Zeitschrift: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft

Herausgeber: Thurgauische Naturforschende Gesellschaft

Band: 37 (1954)

Artikel: Zur Berechnung von Meteorbahnen

Autor: Leutenegger, E.

DOI: https://doi.org/10.5169/seals-594083

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

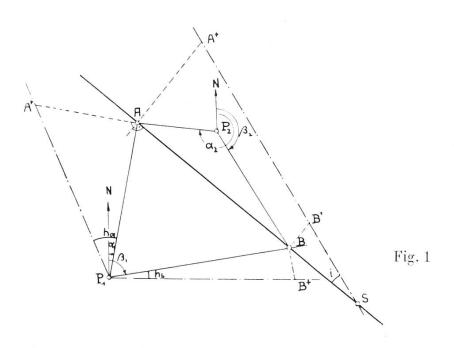
Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Berechnung von Meteorbahnen

Von Dr. E. Leutenegger

Die Bestimmung von Meteorbahnen nach der üblichen Methode, die auf die Ermittlung von zwei bestimmten Punkten der Bahn hinausläuft (siehe Fig. 1), versagt bei Laienbeobachtungen fast unweigerlich. Die Richtungs-



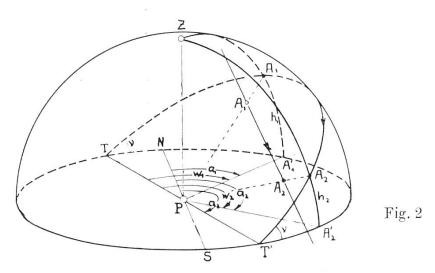
angaben, die zur Bestimmung von Azimuten und Höhenwinkeln von Punkten der scheinbaren, d. h. vom Beobachter an seinem Himmel gesehenen Bahn des Meteors dienen sollen, sind gar zu oft sehr unsicher oder unbestimmt. Aber selbst ihre Anwendung auf Beobachtungen geübter Meteorbeobachter führt zu unsicheren Resultaten. Die Gründe hiefür sind folgende:

1. Das Erscheinen eines Meteors erfolgt immer ganz unerwartet. Darum ist es auch bei gespanntester Aufmerksamkeit des Beobachters nicht immer möglich, den Anfangspunkt der Meteorbahn sicher zu erfassen. Anders ist es mit dem Endpunkt, bzw. dem Punkt, in welchem zufolge Geschwindigkeitsverlustes die Leuchterscheinung zu Ende ist. Zwischenpunkte, etwa

125534

solche, die sich durch plötzliche Helligkeitsausbrüche gut erfassen ließen, sind selten zu beobachten.

- 2. Die Zeitangaben sind meistens nicht allzugenau, und da die Erscheinung auch in günstigen Fällen nur wenige Sekunden dauert, ist die Festlegung von Zwischenpunkten durch "zeitliche Interpolation" meist unmöglich.
- 3. Da das Sichtbarkeitsgebiet (theoretisch) vielfach nicht nur Hunderte, sondern oft Tausende von Quadratkilometern beträgt, ist es absolut nicht zulässig, anzunehmen, daß die Horizontalebenen weit entfernter Beobachter, auf welche sich deren Richtungsangaben beziehen, mehr oder weniger zusammenfallen. So wurde beispielsweise ein Meteor am 28. März 1948 nachgewiesenermaßen in der Schweiz, in Österreich und Italien, möglicherweise sogar in Jugoslawien und in der Tschechoslowakei gesehen. In solchen Fällen ist es nicht angängig, die Krümmung der Erdoberfläche über das ganze Sichtbarkeitsgebiet zu vernachlässigen.



