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Die Bedeutung der Potenzfunktion
für die
Beschreibung von Lebensvorgängen

Theodor Reich



In der Biologie nimmt die Exponentialfunktion

y k e*

eine zentrale Bedeutung ein. Immer dort, wo «lebendiges Wachsen» vorhanden
ist, wo das neu Dazugekommene für die künftige Vermehrung auch verant-
wortlich wird, wo die Zunahme mit «Zins und Zinseszinsen» geschieht, können
wir das Geschehen mit einer Exponentialfunktion beschreiben. Vermuten wir
umgekehrt, noch unbekannte Zusammenhänge mit einer Exponentialfunktion
erfassen zu können, denken wir bei der Deutung dieser Abhängigkeiten an ein

«lebendiges Wachsen».
Demgegenüber wird die Potenzfunktion zu Unrecht in den toten Bereich der

Physik verwiesen. Hat sie für die Beschreibung von Lebensvorgängen wirklich
keine Bedeutung? Wir begegnen in der Biologie sogenannten «doppelt logarith-
mischen» Funktionen. Es handelt sich dabei aber nicht um Funktionen der Art

y k Ig Ig x,

wie man dem Namen nach vermuten könnte. Nein, die Koordinatenpaare (Xj/yj)
der zur Untersuchung stehenden Abhängigkeit werden in sogenanntes «dop-
pelt logarithmisches Papier» eingetragen. Dieses ist in Papeterien erhältlich und
stellt ein rechtwinkliges Koordinatensystem dar, dessen beide Koordinatenska-
len logarithmisch eingeteilt sind. Ordnen sich die durch unsere Koordinatenpaa-
re bestimmten Punkte auf einer Geraden an, gilt

Ig y m Ig x + q

Es handelt sich dabei im praktischen Beispiel nicht um eine geometrisch exakte
Gerade, sondern um eine Gerade, die mit einer Regressionsrechnung «gemit-
telt» wird. Nennen wir noch q Ig q*, erhalten wir

Ig y m • Ig x + Ig q* und formen die rechte Seite um zu
Ig (q* x)

damit wird

y q* • x, also im Prinzip y k x
Das ist eine Potenzfunktion mit reellem Exponenten. In Abbildung 1 haben wir
für das Beispiel k 5 für alle möglichen reellen m das sich ergebende Geraden-
büschel in doppelt logarithmischem Koordinatensystem dargestellt. Für jedes m

geht die Gerade durch den Punkt: x 1;y k( 5). Wir erkennen: Die Stei-

gung einer Geraden in diesem System bestimmt direkt den Exponenten der ihr
entsprechenden Potenzfunktion.
Das «doppelt logarithmische» Koordinatensystem lässt uns eine Potenzfunktion
auf einfachste Art ablesen: Dez zu x 7 <7e/?özez7Gfe y-Wezf/sf d/'e /Cousfanfe 7r,

une/ c//'e Sfe/gru/rg cfez Gezaofez7 ezrfspz/cfrf dezr? fxponezrfez? zrr.

Die Potenzfunktion ist auf diese Weise nur für positive Argumente zugänglich.
Dies schränkt ihre Anwendungsmöglichkeit auf Lebensvorgänge nicht ein, weil
beobachtete Messwerte immer als positive Argumente in Rechnung gesetzt
werden können.

Wir erkennen, dass die Potenzfunktion zwei wichtige Spezialfälle beinhaltet.
Für

m +1 : y k x
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ATrMryr/np' 7:

û/'e Pofeflz7u/7/:f/oA? /m Gfoppe/f /o^aA/'f/îm/sc^en Abo/ty/rtafensysfem.

beschreibt sie die Proportionalität (direkter Dreisatz). Für

m —1: y k • x~1 oder x y k

beschreibt sie die Reziprozität (umgekehrter Dreisatz oder umgekehrte Propor-
tionalität). Es zweifeit niemand, dass diese beiden Beziehungen als die funda-
mentalsten unter den mathematischen Funktionen auch für die Beschreibung
von Lebensvorgängen eine grosse Rolle spielen. Weniger bekannt ist, dass

auch die allgemeine Potenzfunktion mit irgendeinem reellen Exponenten m für
die Beschreibung von biologischen Zusammenhängen geeignet ist. Sie muss
der Exponentialfunktion, die das natürliche Wachstum (mit Zins und Zinseszin-
sen) beschreibt, nicht nachstehen.
Als erstes Beispiel zeigen wir die Abhängigkeit zwischen Prothrombinzeit («be-

