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DONKEY KONG'S LEGACY

About microprocessors as model organisms and the behavioral
politics of video games in AI

Johannes Bruder

Abstract

The article discusses forms of contamination between human and artificial intelligence in

computational neuroscience and machine learning research. I begin with a deep dive into

an experiment with the legacy microprocessor MOS 6502, conducted by two engineers

working in computational neuroscience, to explain why and how machine learning
algorithms are increasingly employed to simulate human cognition and behavior. Through the

strategic use of the microprocessor as "model organism" and references to biological and

psychological lab research, the authors draw attention to speculative research in machine

learning, where arcade video games designed in the 1980s provide test beds for artificial

intelligences under development. I elaborate on the politics of these test beds and suggest
alternative avenues for machine learning research to avoid that artificial intelligence merely

reproduces settler-colonialist politics in silico.

Keywords: artificial intelligence, machine learning, model organisms, lab studies,

algorithm studies

Introduction

Rose was one of the first researchers who I managed to engage in a longer conversation during

my fieldwork in a British neuroscience institute in 2011. She was a very casual person, always

chewing on a gum, an unperturbed look on her face, throwing truths around that I was not

always prepared to hear. I had come here to observe those who study the human brain, yet
what Rose told me is that many people in the lab I was visiting were "kind of largely outside

the domain of understanding what the brain is doing. You're more in the domain of

understanding what the signal tells you as a methodologist", she observed. "We tend to be more

computational people".
As baffled as I was in the beginning, my conversation with Rose raised my interest in

computer scientists' and engineers' perspectives of the human brain. I was intrigued by the

question about what happens when people, who would normally design circuits or code
algorithms study the human brain by their means. If microprocessors are substituted for human

brains in experiments, if machine learning algorithms are used to simulate aspects of human

cognition, how does that affect our understanding of cognition and intelligence?
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This paper is a study of machine learning algorithms in practice. It differs from studies of

algorithms at work (Kellogg, Valentine, and Christin 2020) and of algorithms as or in culture

(Seaver 2017), in that I focus on "agents" in laboratories - experimental algorithms that learn

to simulate aspects of human cognition and behavior to illuminate the ominous human

capacity of intelligence, and to help researchers in building intelligent systems. These are

experiments where the digital tries to pass as a version of the biological. This paper is hence

more firmly embedded in traditional lab studies (Knorr Cetina 1992) than in the burgeoning
field of algorithms studies, yet it draws on the methods of both fields to get a grip on
experiments that shift the boundaries between, or allow for the mutual contamination of human

and artificial intelligence.
An experiment conducted by two computational neuroscientists is exemplary in this

regard. The experimenters substituted a microprocessor that once powered the Nintendo
Entertainment System (NES) and the Apple II for the human brain and ran old video games

as example "behaviors" to analyze how the computer "thinks". Their experiment was first
and foremost meant and considered as epistemological critique: the authors provocatively
ask why neuroscientists believe they could understand the human brain although the data

analysis methods currently used in neuroscience cannot help elucidate the operations of the

infinitely less complex MOS6502 chip?

I analyze how the experimenters selectively draw on laboratory experiments in biology
to legitimate their decision to substitute a legacy microprocessor for human brains in scanners.

Their argument supports a very specific analogy between brains and computers, which
derives from mid-twentieth century attempts at modeling human decision-making on

computers and suggests that anthropologists ought to study the scripts or protocols of simulations

to get a grip on how cognition is reconceived in between human and machine.

At closer look, Jonas and Kording's study is not only epistemological critique; it provides

an inroad to the use of video games as replacement laboratories in the study of cognition and

intelligence. Jonas and Kording's choice of 1980s Atari video games like Donkey Kong as

"naturalistic" behaviors is of particular interest, since it exemplifies a recent trend to consider

these as "microcosms of the real world" (Markoff 2016). Against this backdrop, it is the video

game as virtual laboratory or test bed that determines what counts as creative and intelligent
in humans and machines.

Brains are not chips, but...

My encounter with Rose in 2011 only marked the beginning of an extended engagement
with computational neuroscience. I did not immediately notice how closely related the resurgence

of artificial neural networks and changing paradigms of computational neuroscience

were. Initially, I was too intrigued by the fact that most of the researchers I interacted with
in neuroscience laboratories were focused on data and - as one PostDoc in a Swiss neuroscience

lab told me - thought of research on the brain as "an interesting application of maths".

Some had just transferred from the field of security engineering, others had opted to analyze

brain imaging data although they had originally wanted to become analysts and work in
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finance. What they all had in common was that computers were their "lab" and data were

their research objects. They ran experiments mostly in MATLAB, carefully modeling how
the brain processes and stores information, based on data generated by scanning peoples'

brains. To test the resulting models, my interlocutors ran simulations and compared their

synthetic data with those of their volunteers' brain activity. In those tests, their models

turned into artificial brains and the dividing lines between the study of human brains and

the science of artificial intelligence began to blur.