Anderseits ist festzuhalten, daß doch auf primitivste Weise recht genaue Richtungsangaben erhalten werden können. So ergeben sich Azimute sehr genau durch Angaben von Richtungen in der Landschaft, etwa mit Hilfe ferner Objekte, Höhenwinkel durch Messungen mit Hilfe eines Maßstabes, eines Stabes, den man bei ausgestrecktem Arm senkrecht in der Hand hält, Azimute und Höhen aus Beobachtungen des Verschwindens eines Meteors hinter Bäumen oder Häusern. Natürlich muß der genaue Standort — durch sofortiges Stillstehen — genau festgelegt werden. Wenn wir annehmen — was ja meistens erlaubt ist — daß die Bahn geradlinig verläuft, so genügt die Ermittlung zweier beliebiger Punkte der scheinbaren Bahn am Himmel, um daraus die Ebene, welche durch den Beobachtungsort und die Meteorbahn bestimmt ist, verhältnismäßig genau festzulegen. Die Sterne, die sich an und für sich als Anhaltspunkte für die Festlegung der Bahn sehr gut eignen würden, können oft wegen Überstrahlung nicht erkannt werden.

Es seien A_1 und A_2 zwei Punkte einer Meteorbahn (Fig. 2), respektive deren Projektionen vom Beobachtungspunkt auf die Himmelskugel, bestimmt durch ihre Azimute a_1 , a_2 und ihre Höhen über dem Horizont h_1 , h_2 (selbstverständlich in Winkelmaß). Die Projektion der Meteorbahn auf die Himmelskugel ist ein Großkreis. Dieser schneide den Horizont in T und T'; der Neigungswinkel gegen den Horizont, gemessen zwischen dem ostseitigen Horizont und der scheinbaren Meteorbahn — als spitzer oder auch stumpfer Winkel —, sei ν . Bezeichnen wir die Winkel, welche die Projektionen PA_1 , PA_2 von PA_1 und PA_2 mit der Richtung PT bilden (wo T den Punkt bedeutet, wo das Meteor auf seiner Bahn theoretisch über den Horizont aufgestiegen wäre), mit w_1 und w_2 , so ergeben sich folgende, mit Hilfe der sphärischen Trigonometrie abgeleiteten Beziehungen:

$$\operatorname{tg} \nu = \frac{\operatorname{tg} h_1}{\sin w_1} = \frac{\operatorname{tg} h_2}{\sin w_2}$$

Es ist also

$$\frac{\sin w_1}{\sin w_2} = \frac{\operatorname{tg} h_1}{\operatorname{tg} h_2}$$

Daraus folgt

$$\frac{\sin w_2 + \sin w_1}{\sin w_2 - \sin w_1} = \frac{\operatorname{tg} h_2 + \operatorname{tg} h_1}{\operatorname{tg} h_2 - \operatorname{tg} h_1} \quad \text{oder}$$

$$\frac{\operatorname{tg} \frac{w_{1} + w_{2}}{2}}{\operatorname{tg} \frac{w_{2} - w_{1}}{2}} = \frac{\sin(h_{1} + h_{2})}{\sin(h_{2} - h_{1})}$$
(1)

Da nun $w_2 - w_1 = a_2 - a_1$, also bekannt ist (und selbstverständlich auch h_1 und h_2), so läßt sich $\frac{w_1 + w_2}{2}$ berechnen:

$$tg - \frac{w_1 + w_2}{2} = \frac{\sin(h_1 + h_2)}{\sin(h_2 - h_1)} tg - \frac{a_2 - a_1}{2}$$
 (2)

Hieraus ergibt sich $\frac{w_1 + w_2}{2}$, und wir erhalten die Winkel w_1 und w_2 aus

$$\mathbf{w_1} = \frac{\mathbf{w_1} + \mathbf{w_2}}{2} - \frac{\mathbf{w_2} - \mathbf{w_1}}{2}, \quad \mathbf{w_2} = \frac{\mathbf{w_1} + \mathbf{w_2}}{2} + \frac{\mathbf{w_2} - \mathbf{w_1}}{2}$$

sowie

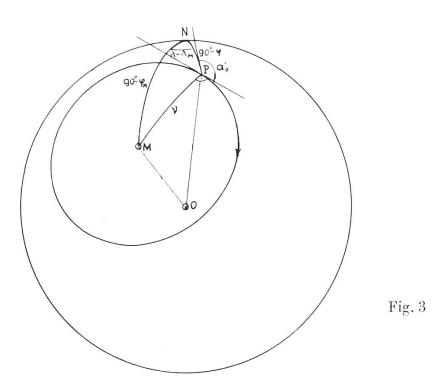
$$\operatorname{tg} \nu = \frac{\operatorname{tg} \, \operatorname{h}_1}{\sin \, \operatorname{w}_1} = \frac{\operatorname{tg} \, \operatorname{h}_2}{\sin \, \operatorname{w}_2}$$

