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Die Bedeutung der Potenzfunktion
fur die
Beschreibung von Lebensvorgangen

Theodor Reich



In der Biologie nimmt die Exponentialfunktion
y = k . eX

eine zentrale Bedeutung ein. Immer dort, wo «lebendiges Wachsen» vorhanden
ist, wo das neu Dazugekommene flr die kunftige Vermehrung auch verant-
wortlich wird, wo die Zunahme mit «Zins und Zinseszinsen» geschieht, kdnnen
wir das Geschehen mit einer Exponentialfunktion beschreiben. Vermuten wir
umgekehrt, noch unbekannte Zusammenhdnge mit einer Exponentialfunktion
erfassen zu konnen, denken wir bei der Deutung dieser Abhangigkeiten an ein
«lebendiges Wachseny.

Demgegenuber wird die Potenzfunktion zu Unrecht in den toten Bereich der
Physik verwiesen. Hat sie fur die Beschreibung von Lebensvorgangen wirklich
keine Bedeutung? Wir begegnen in der Biologie sogenannten «doppelt logarith-
mischen» Funktionen. Es handelt sich dabei aber nicht um Funktionen der Art

y = k-lglgx,

wie man dem Namen nach vermuten kénnte. Nein, die Koordinatenpaare (x;/y;)
der zur Untersuchung stehenden Abhangigkeit werden in sogenanntes «dop-
pelt logarithmisches Papier» eingetragen. Dieses ist in Papeterien erhaltlich und
stellt ein rechtwinkliges Koordinatensystem dar, dessen beide Koordinatenska-
len logarithmisch eingeteilt sind. Ordnen sich die durch unsere Koordinatenpaa-
re bestimmten Punkte auf einer Geraden an, gilt

gy =m-Ilgx + q

Es handelt sich dabei im praktischen Beispiel nicht um eine geometrisch exakte
Gerade, sondern um eine Gerade, die mit einer Regressionsrechnung «gemit-
telty wird. Nennen wir noch q = Ig g*, erhalten wir

lgy = m-Ig x + Ig g* und formen die rechte Seite um zu
= Ig (g* - xM)

damit wird

y = g* - xM, alsoim Prinzipy = k - xm

Das ist eine Potenzfunktion mit reellem Exponenten. In Abbildung 1 haben wir
flir das Beispiel k = b5 fiir alle moglichen reellen m das sich ergebende Geraden-
buschel in doppelt logarithmischem Koordinatensystem dargestellt. Fur jedes m
geht die Gerade durch den Punkt: x = 1;y = k (= b5). Wir erkennen: Die Stei-
gung einer Geraden in diesem System bestimmt direkt den Exponenten der ihr
entsprechenden Potenzfunktion.

Das «doppelt logarithmische» Koordinatensystem lasst uns eine Potenzfunktion
auf einfachste Art ablesen: Der zu x = 1 gehérende y-Wert ist die Konstante k,
und die Steigung der Geraden entspricht dem Exponenten m.

Die Potenzfunktion ist auf diese Weise nur fur positive Argumente zuganglich.
Dies schrankt ihre Anwendungsmoglichkeit auf Lebensvorgange nicht ein, weil
beobachtete Messwerte immer als positive Argumente in Rechnung gesetzt
werden konnen.

Wir erkennen, dass die Potenzfunktion zwei wichtige Spezialféalle beinhaltet.
Far
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Abbildung 1:
Die Potenzfunktion im doppelt logarithmischen Koordinatensystem.

beschreibt sie die Proportionalitat (direkter Dreisatz). Fur
m=—1y=k:x=1 oder x:-y =k

beschreibt sie die Reziprozitat (umgekehrter Dreisatz oder umgekehrte Propor-
tionalitat). Es zweifelt niemand, dass diese beiden Beziehungen als die funda-
mentalsten unter den mathematischen Funktionen auch fur die Beschreibung
von Lebensvorgangen eine grosse Rolle spielen. Weniger bekannt ist, dass
auch die allgemeine Potenzfunktion mit irgendeinem reellen Exponenten m fir
die Beschreibung von biologischen Zusammenhangen geeignet ist. Sie muss
der Exponentialfunktion, die das natirliche Wachstum (mit Zins und Zinseszin-
sen) beschreibt, nicht nachstehen.

