,$$

woraus sich die geometrische Bedeutung des Parameters α ergibt. Die Gleichung der 1. Projektion von R_4 heisst

$$(x^{2} + y^{2} - a^{2})\{x - y - a(x + y)\}^{2} - a^{2}\{x - y + a(x + y)\}^{2} = 0$$
 oder
$$(x^{2} + y^{2})\{x - y - a(x + y)\}^{2} - 2a^{2}\{(x - y)^{2} + a^{2}(x + y)^{2}\} = 0$$

Bringt man die Gleichung des Flächenbüschels auf die Form

$$x^{2} + y^{2} - z^{2} - a^{2} - 2 \lambda \left[z \left\{ x - y - a \left(x + y \right) \right\} - a \left\{ x - y + a \left(x + y \right) \right\} \right] = 0,$$

so sind die Parameter der Kegelflächen des Büschels bestimmt durch die Gleichung

$$\begin{vmatrix} 1 + \lambda^{2} (1 - a)^{2} & -\lambda^{2} (1 - a^{2}) & \lambda (1 + a) \\ -\lambda^{2} (1 - a^{2}) & 1 + \lambda^{2} (1 + a)^{2} & -\lambda (1 - a) \\ \lambda (1 + a) & -\lambda (1 - a) & -1 \end{vmatrix} = 0$$

$$16 \ a^{2} \ \lambda^{4} + 4 \ (1 + a^{2}) \ \lambda^{2} + 1 = 0,$$

also

oder

woraus sich die Werte $\pm \frac{i}{2}$ und $\pm \frac{i}{2}$ ergeben.

Tafel IV.

20. S_1 ist ein hyperbolisches Paraboloid, bestimmt durch das windschiefe Vierseit $A B A_1 B_1$. S_2 ist konstruiert wie auf Tafel III. Die Gerade d_{∞} durch Z_{∞} geht durch den Berührungspunkt von S_1 mit der unendlich fernen Ebene; sie ist also Tangente an R_4 . Folglich besitzt R_4 einen parabolischen Ast. Ferner hat die Kurve 2 unendlich ferne Punkte in den Schnittpunkten der Geraden a und b im Scheitel von S_1 mit der Geraden $c_{1\infty}$. Die Tangenten in diesen beiden Punkten sind die Geraden d_2 und d_7 . Die letzte Gerade d, welche R_4 berührt, geht durch den Scheitel von S_1 . Die 1. Projektion von R_4 ist eine Kurve 3. Ordnung, deren 3. Asymptote die Linie m ist, hervorgehend aus der Tangente d_{∞} .

Die Punkte von R_4 sind konstruiert mit Hülfsebenen, welche zur 1. Projektionsebene parallel laufen. Jede dieser Ebenen H schneidet aus S_1 eine gleichseitige Hyperbel, deren Axen mit p' und g' zusammenfallen und deren Hauptaxe der Länge nach mit der Sehne über-

einstimmt, welche H aus der Umrissparabel der 2. Projektion schneidet; H schneidet aus S_2 ausser $c_{1\infty}$ eine Gerade d, welche Durchmesser der Hyperbel ist. Die Schnittpunkte der Hyperbel mit diesem Durchmesser sind Punkte von R_4 .

Für die vorliegenden Verhältnisse ist folgende Konstruktion der Schnittpunkte einer gleichseitigen Hyperbel mit einem Durchmesser g zweckmässig: Man beschreibe (Fig. c) um den Mittelpunkt der Hyperbel einen Kreis, welcher die Kurve in den Scheiteln berührt. Im einen Scheitel zieht man die Tangente s, welche g in S schneidet. Durch S zieht man die Parallele g' zur Hauptaxe und projiciert deren Schnittpunkte G' und H' aus dem andern Scheitel C auf g. Die Projektionen sind die gesuchten Punkte, deren Genauigkeit mit Hülfe der Schnittpunkte H_1 H_2 und G_1 G_2 auf den Asymptoten kontroliert werden kann. Der Beweis der Konstruktion ergibt sich aus der zentrischen Kollineation zwischen der Hyperbel und dem Kreis.