Damit ist die Stellung der Ebene PA₁A₂ im Raum relativ zum Horizont von P festgelegt durch das Azimut des Schnittpunktes T (gemessen von der Nordrichtung aus):

$$a_0 = a_1 - w_1 = a_2 - w_2$$

und den Neigungswinkel v. Dieser wird spitz oder stumpf, je nachdem die auf den Horizont projizierte Bewegungsrichtung des Meteors im Uhrzeigersinn oder im Gegenzeigersinn verläuft. Für den zweiten Schnittpunkt der Bahnebene mit der Ebene des Horizonts wird

$$a_0' = a_0 \pm 180^{\circ}$$



Diese Rechnung ist für mindestens zwei Beobachtungen, wo also von einem bekannten Beobachtungsort — gegeben durch die geographische Länge λ und seine geographische Breite φ — zwei Punkte der jeweiligen scheinbaren Bahn bestimmt werden konnten, durchzuführen.

Der nächste Schritt besteht darin, die Schnittlinie zweier so bestimmter Ebenen $P_iA_kA_l$ zu ermitteln, wobei die Punkte A_k , A_l für jeden Beobachtungsort verschiedene Punkte der Bahn sein können. Es ist also ein wesentlicher Vorteil dieser Methode, daß man nicht auf Simultanbeobachtungen, genauer gesagt: Beobachtungen derselben Bahnpunkte des Meteors angewiesen ist.

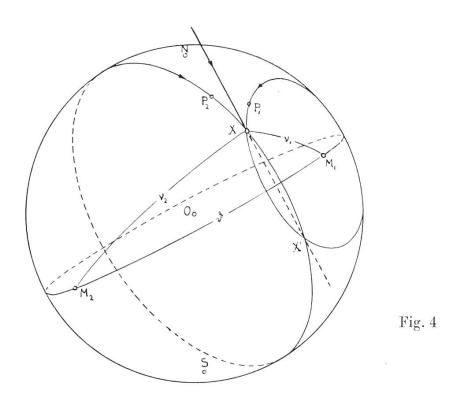
Die beiden Ebenen, welche zur Bestimmung der Meteorbahn nötig sind, schneiden die Erdoberfläche — die wir als Kugelfläche betrachten dürfen — in zwei Kleinkreisen. Die sphärischen Mittelpunkte M₁, M₂ derselben liegen

in Winkelabständen (im Zentrum der Kugel gemessen) ν_1 bzw. ν_2 im Azimut $a_{0_1} + 270^{\circ}$ bzw. $a_{0_2} + 270^{\circ}$ von den Beobachtungspunkten P_1 bzw. P_2 . Sie sind überdies so festgelegt, daß die Bewegung des Meteors, von M_1 bzw. M_2 aus betrachtet im Uhrzeigersinn erfolgt. Die geographischen Koordinaten dieser Punkte M_1 , M_2 erhalten wir aus den sphärischen Dreiecken NP_1M_1 bzw. NP_2M_2 , wo N der Nordpol der Erdkugel ist (Fig. 3 und 4).