nötigte Zeit für die Blutgerinnung») in Sekunden und Prothrombinindex in Pro-

zenten (100 % unverdünntes Blut). Zur Anwendung kam die einphasige
Methode nach Qu/c/r-A/ec/rfer (1 mit Kapillarblut aus der Ferse des Neugebore-
nen. Dabei wurde eine selbst hergestellte Thrombokinase aus Menschenhirn
mit einer Normalzeit von 10,5 bis 11 Sekunden gebraucht. Verdünnungen von
Erwachsenengesamtblut mit einer 0,2prozentigen Fibrinogenlösung ergaben ei-

ne aus 12 Reihen bestimmte Standardkurve. Über die Messwerte wurde im

doppelt logarithmischen System eine Regressionsgerade gelegt. Unsere Kurve
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Zlbb/Zr/«^ 2; flez/'ebt/npeA? zw/sc/)en PAOfbAomb/bze/f une/ PAOfbAOAnb/b/bc/ex

f/Wsss Züa fl/uftonzenfraf/bn/. /It/sgezopeA/e Ku/ve: Züa \/o//b/uf; scbAaZZ/eAfeA

ßeAe/cb ßere/cb beA e/bZacbeA? SfanobAG/abwe/cbungr. GesfA/cbe/fe /CuAi/e; Züa

ß/ufp/asma fbracb Qu/c/cA

verläuft ähnlich derjenigen von /Co//eA<1) parallel der Standardkurve für Plasma

von ûu/'eb. Sie wurde zur Berechnung des Prothrombinindexes benützt.
Wir sehen in Abbildung 2, dass diese Gerade nicht unter dem Winkel von 45°

abfällt. Die Abhängigkeit der mittleren Prothrombinzeit y Sekunden vom Proth-
rombinindex x% unserer Kurve kann aufgrund des Verlaufes der Geraden expli-
zite angegeben werden. Wir erhalten die Formel:

y 338,44...- x-"217...oder y 338,44..,- x0.283... .-1

Die untersuchte Abhängigkeit gehorcht also einer Potenzfunktion. Die beiden

Grössen x und y verhalten sich grosso modo umgekehrt proportional. Dazu tritt
aber noch ein von x abhängiger «Behinderungsfaktor», der bewirkt, dass mit
zunehmender Konzentration des Blutes die benötigte Prothrombinzeit relativ

weniger abnimmt, als die reine Reziprozität erwarten lässt. Die koagulierende
Wirkung tritt beim verdünnten Blut verhältnismässig rascher ein als beim kon-
zentrierten.
Zweites Beispiel: Aus verschiedenen Gründen können wir motiviert sein, Kennt-
nisse über den «richtigen» Aortenquerschnitt zu erhalten. Unmittelbarer An-
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stoss zu der von uns bekannten Untersuchung gab die Frage über die Kreislauf-
Verhältnisse bei Neurodermikern (2, 3, 4).
Da sich die Punkte der für diese Abhängigkeit gefundenen Wertepaare im nor-
malen Koordinatensystem nicht geradlinig anordneten, im doppelt logarithm!-
sehen System aber die Geradlinigkeit erfüllten, entschied sich Sfre/r/er für die
daraus folgende Abhängigkeit:
Aortendurchmesser (in cm) 1,12 (Alter in Jahren), also im Prinzip:
y k • x; denn er konnte einen altersunabhängigen Exponenten m beobach-
ten, so dass nur das Alter variabel bleibt. Der Koeffizient k 1,12 erfordert die
Dimension Zentimeter pro Jahr und müsste dem Aortendurchmesser eines ein-
jährigen Kindes entsprechen.
Wiederum haben wir eine biologische Abhängigkeit mit einer Potenzfunktion
beschreiben können. Es ist nicht Sache des Mathematikers, die Zusammenhän-
ge biologisch zu deuten. Doch wollen wir den Überlegungen Sfre/r/ers (Medizi-
ner) folgen, um dann auch die mathematische Einflussnahme besser zu verste-
hen. Warum nimmt der Durchmesser mit Zunahme des Alters zu? Es kann an ei-

ne «Dehnungstheorie» gedacht werden. Die Aorta erweitert sich mit dem Alter,
weil nach jeder Pulsation ein minimaler unmessbarer, aber berechenbarer Deh-