Als erstes Beispiel zeigen wir die Abhédngigkeit zwischen Prothrombinzeit («be-
notigte Zeit fr die Blutgerinnung») in Sekunden und Prothrombinindex in Pro-
zenten (100 % = unverdinntes Blut). Zur Anwendung kam die einphasige
Methode nach Quick-Fiechter (1) mit Kapillarblut aus der Ferse des Neugebore-
nen. Dabei wurde eine selbst hergestellte Thrombokinase aus Menschenhirn
mit einer Normalzeit von 10,5 bis 11 Sekunden gebraucht. Verdinnungen von
Erwachsenengesamtblut mit einer 0,2prozentigen Fibrinogenlosung ergaben ei-
ne aus 12 Reihen bestimmte Standardkurve. Uber die Messwerte wurde im
doppelt logarithmischen System eine Regressionsgerade gelegt. Unsere Kurve
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Abbildung 2: Beziehungen zwischen Prothrombinzeit und Prothrombinindex
(Mass fiir Blutkonzentration). Ausgezogene Kurve: fir Vollblut; schraffierter
Bereich = Bereich der einfachen Standardabweichung. Gestrichelte Kurve. fur
Blutplasma (nach Quick).

verlauft dhnlich derjenigen von Koller (1) parallel der Standardkurve fur Plasma
von Quick. Sie wurde zur Berechnung des Prothrombinindexes benutzt.
Wir sehen in Abbildung 2, dass diese Gerade nicht unter dem Winkel von 45°
abfallt. Die Abhangigkeit der mittleren Prothrombinzeit y Sekunden vom Proth-
rombinindex x% unserer Kurve kann aufgrund des Verlaufes der Geraden expli-
zite angegeben werden. Wir erhalten die Formel:

1

y = 338,44.... x 0717...0der y = 338,44...- x0.283... =

Die untersuchte Abhangigkeit gehorcht also einer Potenzfunktion. Die beiden
Grossen x und y verhalten sich grosso modo umgekehrt proportional. Dazu tritt
aber noch ein von x abhangiger «Behinderungsfaktor», der bewirkt, dass mit
zunehmender Konzentration des Blutes die bendtigte Prothrombinzeit relativ
weniger abnimmt, als die reine Reziprozitat erwarten lésst. Die koagulierende
Wirkung tritt beim verdinnten Blut verhaltnisméassig rascher ein als beim kon-
zentrierten.

Zweites Beispiel: Aus verschiedenen Griinden konnen wir motiviert sein, Kennt-
nisse Uber den «richtigen» Aortenquerschnitt zu erhalten. Unmittelbarer An-
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stoss zu der von uns bekannten Untersuchung gab die Frage tiber die Kreislauf-
verhaltnisse bei Neurodermikern (2, 3, 4).

Da sich die Punkte der fur diese Abhangigkeit gefundenen Wertepaare im nor-
malen Koordinatensystem nicht geradlinig anordneten, im doppelt logarithmi-
schen System aber die Geradlinigkeit erfiillten, entschied sich Strehler fur die
daraus folgende Abhangigkeit:

Aortendurchmesser (in cm) = 1,12 - (Alter in Jahren)™, also im Prinzip:
y = k - xM; denn er konnte einen altersunabhangigen Exponenten m beobach-
ten, so dass nur das Alter variabel bleibt. Der Koeffizient k = 1,12 erfordert die
Dimension Zentimeter pro Jahr und misste dem Aortendurchmesser eines ein-
jahrigen Kindes entsprechen.

Wiederum haben wir eine biologische Abhangigkeit mit einer Potenzfunktion
beschreiben konnen. Es ist nicht Sache des Mathematikers, die Zusammenhan-
ge biologisch zu deuten. Doch wollen wir den Uberlegungen Strehlers (Medizi-
ner) folgen, um dann auch die mathematische Einflussnahme besser zu verste-
hen. Warum nimmt der Durchmesser mit Zunahme des Alters zu? Es kann an ei-
ne «Dehnungstheorie» gedacht werden. Die Aorta erweitert sich mit dem Alter,
weil nach jeder Pulsation ein minimaler unmessbarer, aber berechenbarer Deh-
nungsrest zuruckbleibt. Mit dieser Arbeitshypothese im Hintergrund wurde die
Formel aufgrund pathologisch-anatomischer Messungen an der Leiche sowie
rontgenologischer Untersuchungen des inneren und ausseren Aortendurch-
messers am Lebenden aufgebaut. Der Exponent m ist ein Mass fur die Abwei-
chung der Abhangigkeit zwischen Aortendurchmesser und Alter von der reinen
Proportionalitat. Er ist in erster Linie abhangig von der Summe der Dehnungs-
ruckstande der einzelnen Pulsationen. Mit der im Alter grosser werdenden Ge-
samtausdehnung und der biologischen Veranderung der Gewebe wird deren
Elastizitat verandert und dadurch die wirkende Summe der Dehnungsreste pro
Zeiteinheit stetig verandert. In den jungen Jahren wird das Wachstum der Or-
gane mitspielen. Die Geradlinigkeit der Abhangigkeit im doppelt logarithmi-
schen System deutet darauf hin, dass der Aortendurchmesser mit einer be-
stimmten Potenz des Alters zunimmt, deren Exponent von der individuell ver-
schiedenen Dehnungssummation abhangt.