Bezeichnen wir die Länge des sphärischen Mittelpunktes eines solchen Kleinkreises mit $\lambda_{\rm M}$, die Breite mit $\varphi_{\rm M}$, so lassen sich diese Größen für jeden der beiden Beobachtungsorte berechnen aus dem Gleichungssystem

$$\frac{\sin \varphi_{M} = \sin \varphi \cos \nu + \cos \varphi \sin \nu \sin a_{0}}{\sin (\lambda_{M} - \lambda)} = -\frac{\cos a_{0} \sin \nu}{\cos \varphi_{M}}$$
(3)

Zur Bestimmung der Schnittpunkte X, X' der beiden Kleinkreise benützen wir die sphärischen Dreiecke M₁M₂X bzw. M₁M₂X' (Fig. 4), von wel-



chen die 3 Seiten: ν_1 , ν_2 und der Winkelabstand ϑ der sphärischen Mittelpunkte M_1 , M_2 der beiden Kleinkreise gegeben sind. Es ist nämlich

$$\cos \vartheta = \sin \varphi_{M_1} \sin \varphi_{M_2} + \cos \varphi_{M_1} \cos \varphi_{M_2} \cos (\lambda_{M_2} - \lambda_{M_1})$$
 (4)

Berechnet man noch die Winkel M_2M_1N bzw. M_1M_2N (μ_1 und μ_2) mit Hilfe der Formel

$$p = \sqrt{\frac{\cos\frac{\varphi_{M_1} + \varphi_{M_2} + \vartheta}{2}\sin\frac{\vartheta + \varphi_{M_1} - \varphi_{M_2}}{2}\sin\frac{\vartheta - \varphi_{M_1} + \varphi_{M_2}}{2}}{\sin\frac{\varphi_{M_1} + \varphi_{M_2} - \vartheta}{2}}}$$

und ebenso die Winkel $\mathrm{M_2M_1X}=\pi_1$ bzw. $\mathrm{M_1M_2X}=\pi_2$ aus

$$tg \, \pi_1 = \sqrt{\frac{\sin \frac{\nu_1 + \nu_2 - \vartheta}{2} \sin \frac{\vartheta - \nu_1 + \nu_2}{2}}{\sin \frac{\nu_1 + \nu_2 + \vartheta}{2} \sin \frac{\vartheta + \nu_1 - \nu_2}{2}}} = \frac{q}{\sin \frac{\vartheta + \nu_1 - \nu_2}{2}}$$

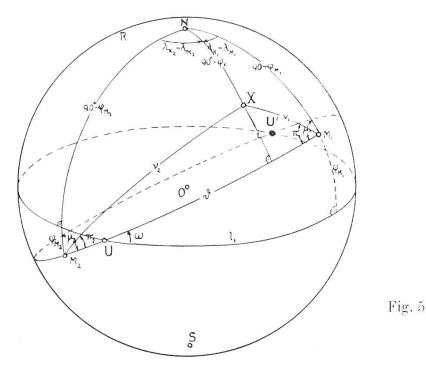
$$tg \, \pi_2 = \sqrt{\frac{\sin \frac{\nu_1 + \nu_2 - \vartheta}{2} \sin \frac{\vartheta + \nu_1 - \nu_2}{2}}{\sin \frac{\nu_1 + \nu_2 + \vartheta}{2} \sin \frac{\vartheta - \nu_1 + \nu_2}{2}}} = \frac{q}{\sin \frac{\vartheta - \nu_1 + \nu_2}{2}}$$
(6)

wo
$$q = \sqrt{\frac{\sin\frac{\nu_1 + \nu_2 - \vartheta}{2}\sin\frac{\vartheta - \nu_1 + \nu_2}{2}\sin\frac{\vartheta + \nu_1 - \nu_2}{2}}{\sin\frac{\nu_1 + \nu_2 + \vartheta}{2}}}$$

so ergeben sich die Azimute, in welchem der Punkt X, von M_1 bzw. M_2 aus gesehen, liegt,

$$\xi_1 = \mu_1 - \pi_1, \; \xi_2 = \mu_2 - \pi_2$$
 (Siehe Fig. 5)