This shift from experiments with real brains to simulations of artificial brains has

accelerated in recent years. The lab is now more often found in data centers, and machine learning

algorithms are substituted for real brains. Researchers hope to detect patterns in data of

human brain activity, and by internalizing these patterns, learn to simulate aspects of

human cognition and behavior. That is to say that the field has shifted, and labs have

partially moved online. Besides lying in brain scanners and participating in experiments
conducted in psychology laboratories, I spent months sifting through science blog posts, studying

design documents of microprocessors, and engaging with the scripts and protocols of

1980s Atari video games.1

In 2016,1 came across an experiment conducted by two computational neuroscientists,
who used a simulation of a microprocessor as an artificial brain, to test cutting-edge data

analysis methods used to study the brain. The experiment already made waves when the

paper was still in the review phase, accessible only through the online repository arXiv. Eric

Jonas and Konrad Kording had applied methods typically used to analyze brain imaging
data to study the operations of the chip while running 1980s video games such as Donkey

Kong and Space Invaders. Although the two researchers were curious to see if they could

come up with new insights on how the chip brings Donkey Kong to life, the results of their

analysis were only of secondary interest. In fact, Jonas and Kording were sure that their

experiment would fail.
The experiment was a clever hoax and a gesture of epistemological critique: if what in the

real neuroscience world would be a millions-of-dollars data set does not result in some insights

about how the processor works, why do we expect that the very same techniques would work

on the human brain? Eric Jonas had come up with the idea to analyze the chip at work with
cutting-edge brain imaging methods when he came across the Visual6502project, a collective

effort of "retro-computing enthusiasts" to study, document, and preserve the microprocessor

for generations to come Yong 2016). Using highly detailed photographs, the Visual6502 project

had managed to produce a fully functional digital model and simulation of the chip, which

allowed, among other things, to play 1980s video games on current computers (fig. 1).

In an interview with TheAtlantic, Eric Jonas explains how shocked he was that they used

the exact same techniques as neuroscientists who are trying to map the brain's connectome.

"It made me think that the analogy [between the chip and the brain] is incredibly strong"

(Yong 2016). Nevertheless, Jonas and Kording openly admit in their paper that the brain is

not actually similar to a processor.

1 See Tara Mahfoud's review of ethnographies of neuroscience practice for an overview (Mahfoud 2014)
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Neuralsystems are analogandbiophysically complex, they operate at temporalscales vastly
slower than this classicalprocessor but withfargreaterparallelism than is available in state

ofthe artprocessors. Typical neurons also haveseveralorders ofmagnitude more inputs
than a transistor. Moreover, the designprocessfor the brain (evolution) is dramatically
differentfrom that oftheprocessor (theMOS6502 was designed by a small team ofpeople over

afew years). Assuch, weshould be scepticalaboutgeneralizingfromprocessors to the brain.

(Jonas and Kording 2017, 14)

At the same time, the authors point towards some - rather abstract - similarities in how

the workings of human brains and microprocessors have typically been analyzed. Anthropologist

Joe Dumit observed that circuit diagrams have for decades structured how neuros-

cientists and psychologists study the human brain through experiments with volunteers in

scanners (Dumit 2016). In order to understand how the brain processes what we see, hear,

and feel, experimenters still come up with mental tasks for their volunteers, to simulate mundane

brain activity while they are lying in brain scanners, waiting for their thoughts to be

turned into the meanwhile iconic images of the brain at work. In other words, experimenters
activate their volunteers' brains in specific ways to understand how they work.

Figure 1: A visualization of the process by which the MOS 6502

has been optically reconstructed to generate a fully functional digital model
of the chip (Jonas and Kording 2017).

The experiment that undergirds Jonas and Kording's paper tested these methods of contemporary

neuroscience and substituted the brain of a volunteer with a legacy microprocessor

that was primarily used to play arcade video games. Their argument in a nutshell: despite all

the differences between microprocessors and brains, we should be able to understand what
the MOS6502 does by means of methods developed to analyze the infinitely more complex
human brain.
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[W]e cannot write offthefailure ofthe methods we used on theprocessorsimply because

processors are differentfrom neuralsystems.... Altogether, there seems to be little reason

to assume that any ofthe methods we usedshouldbe more meaningfulon brains than on the

processor. (Jonas and Kording 2017, 14-15)

This line of thinking has a precedent. In 2002, the scientific journal C««cerC(?//published

a piece by cell biologist Yuri Lazebnik titled "Can a biologist fix a radio? What I learned

while studying apoptosis" (Lazebnik 2002). Lazebnik elaborates on the frustration that

takes hold whenever a whole field buys into the most recent hype around a specific target
protein that promises to result in a miracle drug - only to abandon it altogether as soon as

considerable doubt over the models and methods used arises. "I started to wonder whether

anything could be done to expedite this event", Lazebnik writes. "To abstract from peculiarities

of biological experimental systems, I looked for a problem that would involve a reasonably

complex but well understood system. Eventually, I thought of the old broken transistor

radio that my wife brought from Russia" (Lazebnik 2002, 179-180).