Auch hier ist R_4 orthogonal symmetrisch in Bezug auf die z-Axe; jedoch hat diese Symmetrie einen andern Charakter als diejenige der vorigen Figur: die 2 Punkte von R_4 auf der nämlichen Geraden d gehören hier demselben Ast an; unter diesen Geraden befinden sich daher auch die reellen Tangenten von S_2 an R_4 .

Die Konstruktion ist auf Tafel IV speziell durchgeführt für 2 Hülfsebenen H, welche durch p " und g" harmonisch getrennt werden. Die 2. Projektion von R_4 ist mit sich selbst in einer zentrischen Involution mit g" als Zentrum und p" als Axe. Weil die Geraden 1, 4 und 2, 3 die Gerade d_1 schneiden, so gehören die Seiten des Vierseits 1, 3, 2, 4 der Fläche S_2 an. Diese eingeschriebenen Vierseite projicieren sich namentlich in der 1. Projektion von R_4 einfach: die Projektionen der Gegenecken sind konjugierte Punkte der C_3 . Die Vierseite von S_1 , welche R_4 eingeschrieben sind, projicieren sich als eingeschriebene Rechtecke der C_3 , deren Gegenecken ein weiteres System konjugierter Punkte dieser Kurve liefern.

Fig. a gibt die Projektion von R_4 auf eine zu m senkrechte Ebene; es entsteht eine Kurve, für welche der eine Doppelpunkt ein unendlich ferner Rückkehrpunkt mit der z-Axe als Rückkehrtangente ist. Fig. b gibt die Projektion von R_4 auf eine zu d_4 senkrechte Ebene; die 2. Projektion von R_4 und die Transformationen a) und b) zeigen also die eingangs erwähnten 3 Möglichkeiten für die scheinbaren Doppelpunkte.

21. R_4 kann hier auch konstruiert werden, indem man nach Angabe der nötigen Bestimmungselemente die Kurve C_3 direkt nach planimetrischer Methode konstruiert. Nach den von Steiner und Clebsch entwickelten Theorien findet man bequem die Endpunkte von Durchmessern der C_3 und daraus dann die Punkte von R_4 auf Geraden d von S_2 .

Es ist überhaupt in gewissen Fällen zweckmässig, die Durchdringungskurve zweier Flächen 2. Grades dadurch zu bestimmen, dass man zunächst die gegebenen Elemente beider Flächen einer Transformation unterwirft, so dass die neue Projektion der Kurve R_4 von der 3. Ordnung wird, dann diese Kurve nach planimetrischer Methode konstruiert und endlich daraus die ursprünglichen Projektionen ableitet.

Die nächste Tafel bietet ein Beispiel für dieses Verfahren.

22. Die Tangentenkonstruktion ist für Tafel IV einfach, wenn man die Durchstosspunkte der Tangenten in der Parallelebene zur 1. Projektionsebene durch den Scheitel von S_1 sucht. s ist die Verbindungslinie der Fusspunkte der Senkrechten aus P' auf die Mittellinien des Quadrates A' B' A_1' B_1' . t geht durch den Schnittpunkt von d_3' mit der Parallelen durch P' zu m und ist gleich gerichtet wie der Durchmesser d' von P'.

Die Spurkurve der Tangentenfläche zerfällt in die Gerade d_3 und eine Kurve 7. Ordnung, für welche die unendlich ferne Gerade eine doppelte Rückkehrtangente ist. C_7 besitzt 12 imaginäre Doppelpunkte zu je dreien in 4 nicht reellen Geraden.

Tafeln V und VI.

23. Beide Tafeln gehören zusammen. Tafel VI enthält in orthogonal-axonometrischer Darstellung das, was in Tafel V innerhalb eines rechtwinkligen Parallelepipedes, dessen Dimensionen aus den angegebenen Pfeilen ersichtlich sind, gezeichnet ist.

 S_1 ist ein gleichseitiges Rotationshyperboloid mit zur 3. Projektionsebene senkrechter Axe. Das Vierseit A B A_1 B_1 ist so gewählt, dass seine 1. Projektion ein der Umrisshyperbel umschriebenes Parallelogramm ist, von welchem 2 Gegenseiten mit den Scheiteltangenten zusammen fallen. p' und g' bilden ein Paar konjugierte Durchmesser der Umrisshyperbel. S_2 ist so gewählt, wie in den beiden vorhergehenden Fällen, jedoch mit Rücksicht darauf, dass R_4 4 reelle unendlich ferne Punkte erhalte.