Die geographischen Koordinaten des Punktes X ergeben sich mit Verwendung der Dreiecke NM_1X oder NM_2X , von denen je zwei Seiten und der Zwischenwinkel: $90^{\circ} - \varphi_{M_1}$, ν_1 , ξ_1 bzw. $90^{\circ} - \varphi_{M_2}$, ν_2 , ξ_2 gegeben sind, aus



$$\cos \varphi_{\mathbf{x}} = \sin \varphi_{\mathbf{M}} \cos \nu + \cos \varphi_{\mathbf{M}} \sin \nu \sin \mathbf{a}_{\mathbf{0}}' \tag{7}$$

$$\frac{\sin(\lambda_{x} - \lambda_{M}) = \frac{\cos \xi \sin \nu}{\cos \varphi_{M}}}{(8)}$$

die für jeden der beiden Beobachtungsorte getrennt aufzulösen sind.

Der Neigungswinkel der Meteorbahn gegen die Erdoberfläche in dem Punkte X, wo sie auf die Erde trifft, ist gleich der Höhe vom Punkte X im sphärischen Dreieck M_1M_2X und ergibt sich auch

$$\sin i = \sin \nu_1 \sin \pi_1 = \sin \nu_2 \sin \pi_2 \tag{9}$$

Der scheinbare Radiant des Meteors ist der Zielpunkt der Normalen auf der Großkreisebene, welche die beiden Punkte M_1 und M_2 verbindet. Der Punkt der Erdoberfläche, in dessen Zenit der Radiant liegt, kann in der Weise ermittelt werden, daß die geographische Länge der Schnittpunkte U, U' des Großkreises durch M_1 und M_2 mit dem Erdäquator und die Neigung ω der Großkreisebene mit der Äquatorebene berechnet werden. Es ist

$$\operatorname{tg} \omega = \frac{\operatorname{tg} \varphi_{M_1}}{\sin l_1} = \frac{\operatorname{tg} \varphi_{M_2}}{\sin l_2}$$

wo l_1 und l_2 die vom Schnittpunkt U aus gezählten Längen der Punkte M_1 und M_2 bedeuten. Daraus folgt (durch eine gleichartige Umformung, wie dies bei der Ableitung der Formel (2) geschah):

$$tg \frac{l_1 + l_2}{2} = \frac{\sin(\varphi_{M_1} + \varphi_{M_2})}{\sin(\varphi_{M_2} - \varphi_{M_1})} tg \frac{l_2 - l_1}{2}$$
(10)

wo $\mathbf{l_2} - \mathbf{l_1} = \lambda_{M_2} - \lambda_{M_1}$ ist, und

$$l_1 = \frac{l_1 + l_2}{2} - \frac{l_2 - l_1}{2}$$
 und $l_2 = \frac{l_1 + l_2}{2} + \frac{l_2 - l_1}{2}$ (11)

Die geographische Länge des Schnittpunktes U ist

$$\lambda_{\mathrm{U}} = \lambda_{\mathrm{M}_{1}} - \lambda_{1} = \lambda_{\mathrm{M}_{2}} - \lambda_{2} \tag{12}$$

der Neigungswinkel ω ergibt sich aus obigen Formeln für tg ω . Die geographischen Koordinaten des scheinbaren Radianten sind:

$$\lambda_{\mathrm{R}} = \lambda_{\mathrm{U}} - 90^{\mathrm{o}}, \, \varphi_{\mathrm{R}} = 90^{\mathrm{o}} - \omega$$

Liegen mehrere Beobachtungen vor, so müssen die sphärischen Mittelpunkte M aller zugehörigen Kleinkreise auf dem durch irgend zwei derselben bestimmten Großkreise liegen. Das gibt die Möglichkeit einer Ausgleichung, was in jedem Falle wünschenswert ist, da die Beobachtungen ja immer mehr oder weniger mit Fehlern behaftet sind. Darüber wird später noch zu berichten sein.