The similarities between the titles of Lazebnik's paper and that of Jonas and Kording are

anything but coincidental. Lazebnik thought that what biology needs is an unambiguous

language, adopted from engineering, to "change from an esoteric tool that is considered useless

by many experimental biologists, to a basic and indispensable approach of biology"
(Lazebnik 2002, 182). In similar ways, Jonas and Kording argue for the language and methods

of data science to become central to research on the brain. That is, the necessity or
significance of the biological substrate in experiments is called into question: why conduct

complicated experiments with cells or human subjects if experimenting with rather simple,

human-designed systems could make everyone's lives much easier?

In both cases, the human-designed circuit stands in for the complex and messy organ to

prove that scientific methods currently used must necessarily fail. The Russian transistor

radio and the North American microprocessor, however, are not arbitrary choices—they

"emerge from particular cultural worlds, not from some technical outside" (Seaver 2018,

379). As model organism, the MOS 6502 invokes specific technocultural practices that cannot

be subsumed to the supposedly neutral domain of engineering but extend to the situated

worlds of biology laboratories as well as to the cultural niche of 1980s Atari video games.2

Model organisms

"[W]e take a classical microprocessor as a model organism, and use our ability to perform

arbitrary experiments on it to see if popular data analysis methods from neuroscience can

elucidate the way it processes information", Jonas and Kording (2017, 1) write. By referring

to the MOS6502 as a model organism, they simultaneously re-engage the in many ways
flawed brain-computer metaphor and a rich history of experimentation in biology and psy-

21 borrow the notion of "technocultural practices" from Kavita Philip, Lily Irani, and Paul Dourish, who use

it in the context of tactics for postcolonial computing, referring to media technologies as constituting "the very
cultural categories by which some seek to explain them" (Philip, Irani, and Dourish 2012, 14).
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chology, where human subjects have been substituted with non-human animals to elucidate

specific aspects of - typically disordered - human behavior.

Despite all the differences between human brains and microprocessors, comparing the

MOS 6502 to model organisms in biology would seem to legitimize the experiment. Social

scientist Nicole Nelson offers that model organisms are rarely a natural fit; "scientists themselves

build up the case for their animal models through methodological experiments and

arguments that bind together the animal model with the human disorder in a way that makes

future experimental work possible and credible" (Nelson 2013, 7). Entire communities of

researchers revolve around specific model organisms, a shared toolbox of experimental
techniques and a common language that helps handle the - at times overwhelming - differences

between humans and the non-human animal.

Jonas and Kording make a similar case for the MOS 6502 as model organism, which they
describe as falling somewhere in between the nematode worm Caenorhabditiselegans and the

lab mouse. The microprocessor sits at the intersection of their lab lives: whereas the mouse

provides a fitting behavioral model, "the processor's scale and specialization share more in

common with C. elegans than a mouse" (Jonas and Kording 2017, 3).

Lab mice

According to the Jackson Laboratory on Mount Desert Island in Maine, CL57BL/6J is the

most widely used inbred strain of laboratory mice. JAX, as the laboratory is also referred to,
has its very own "black 6" that carries the letter J as a postfix to the code that unmistakably
identifies the laboratory mouse as a commodity or "technical thing" (Rheinberger 1997).

C57BL/6J "is a permissive background for maximal expression of most mutations", the website

states, and thus "used in a wide variety of research areas including cardiovascular biology,

developmental biology, diabetes and obesity, genetics, immunology, neurobiology, and

sensorineural research".3

Despite C57BL/6J's commodification, many science studies scholars and scientists themselves

oppose considering lab mice as mere tools. The rodents that appear alongside amino

acids, centrifuges, and other technical things in Hans-Jörg Rheinberger's analysis of
experimental systems in biology do not lend themselves easily to standing in for the human,

particularly if they are to reproduce behavior that does not come natural to mice - such as binge

drinking, for instance. That is to say that even the genetically modified CL57BL/6J, which

supposedly has a preference for alcohol and morphine, remains averse to consuming extensive

amounts of alcohol. How can binge drinking behavior in mice be "naturalized" if even

genetically modified strains will not drink enough alcohol to exhibit blood alcohol levels

comparable to those that humans seem to enjoy?

Sabina Leonelli and colleagues have analyzed the use of mice as situated models in North
American alcohol research throughout the twentieth and early twenty-first century and

3 Please see Jackson Laboratory's website for more detailed information: https://www.jax.org/strain/000664.
accessed February 7, 2021.