nungsrest zurückbleibt. Mit dieser Arbeitshypothese im Hintergrund wurde die
Formel aufgrund pathologisch-anatomischer Messungen an der Leiche sowie
röntgenologischer Untersuchungen des inneren und äusseren Aortendurch-
messers am Lebenden aufgebaut. Der Exponent m ist ein Mass für die Abwei-
chung der Abhängigkeit zwischen Aortendurchmesser und Alter von der reinen
Proportionalität. Er ist in erster Linie abhängig von der Summe der Dehnungs-
rückstände der einzelnen Pulsationen. Mit der im Alter grösser werdenden Ge-

samtausdehnung und der biologischen Veränderung der Gewebe wird deren
Elastizität verändert und dadurch die wirkende Summe der Dehnungsreste pro
Zeiteinheit stetig verändert. In den jungen Jahren wird das Wachstum der Or-

gane mitspielen. Die Geradlinigkeit der Abhängigkeit im doppelt logarithmi-
sehen System deutet darauf hin, dass der Aortendurchmesser mit einer be-
stimmten Potenz des Alters zunimmt, deren Exponent von der individuell ver-
schiedenen Dehnungssummation abhängt.
Die Dehnungsreste sind abhängig von der Blutdruckamplitude, die wir indirekt
erfassen. Sie korreliert mit der Körperoberfläche, die ihrerseits aus dem Körper-
gewicht und der Körperlänge abgeschätzt werden kann. Sf/'e/r/ez gibt die Bezie-

hung: 3

Körperoberfläche (rrP) Körperlänge (m)
Körpergewicht (kp)

3,85
Der Exponent m entspricht der Steigung der Geraden im doppelt logarithmi-
sehen System. Damit erhalten wir die Formel:

m 0,194 Körperoberfläche (rrP)

Für einen 58jährigen Mann von 80 kg Körpergewicht und 1,86 m Körperlänge
erhalten wir eine Körperoberfläche von 2,082 rrP. Der zugehörige Exponent be-
trägt m 0,280. Damit wird der erwartete zugehörige

Aortendurchmesser 1,12 58°- 3,49 cm.

Das Beispiel zeigt erneut, dass wir biologische Vorgänge mit der Potenzfunktion
beschreiben können.
In zwei Fällen haben wir gesehen, dass ein biologischer Zusammenhang durch
eine Potenzfunktion dargestellt werden kann. Im Beispiel «Aortendurchmesser»
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ist m > 0, im Beispiel «Prothrombinzeit» ist m < 0. Können wir die Potenz-

funktion biologisch deuten, entsprechend der Exponentialfunktion, die wir mit
dem Modell «Wachstum mit Zins und Zinseszinsen», mit dem Modell der Zelltei-

lung: ein, zwei, vier, acht, 2", zu verstehen glauben?
Dazu untersuchen wir die Zunahme der Funktion in einem bestimmten Mo-

ment, verglichen mit dem in diesem Moment erreichten Funktionswert. Diese

Frage beantwortet die erste Ableitung der Funktion. Vergleichen wir in dieser
Hinsicht die uns biologisch verständliche Exponentialfunktion mit der biologisch
fragwürdigen Potenzfunktion, so gilt für die

Exponentialfunktion: y k • e* y' k e*

abgeleitet
Potenzfunktion: y k x y' mk-x^"'
Weil bei der Exponentialfunktion die abgeleitete Funktion der Ausgangsfunk-
tion entspricht, heisst das: Bei der Exponentialfunktion entspricht die momen-
tane Zunahme der Funktion der Grösse der Funktion im betreffenden Moment.
- Bei der Potenzfunktion wächst die Zunahmefunktion einen Grad weniger
rasch als die Funktion selber. Für Exponenten m > 1 wächst die Zunahmefunk-
tion mit grösser werdender Ausgangsfunktion über alle Grenzen. Im Spezialfall
m 1 ist die Tendenz der Ausgangsfunktion, sich zu vergrössern, in jedem
Moment gleich gross. Dies bedingt die Proportionalität. Bei Exponenten m < 1

wird die Zunahmefunktion mit grösser werdender Ausgangsfunktion immer
kleiner und kleiner.
Wir können zusammenfassend schliessen: Geboro/T e/'n A/afu/vorgrang e/ner
Pofenzft/nÄT/on /77/f /T7 < 7, /rönnen W/r a« e/'n irgrebz-emsfes Wac/rsfu/w; öen-
/ten. Unsere beiden Beispiele weisen ein m < 1 auf. Dies scheint uns bemer-
kenswert. Föt m 7 /sf ö/'e Zt/nabmeF/n/cf/on /'/? /eaten? /Women? gr/e/bb gross
/Propo/T/bna//fafA Fttem > / wacbsf ö/'eZt/nabme über a//e Grenzen.
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