Sind nun noch t_1 und t_2 die Sternzeiten der Beobachtungsorte P_1 und P_2 beim Aufleuchten des Meteors, so ergibt sich die Sternzeit des Nullmeridians der Erde

$$t = t_1 - \lambda_1 = t_2 - \lambda_2$$

Die Rektaszension des scheinbaren Radianten ist dann

$$a_{\rm R} = t - \lambda_{\rm R}$$

seine Deklination

$$\delta_{\rm R}=\varphi_{\rm R}=90^{\rm o}-\omega$$

Die scheinbare Geschwindigkeit des Meteors in bezug auf die Erde kann aus den Beobachtungen eines jeden einzelnen Beobachters berechnet oder abgeschätzt werden, sofern verläßliche Zeitangaben über den zeitlichen Ablauf der Erscheinung vorliegen. Damit ist die Bewegung des Meteors in bezug auf die Erde bestimmt.

Um über die Bahn des Meteors im Weltraum Auskunft zu bekommen, muß der wahre Radiant bekannt sein. Durch die Erdbewegung (Bewegung um die Sonne, tägliche Rotationsbewegung) werden sowohl Richtung als auch Betrag der Geschwindigkeit verändert. Durch geeignete Korrekturen kann die wahre Geschwindigkeit und der wahre Radiant der Meteorbahn ermittelt werden. Die Rechnung erfolgt nach den üblichen Methoden. Es sei nur noch folgendes erwähnt: Je nachdem die wahre Geschwindigkeit des Meteors kleiner oder größer ist als 42 km/sek, ist das Meteor dem planetaren System zuzurechnen oder aber es ist interstellaren Ursprungs. Im ersten

Falle wird noch die Frage zu prüfen sein, ob das Meteor irgend einem bekannten kometarischen Strom angehört.

Zur

Ausgleichung von Meteorbeobachtungen

mögen die folgenden Ausführungen von Wert sein:

Wie schon erwähnt, müssen (theoretisch) die verschiedenen Punkte M_k auf einem Großkreis liegen. Es seien λ_k , φ_k die geographischen Koordinaten der Punkte M_k . Es handelt sich nun darum, die Lage der Schnittpunkte U, U' auf dem Erdäquator und die Neigung ω der Großkreisebene gegen die Ebene des Äquators zu bestimmen. Es seien l_k die vom "aufsteigenden Knoten" des Großkreises aus gemessene "Längen" eines Punktes M_k . Es ist also

$$\operatorname{tg} \omega = \frac{\operatorname{tg} \varphi_{k}}{\sin l_{k}} = \operatorname{konstant}.$$

Trägt man nun in einem ebenen Koordinatensystem die Werte

$$x_k = \sin l_k$$
 und $y_k = tg \varphi_k$

als Koordinaten von Punkten Pk ein, so ist

$$\frac{y_k}{x_k} = konstant \tag{13}$$

die Gleichung einer durch den Koordinatennullpunkt gehenden Geraden; die Punkte P_k liegen auf einer durch den Nullpunkt gehenden Geraden.

Verwendet man zu dieser Darstellung aber statt der unbekannten Größen l_k die bekannten Werte $\lambda_k = l_k + \lambda_U$, so kann natürlich das Verhältnis tg φ_k : $\sin \lambda_k$ nicht mehr konstant sein. Es erhebt sich die Frage, was für eine Kurve die Punkte P_k ($x_k = \sin \lambda_k$, $y_k = tg \varphi_k$) bilden. Es ist

$$\begin{array}{ll} \operatorname{tg}\,\varphi_{k} & = \operatorname{tg}\,\omega\,\sin\,(l_{k}\,+\,\lambda_{U}) \\ & = \operatorname{tg}\,\omega\,(\sin\,l_{k}\,\cos\,\lambda_{U}\,+\,\cos\,l_{k}\,\sin\,\lambda_{U}) \\ & = \operatorname{tg}\,\omega\,(\sin\,l_{k}\,\cos\,\lambda_{U}\,+\,\sqrt{1\,-\,\sin^{2}\,l_{k}}\,\sin\,\lambda_{U}) \end{array}$$