76 /Tsantsa #26/2021



SPECIAL ISSUE

found that environmental factors and experimental situations have taken center stage in
discussions about the validity of mice to model human drinking behavior (Leonelli et al. 2014).

Researchers cannot resort to any "unnatural" incentives or force mice into drinking without
tampering with the phenomenon of drinking itself. To create a situation where the mouse

adapts human behavior, the lab and the experimental setup must constantly be reconfigured.
"Mice and humans, mazes and drugs, genes and behaviors, practical experience and widely
recognized findings - all these are continually and carefully set in relation to each other to
create a space that functions as credible site for producing knowledge about human behaviour"

(Nelson 2018, 6).

Experimenting with C. elegans is supposedly easier, not least since its brain has meanwhile

been digitally mapped. The nematode worm was a staple of the Human Genome Project
(HGP) and has become a poster child of genetics research in biology. Despite being infinitely
less complex than humans, C. elegans promised insights into certain common or even universal

biological mechanisms. Differences in complexity have typically been smoothed over by
a hypothesized common biological lineage, well-founded in the theory of evolution and

formalized in the genetic code. Ruth Ankeny, who studied the use of worms in the HGP, cites

a Science article from 1998, where Francis Collins - former director of the HGP - and

colleagues argue that

allorganisms are related through a common evolutionary tree [and] the study ofone organism

canprovide valuable information about others... Comparisons between genomes that are
distantly relatedprovide insight into the universality ofbiologic mechanisms and identify
experimental modelsforstudyingcomplexprocesses. (Collins, quoted in Ankeny 2007, 47)

Lab worms

Despite the fact that C. elegans is fairly atypical even compared to closely related organisms,

it gained biological prominence because of its experimental manipulability and tractability:
"an organism that proved experimentally straightforward to manipulate and had relatively
basic behaviors and structures, but was not so simple as to be 'unrepresentative'", Ankeny
writes (Ankeny 2007, 49). In fact, the experimental manipulability of C. elegans rests

foremost on the ease of breeding an array of "actual material worms" - using the worm as a model

organism therefore allows to construct what Ankeny calls a "data-summarizing descriptive
device" (op. cit.). Thanks to its simplistic biologic make-up, it was the first multicellular

organism with a completely sequenced genome and a known "brain".4Both are ideal types
that do not exist in nature - thus "summarizing" and "descriptive" - but they provide stable

models that permit investigating, analyzing and quantifying deviations from what is consid-

4 The C. elegans genome was initially completed in 1998 and updated roughly two decades later to include

genetic variations and mutations (The C. elegans Sequencing Consortium 1998; Yoshimura et al. 2019).

The wiring diagram of neural connections for female worms has been available since 1986; it was updated,

digitized and complemented by the male wiring diagram in 2019 (Cook et al. 2019).
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ered normal or biologically sound. The genetically modified and standardized lab worm is

hence closer to being an experimental device or machine than to an actual living organism.

Jonas and Kording consider C. elegans as a fitting analogy for the MOS 6502 since the

nematode worm is as different from the human as the microprocessor is from a brain.

Experimenting on C. elegans is considered worthwhile not because it is biologically or physically
similar to humans, but because worms appear to be infinitely simpler to control - especially
if they are disembodied and dematerialized in simulations. In a companion piece to the paper
that announced the completion of a digital atlas of C. elegans brain, (neuro)biologist Douglas
Portman contends that a detailed simulation of the worm's nervous system will allow
"generating a virtual worm that 'lives' inside a computer" (Portman 2019).

In ways similar to the case of the virtual C. elegans, the virtualized MOS 6502 acts as a

proxy for the human brain and was chosen as a model organism since "it is fully accessible

to any and all experimental manipulations that we might want to do on it" (Jonas and Kording

2017, 3). And in ways similar to the case of the lab mouse, the experimental tasks for

MOS6502 were chosen to mediate between behaviors that come "natural" to both, chips
and brains. In fact, their choice of experimental task was not arbitrary - it reflects the
experimenters' familiarity with certain test beds and attendant technocultural practices.5

The games they play(ed)

In their paper, Eric Jonas and Konrad Kording half-jokingly admit that most of their
colleagues

have at least behavioral-levelexperience with... classical videogame systems, andmany
in our community, includingsome electrophysiologists andcomputational neuroscientists,

haveformal training in computerscience, electricalengineering, computer architecture, and

software engineering. Assuch, we believe that most neuroscientists may have better intuitions
about the workings ofaprocessor than about the workings ofthe brain. (Jonas and Kording
2017, 3)

I write half-jokingly since their statement obviously represents an ironic use of field-specific

language to say what many of my interlocutors in neuroscience laboratories emphasized:

that they feel more comfortable experimenting with models and algorithms than with living
model organisms. This sort of irony is well-known among ethnographers of computing
cultures (Coleman 2010; Seaver 2017). It helps navigate the ambiguities of computational

practice - such as data that are "of the world" and simultaneously "of the computer", or test
beds that are highly constrained, yet nevertheless pose as "microcosms of real-world
problems" (Hassabis 2016). Engineers and computer scientists know very well that video games