Die Konstruktion der Punkte von R_4 ist nach dem in Art. 20 entwickelten Verfahren ausgeführt. Man kann jedoch hier mit Vorteil die in Art. 21 besprochene Methode verwenden: Man konstruiert zunächst für die nötige Anzahl von Bestimmungselementen von R_4 eine neue 2. Projektion auf eine Ebene, welche senkrecht steht zu einer Asymptote der Umrisshyperbel der 1. Projektion. Diese neue 2. Projektion ist eine Kurve 3. Ordnung, für welche die z-Axe eine Axe orthogonaler Symmetrie ist. Die Schnittpunkte von C_3 mit den zur z-Axe senkrechten Sehnen liefern die neuen 2. Projektionen der Schnittpunkte von R_4 mit den Geraden d von S_2 , woraus dann die ursprünglichen Projektionen hergeleitet werden können.

Von den Geraden d sind auch hier 4 Tangenten an R_4 ; 2 derselben, d_4 und d_7 , haben unendlich ferne Berührungspunkte; ihre 1. Projektionen fallen mit den Asymptoten der Umrisshyperbel zusammen.

Die 2 weitern Asymptoten von R_4 ergeben sich so: Die Normalebene über m zur 1. Projektionsebene ist eine Richtungsebene des hyperbolischen Paraboloides S_2 (die andere Richtungsebene ist die erste Projektionsebene selbst); sie schneidet den Asymptotenkegel von S_1 in 2 Geraden u_2^* und u_4^* , deren unendlich ferne Punkte auf R_4 liegen. Um diese Geraden zu bestimmen, ist eine Hülfsebene parallel zur 3. Projektionsebene gelegt, deren zweite Spur k ist. Diese Hülfsebene schneidet die Richtungsebene nach einer Geraden und den Asymptotenkegel nach einem Kreis. Die Schnittpunkte K der Geraden mit den Kreis sind Punkte von u_2^* und u_4^* . Die Konstrüktion der Punkte K ist ausgeführt mit einer Umklappung der Ebene in die Parallelebene zur 2. Projektionsebene durch den Mittelpunkt M des Kreises. Auch die Drehung der Hülfsebene in eine Parallelebene zur 1. Projektionsebene durch M ist gezeichnet. Nachdem u_2^* und u_4^* gefunden sind, bestimmt man die zu ihnen parallelen Geraden c von S_2 ,

nämlich c_4 und c_6 : man findet zunächst die 2. Projektionen derselben und daraus dann die ersten. Weil die Tangentialebenen in den unendlich fernen Punkten von c_4 und c_6 durch d_{∞} gehen, also rücksichtlich der 1. Projektionsebene projicierend sind, fallen die 1. Projektionen der Asymtoten u_2 und u_4 mit c_4 und c_6 zusammen. Die Durchstosspunkte von u_2 und u_4 mit der Parallelebene zur 1. Projektionsebene durch den Mittelpunkt von S_1 liegen auf dem zu m konjugierten Durchmesser der Umrisshyperbel, woraus auch u_2 und u_4 abgeleitet werden können.

Der unendlich ferne Doppelpunkt der 1. Projektion von R_4 hat hier einen wesentlich andern Charakter als der unendlich ferne Doppelpunkt in der 1. Projektion von Tafel I, II oder III: in ihm schneiden sich die Projektionen von 2 Zügen des nämlichen Astes von R_4 . Die 3 Asymptoten dieses Astes sind u_2 , u_4 und d_4 ; d_7 ist die Asymptote des zweiten Astes.

Interessante Kurvenformen entstehen, wenn man die 2. Projektionsebene so transformiert, dass sie senkrecht steht zu einer der Geraden d_5 , d_6 , d_{10} , d_3 , d_{12} , p, g, oder m.

24. In Tafel V sind noch die Tangenten an R_4 in 1 und 3 konstruiert mit Hülfe der Durchstosspunkte auf der Parallelebene zur 1. Projektionsebene durch den Mittelpunkt von S_1 . s ist die Polare von P' in Bezug auf die Umrisshyperbel; t wird erhalten, wenn man durch den Schnittpunkt der Geraden c' des Punktes P' mit d_{14} die Parallele zum Durchmesser von P' zieht.