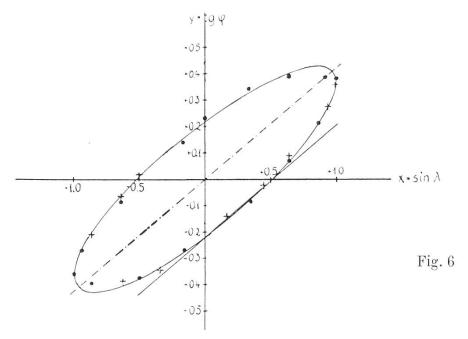
Durch Umstellung der Glieder dieser Gleichung und Quadrieren erhalten wir die Gleichung

$$tg^2 \omega \sin^2 l_k - 2 tg \omega tg \varphi_k \cos \lambda_U \sin l_k + tg^2 \varphi_k = tg^2 \omega \sin^2 \lambda_U$$

oder, wenn wir sin $l_k = x$, tg $\varphi_k = y$, sowie

$$tg^2 \omega = A$$
, $tg \omega \cos \lambda_U = B$, $tg^2 \omega \sin^2 \lambda_U = C$ setzen:

$$\underline{A x^2 - 2 B x y + y^2 = C}$$
(14)

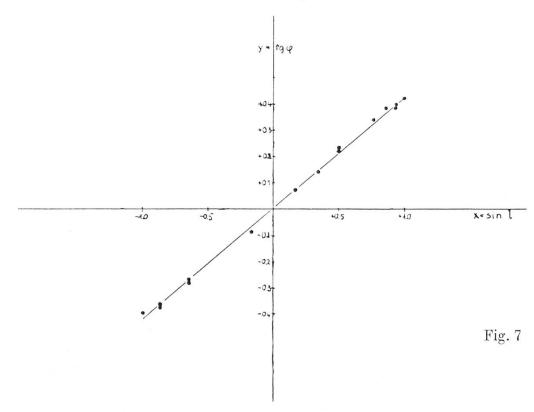


Das ist die Gleichung einer Kurve zweiter Ordnung mit dem Mittelpunkt im Koordinatennullpunkt, jedoch mit schiefliegenden Achsen. Die Punkte P_k liegen also (mehr oder weniger genau) auf einer Ellipse um den Koordinatennullpunkt; denn der Wert der Diskriminante

$$a_{11}~a_{22}-a^2_{12}=A-B^2=tg^2\omega-tg^2\omega~cos^2~\lambda_U=tg^2\omega~sin^2~\lambda_U$$
 ist positiv (Fig. 6).

Setzen wir noch y = 0, so haben wir

$$\begin{array}{c} A~x^2=C~oder~tg^2\omega~x^2=tg^2\omega~sin^2~\lambda_U,~also~x^2=sin^2~\lambda_U\\ oder~x=\pm~sin~\lambda_U=\pm~m \end{array}$$



Wir werden uns also bemühen, die Schnittpunkte der Ellipse mit der x-Achse oder wenigstens einen derselben so genau als möglich zu bestimmen. Man kann dazu auch die auf der einen Kurvenhälfte liegenden Punkte auf die andere übertragen durch Drehung um 180° (zentrale Symmetrie). Aus der Abszisse dieses einen Schnittpunktes ergibt sich dann λ_U . Hierauf können die Werte $l_k = \lambda_k - \lambda_U$ berechnet und die Punkte Q_k ($x = \sin l_k$, $y = tg \varphi_k$) in ein Koordinatensystem eingezeichnet werden. Sie müssen (theoretisch) auf einer durch den Nullpunkt gehenden Geraden liegen (Fig. 7).

Setzen wir noch in der Gleichung (14) x=0, so erhalten wir die Gleichung $y^2=C=tg^2\,\omega\,\sin^2\lambda_U$, also $y=\pm\,tg\,\omega\,\sin\lambda_U$. $=\pm\,n$. Durch Division ergibt sich sodann

$$\frac{n}{m} = \operatorname{tg} \omega$$

wo ω der Neigungswinkel der Großkreisebene gegen die Ebene des Erdäquators ist. Die Zeichnung liefert also alle Größen, die zur Festlegung des Großkreises der Punkte M_k dienen.