51 use the notion of test bed in dialogue with Orit Halpern, Jesse Lecavalier, Nerea Calvillo, and Wolfgang
Pietsch's "test-bed urbanism", which describes how tests, experiments, and demos are increasingly embedded

in real life contexts and thus have immediate effects on our lives (Halpern et al. 2013). See also Marres and

Stark (2020).
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do not resemble the real world; and yet, some problems and strategies coded into video games
such as Donkey Kong (1981), Space Invaders (1978), and Montezuma's Revenge (1984) are

currently omniscient in artificial intelligence research and determine the problems that
artificial agents are supposed to solve.

At one of the current powerhouses of machine learning and artificial intelligence research,
the London-based Google subsidiary DeepMind, many leading protagonists have experience

in professional chess and video game design. Their very own brand of "neuroscience-in-

spired artificial intelligence" consists in augmenting commonly used machine learning
approaches with mechanisms that are supposedly at work also in the human brain (Hassabis

et al. 2017). To test the capacities of their agents, researchers typically resort to well-known

games. AlphaGo, for instance, became famous for beating the reigning (human) Go world

champion in 2016. A more recent version, Agent57, learned to master all video games
originally designed for Atari computers that were powered by the MOS 6502. In these experiments,

the chip is not the model organism; instead, the so-called "Arcade Learning environment"

is reconsidered as test bed for general artificial intelligence. That is, the video game
is for Google DeepMind's Agent57 what the maze is for JAX's CL57BL/6J.

Google DeepMind offers that video games are an excellent testing ground for machine

learning algorithms. Their ultimate goal is not to develop systems that excel at games; rather,

gameplay is used "as a stepping stone for developing systems that learn to excel at a broad set

of challenges". Video games reportedly force machine learning algorithms to develop "sophisticated

behavioural strategies" and the high score provides "an easy progress metri to optimise

against". Indeed, Agent57 outscored the average human in each of the 57 Atari 2600

games it learned to play. According to Google DeepMind, it "performed sufficiently wellon

a sufficiently wide range of tasks" and would thus need to be considered intelligent (Badia

et al. 2020).

But what form of intelligence is this? In Donkey Kong, the protagonist and Mario are kept
in an endless loop of outwitting their opponent, throwing wooden barrels or climbing ladders

to ultimately win (the heart of) the princess. Pitfalls and Space Invaders are similar in that

they reduce life to surviving in adverse environments, where the protagonists have the

opportunity to roam the virtual worlds at will and amass capital if they find ways to outwit
their opponents and survive. Yet, analyses of the strategies that Agent57 and its peers developed

revealed that they did often not satisfy this rather simple objective (Ecoffet et al. 2019;

Lehman et al. 2020). For instance, in Montezuma's Revenge an agent exploited a bug to
remain in the treasure room indefinitely and collect unlimited points, instead of being moved

to the next level and finish the game.
The agents would often reach high scores while failing to solve the actual problem (Kra-

kovna et al. 2020). But does that mean that they failed? "If I put you in front of a computer
game, you'll treat the point score as the objective", a machine learning researcher put it to
me while we were discussing DeepMind's experiments. "And it seems to me that this is quite
a delicate thing, because you have every incentive to sort of lie to yourself and look for the

loophole that lets you score high without actually finishing the game or even dying as quickly
as possible". Against this backdrop, it would seem that the sort of intelligence that machine

learning algorithms exhibit when trained in the highly constrained worlds of 1980s Atari
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video games is essentially that which video game designers expected human players to
develop when they built cheat codes into their games.

If DeepMind researchers admit that many agents currently excel in exploiting loopholes,

they reify specific cultural parameters of success that define intelligence as the ability to
amass enormous amounts of capital without necessarily solving any problems. Against this

backdrop, singularity acquires a whole new meaning: the general intelligence that is put to
the test is modelled after a very specific and singular understanding of what human intelligence

involves. It universalizes the idea of a player programmed into 1980s Atari video

games and restricts the task of an agent to outperforming this benchmark. What the resulting

artificial intelligence throws back at us is a radically provincial idea of human creativity,
intelligence, and ability, courtesy of technocultural practices that derive from the domain of

video game design in Europe, the US, and Japan.

Old games, new worlds

In concluding, I would like to return one final time to one of the most significant statements

within Jonas and Kording's paper: the brain is not a chip! Throughout, the authors add qualifiers

to the analogy between brains and microprocessors that should please all humanists

and appease experimental psychologists and neuroscientists. Yet, what sits at the heart of

their statement is a re-engagement of the failed brain-computer metaphor rather than its

outright rejection. Jonas and Kording's choice to substitute a simulated version of the legacy

microprocessor for the human brain in their experiment shows to what extent computing and

cognitive science have for decades been entangled. While brains are no longer compared to

computers, computational neuroscience has successfully implemented a language that allows

to describe cognitive processes in the Cloud and in human brains in similar and compatible

ways (Bruder 2019).