Die Dehnungsreste sind abhangig von der Blutdruckamplitude, die wir indirekt
erfassen. Sie korreliert mit der Kérperoberflache, die ihrerseits aus dem Korper-
gewicht und der Korperlange abgeschatzt werden kann. Strehler gibt die Bezie-
hung:

3 -
. VKérpergewicht (kp)
3,85
Der Exponent m entspricht der Steigung der Geraden im doppelt logarithmi-
schen System. Damit erhalten wir die Formel:

m = 0,194 - Korperoberflache (m?)

Korperoberflache (m?) = Kérperldange (m)

Fur einen 58jahrigen Mann von 80 kg Kérpergewicht und 1,86 m Kérperlange
erhalten wir eine Korperoberflache von 2,082 m2. Der zugehdrige Exponent be-
tragtm = 0,280. Damit wird der erwartete zugehorige

Aortendurchmesser = 1,12 - 58 920 = 3 49 cm.

Das Beispiel zeigt erneut, dass wir biologische Vorgange mit der Potenzfunktion
beschreiben konnen.

In zwei Fallen haben wir gesehen, dass ein biologischer Zusammenhang durch
eine Potenzfunktion dargestellt werden kann. Im Beispiel « Aortendurchmesser»
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ist m > 0, im Beispiel «Prothrombinzeit» ist m < 0. Konnen wir die Potenz-
funktion biologisch deuten, entsprechend der Exponentialfunktion, die wir mit
dem Modell « Wachstum mit Zins und Zinseszinsen», mit dem Modell der Zelltei-
lung: ein, zwei, vier, acht, ..... , 2", .. zu verstehen glauben?

Dazu untersuchen wir die Zunahme der Funktion in einem bestimmten Mo-
ment, verglichen mit dem in diesem Moment erreichten Funktionswert. Diese
Frage beantwortet die erste Ableitung der Funktion. Vergleichen wir in dieser
Hinsicht die uns biologisch verstéandliche Exponentialfunktion mit der biologisch
fragwurdigen Potenzfunktion, so gilt fur die

r

Exponentialfunktion: y = k- eX y' = k- eX
abgeleitet
Potenzfunktion: y = k- xm y' = mk - x™]

Weil bei der Exponentialfunktion die abgeleitete Funktion der Ausgangsfunk-
tion entspricht, heisst das: Bei der Exponentialfunktion entspricht die momen-
tane Zunahme der Funktion der Grosse der Funktion im betreffenden Moment.
- Bei der Potenzfunktion wachst die Zunahmefunktion einen Grad weniger
rasch als die Funktion selber. Fir Exponenten m > 1 wachst die Zunahmefunk-
tion mit grosser werdender Ausgangsfunktion lGber alle Grenzen. Im Spezialfall
m = 1 ist die Tendenz der Ausgangsfunktion, sich zu vergrossern, in jedem
Moment gleich gross. Dies bedingt die Proportionalitéat. Bei Exponenten m < 1
wird die Zunahmefunktion mit grosser werdender Ausgangsfunktion immer
kleiner und kleiner.

Wir kdnnen zusammenfassend schliessen: Gehorcht ein Naturvorgang einer
Potenzfunktion mit m < 1, konnen wir an ein «gebremstes Wachstum» den-
ken. Unsere beiden Beispiele weisen ein m < 1 auf. Dies scheint uns bemer-
kenswert. Fir m = 1 ist die Zunahmefunktion in jedem Moment gleich gross
(Proportionalitat). Firm > 1 wéchst die Zunahme (ber alle Grenzen.
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