Again, this thinking has a historical precedent. In the mid-1950s, social scientist and

artificial intelligence forerunner Herbert Simon and his colleagues at the RAND Corporation
tried to model and operationalize human reasoning on the JOHNNIAC computer, to investigate

a phenomenon Simon dubbed "bounded rationality" (Simon 1957). It was an attempt
at exploring the very possibility of rational decision making and experimenting on the

computer's capacity to circumnavigate the limits that biology imposed. Simon and his colleagues

therefore implemented a program called Logic Theory Machine on the JOHNNIAC. In a

paper published in 1958, Simon and colleagues offer that they "are not comparing computer
structures with brains, nor electrical relays with synapses. Our position is that the appropriate

way to describe a piece of problem-solving behavior is in terms of a program: a specification

of what the organism will do under varying environmental circumstances in terms of

certain elementary information processes it is capable of performing" (Newell, Shaw, and

Simon 1958, 153).

In 1958, the JOHNNIAC put a strict limit on the complexity of human behaviors that could
be simulated - both due to its insufficient computational capacities (Dick 2015) and the

deeply North American technocultural practices that manifested in its design. The case of
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MOS6502 is similar. While generally a multi-purpose processor, it comes with certain
"naturalistic behaviors" which predetermine what "sophisticated behavioral strategies" can be.

The player coded into 1980s video games is a liberal subject that conquers and stays, to
accumulate capital and outscore existing benchmarks. The fact that these agents discover loopholes

and bugs in video games is thus hardly "surprising creativity" (Lehman et al. 2020,

274). It proves that the agent performs sufficiently well in its task to mimic and outperform
the player that was coded into the game. Against this backdrop, it would seem that it is not

primarily the machine that contaminates our understanding of (human) intelligence, but that

a very provincial understanding of the liberal subject, rooted in settler colonialist thinking
and manifested in Arcade video games, bleeds into machine learning algorithms by way of

the experimental task.

Nevertheless, this article is not to dismiss computational test beds, demos, and experiments;

instead, it is an attempt at problematizing the notion that artificial intelligence must

necessarily restrict our understanding of intelligence. The question that I would like to ask

is whether we can avoid over-fitting agents to test beds that privilege exploitative strategies
and winning at all costs? In other words, could the use of microprocessors and machine learning

algorithms as model organisms incite experiments where what an organism can become is

not determined by the design of its test beds?

A change of perspective on the laboratory and model organisms allows for very different
mediations between the digital and the biological to come to the fore. In her analysis of mice

as model organisms in post-genomic biology, geographer Gail Davies argues that the humanized

mouse potentially offers a means of escape from the biological grammar of genomics.
She observes that the "process of 'becoming human' opens these model organisms to biological

relations, which are not only interior but also external, remaking relations between

experimental subjects and objects, laboratory spaces and clinical contexts" (Davies 2013,

147). Hers is an invitation to study the humanized mouse as an object of patchwork, linking
different fields and territories of scientific investigation and the continued exhaustion of

nature (Tsing, Mathews, and Bubandt 2019). It may also be read as a call for attending to the

epistemological and ontological opportunities of multispecies thinking, of thinking through,

yet most importantly, beyond the roles that mice are relegated to in the lab: "not only are

there many humanized mice in the world, there are also many worlds in the humanized

mouse" (Davies 2013, 147).

In this spirit: there's potentially more also to Donkey Kong's legacy than the contamination

of artificial intelligence through the situated technocultural practices of 1980s video

game design. For instance, after youtuber @Hbomberguy played through Donkey Kong 64

in a gruelling 57-hour shift to raise financial support for UK trans charity Mermaids, his live

stream on Twitch turned into a gathering of trans rights activists and claimed Donkey Kong
as an icon of trans rights online, literally opening up new worlds in the humanized ape. This
little episode from contemporary digital culture arguably shows how technocultural practices

can be reclaimed and reconceived - a task that machine learning could valuably support

if it waved goodbye to test beds and benchmarks that reward winning at all costs.

81 /Tsantsa #26/2021



SPECIAL ISSUE

References

Ankeny, Rachel A. 2007. "Wormy Logic: Model

Organisms as Case-Based Reasoning." In Science

Without Laws. ModelSystems, Cases, Exemplary

Narratives, edited by Angela N. H. Creager,

Elizabeth Lunbeck, and M. Norton Wise, 46-58.

Durham, NC: Duke University Press.

Badia, Adrià Puigdomènech, Bilal Piot,
Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles

Blundell. 2020. "Agent57: Outperforming the

Atari Human Benchmark." ArXiv:Z003.13350[Cs,

Stat], March, http://arxiv.org/abs/2003.13350.

Bruder, Johannes. 2019. Cognitive Code:

Post-Anthropocentric Intelligence and the Infrastruc-

turalBrain. Kingston & Montréal: McGill-Queen's

University Press.

Coleman, E. Gabriella. 2010. "Ethnographic

Approaches to Digital Media." Annual Review of

Anthropology 39, no. 1: 487-505. doi:10.1146/

annurev.anthro.012809.104945.

Cook, Steven J., Travis A. Jarrell,

Christopher A. Brittin, Yi Wang, Adam
E. Bloniarz, Maksim A. Yakovlev, Ken C.

Q. Nguyen. 2019. "Whole-Animal Connectomes

of Both Caenorhabditis Elegans Sexes." Nature

571, no. 7763: 63-71. doi:10.1038/s41586-019-

1352-7.

Davies, Gail. 2013. "Mobilizing Experimental

Life: Spaces of Becoming with Mutant Mice."

Theory, Culture & Society 30, no. 7-8: 129-53.

doi:10.1177/0263276413496285.

Dick, Stephanie. 2015. "Of Models and

Machines: Implementing Bounded Rationality."
Isis 106, no. 3: 623-34. doi:10.1086/683527.

Dumit, Joseph. 2016. "Plastic Diagrams: Circuits

in the Brain and How They Got There." In Plasticity

andPathology: On the Formation oftheNeural Subject,

edited by David Bates and Nima Bassiri, 219-67.

Berkeley: Fordham University Press.

Ecoffet, Adrien, Joost Huizing, Joel

Lehman, Kenneth O'Stanley, and Jeff
Clune. 2019. "Go-Explore: A New Approach for

Hard-Exploration Problems." Accessed April 22,

2020. https://arxiv.org/abs/1901.10995.

Halpern, Orit, Jesse LeCavalier, Nerea

Calvillo, and Wolfgang Pietsch. 2013.

"Test-Bed Urbanism." Public Culture 25, no. 2,

272-306. doi:10.1215/08992363-2020602.

Hassabis, Demis, Dharshan Kumaran,

Christopher Summerfield, and Matthew
Botvinick. 2017. "Neuroscience-Inspired

Artificial Intelligence." Neuron 95, no. 2: 245-58.

doi:10.1016/j.neuron.2017.06.011.

Jonas, Eric, and Konrad Paul Kording. 2017.

"Could a Neuroscientist Understand a

Microprocessor?" edited by Jörn Diedrichsen. PLOS

ComputationalBiology 13, no. 1: el005268.

doi: 10.1371/journal.pcbi. 1005268.

Kellogg, Katherine C., Melissa A. Valentine,
and Angéle Christin. 2020. "Algorithms at

Work: The New Contested Terrain of Control."

Academy ofManagementAnnals 14, no. 1: 366-410.

doi:10.5465/annals.2018.0174.

Knorr Cetina, Karin. 1992. "The Couch, the

Cathedral, and the Laboratory: On the Relationship

between Experiment and Laboratory in

Science." In Science as Practice and Culture, edited

by Andrew Pickering, 113-37. Chicago: University
of Chicago Press.

Krakovna, Victoria, Jonathan Uesato,
Vladimir Mikulik, Matthew Rahtz, Tom

Everitt, Ramana Kumar, Zac Kenton, Jan

Leike, and Shane Legg. 2020. "Specification

Gaming: The Flip Side of AI Ingenuity." DeepMind

Blog. April 21. Accessed December 8, 2020. https://

deepmind.com/blog/article/Specification-gam-

ing-the-flip-side-of-AI-ingenuity.

Lazebnik, Yuri. 2002. "Can a Biologist Fix a

Radio?—Or, What I Learned While Studying

Apoptosis." Cancer Cell 2, no. 3: 179-82.

doi:10.1016/S1535-6108(02)00133-2.

Lehman, Joel, Jeff Clune, Dusan Misevic,

Christoph Adami, Lee Altenberg, Julie

Beaulieu, Peter J. Bentley. 2020. "The Surprising

Creativity of Digital Evolution: A Collection of

Anecdotes from the Evolutionary Computation

and Artificial Life Research Communities."

ArtificialLife 26, no. 2: 274-306. doi:10.1162/

artl_a_00319.

82 / Tsantsa tt26/2021



SPECIAL ISSUE

Leoneiii, Sabina, Rachel A. Ankeny, Nicole

C. Nelson, and Edmund Ramsden. 2014.

"Making Organisms Model Human Behavior:

Situated Models in North-American Alcohol

Research, 1950-Onwards." Science in Context 21

no. 3: 485-509. https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC4274764/.

Mahfoud, Tara. 2014. "Extending the Mind: A

Review of Ethnographies of Neuroscience

Practice." Frontiers in Human Neuroscience 8: 359.

doi: 10.3389/fnhum. 2014.00359.

Markoff, John. 2016. "Alphabet Program Beats

the European Human Go Champion." The New

York Times, January 27, 2016. Accessed April 21,

2021. https://bits.blogs.nytimes.com/2016/01/27/

alphabet-program-beats-the-european-human-go-

champion/.

Marres, Noortje, and David Stark. 2020.

"Put to the Test: For a New Sociology of Testing."

The British Journal ofSociology 71, no. 3: 423-43.

doi:10.1111/1468-4446.12746.

Nelson, Nicole C. 2013. "Modeling Mouse,

Human, and Discipline: Epistemic Scaffolds in

Animal Behavior Genetics." Social Studies of
Science 43, no. 1: 3-29.

doi:10.1177/0306312712463815.

Nelson, Nicole C. 2018. ModelBehavior: Animal

Experiments, Complexity, and the Genetics of

Psychiatric Disorders. Chicago: The University of

Chicago Press.

Newell, Allen, J. C. Shaw, and Herbert
A. Simon. 1958. "Elements of a Theory of Human

Problem Solving." PsychologicalReview 65, no. 3:

151-66. doi:10.1037/h0048495.

Philip, Kavita, Lilly Irani, and Paul Dourish.

2012. "Postcolonial Computing: A Tactical

Survey." Science, Technology, & Human Values il,
no. 1: 3-29. doi:10.1177/0162243910389594.

Portman, Douglas. 2019. "The Minds of Two

Worms." Nature, July 4. https://media.nature.com/

original/magazine-assets/d41586-019-02006-8/

d41586-019-02006-8.pdf.

Rheinberger, Hans-Jörg. 1997. Towarda

History ofEpistemic Things: SynthesizingProteins in

the Test Tube. Stanford: Stanford University Press.

Seaver, Nick. 2017. "Algorithms as Culture:

Some Tactics for the Ethnography of Algorithmic

Systems." BigData & Society 4, no. 2.

doi:10.1177/2053951717738104.

Seaver, Nick. 2018. "What Should an Anthropology

of Algorithms Do?" CulturalAnthropology 33,

no. 3: 375-85. doi:10.14506/ca33.3.04.

Simon, Herbert. 1957.ModelsofMan. New York:

Wiley.
The C. elegans Sequencing Consortium.
1998. "Genome Sequence of the Nematode C.

Elegans: A Platform for Investigating Biology."

Science lit, no. 5396: 2012-18. doi:10.1126/

science. 282.5396.2012.

Tsing, Anna Lowenhaupt, Andrew
S. Mathews, and Nils Bubandt. 2019. "Patchy

Anthropocene: Landscape Structure, Multispecies

History, and the Retooling of Anthropology:
An Introduction to Supplement 20." Current

Anthropology 60, no. S20: 186-97.

doi: 10.1086/703391.

Yong, Ed. 2016. "Can Neuroscience Understand

Donkey Kong, Let Alone a Brain?" The Atlantic,

June 2, 2016. Accessed April 21, 2020. https://
www.theatlantic.com/science/archive/2016/06/

can-neuroscience-understand-donkey-kong-let-

alone-a-brain/485177/.

Yoshimura, Jun, Kazuki Ichikawa, Massa

J. Shoura, Karen L. Artiles, Idan Gabdank,
Lamia Wahba, Cheryl L. Smith. 2019.

"Recompleting the Caenorhabditis Elegans

Genome." Genome Research 29, no. 6: 1009-22.

doi:10.1101/gr. 244830.118.

Acknowledgements

I would like to thank the three anonymous
reviewers for their very valuable feedback. The

research that undergirds this paper has been

partly funded through the SNSF Sinergia Grant

"Governing through Design" (Grant-No. 189933)

83 / Tsantsa #26/2021



SPECIAL ISSUE

Author

Johannes Bruder © works at the intersection of

anthropology, STS, and media studies. He studies

the history and present of decision-making

systems, and how these encode psychological

categories, sociological models, artistic practices

and speculative designs. His first book "Cognitive
Code. Post-Anthropocentric Intelligence and the

Infrastructural Brain" (2019) is based on fieldwork

in neuroscience laboratories and provides deep

insights into the bio-politics of contemporary
machine learning. Johannes has a strong interest in

experimenting with research methods, knowledge

practices, alternative pedagogies and publication
formats that unsettle disciplinary paradigms and

render research in the humanities operational in

real-world contexts. He is a senior researcher at the

Critical Media Lab Basel and affiliated with the

Department of Sociology and Anthropology, as

well as Milieux at Concordia University Montréal.

johannes. bruder@protonmail. com

FHNWAcademy ofArtandDesign - Institute of
ExperimentalDesign andMedia Cultures

84 / Tsantsa #26/2021


	Donkey Kong's legacy : about microprocessors as model organisms and the behavioral politics of video games in AI

