Zeitschrift: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft

Herausgeber: Thurgauische Naturforschende Gesellschaft

Band: 34 (1947)

Artikel: Über die Schwächung des Lichtes durch die Atmosphäre bei

horizontalem Lichteinfall

Autor: Leutenegger, e.

DOI: https://doi.org/10.5169/seals-594031

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Schwächung des Lichtes durch die Atmosphäre bei horizontalem Lichteinfall

Von Dr. E. Leutenegger, Frauenfeld

Jeder von außen in die Erdatmosphäre eintretende Lichtstrahl wird bekanntlich durch dieselbe geschwächt. Die Ursachen dieser Lichtschwächung oder Extinktion sind mannigfacher Art. 1. werden die Lichtwellen durch die Luftpartikelchen nach allen Seiten abgelenkt, zerstreut. Der Betrag der durch Beugung verloren gegangenen Lichtenergie und daher auch derjenige, der ihren Weg durch die Atmosphäre ungehindert fortsetzenden Energie ist von der Wellenlänge des Lichtes abhängig. 2. erfolgt eine Lichtzerstreuung durch diffuse Reflexion an gröberen Partikelchen wie Staubteilchen, feinen Wassertröpfchen, organischen Lebewesen. Diese Art Lichtschwächung ist im wesentlichen unabhängig von der Wellenlänge. 3. erfolgt eine Absorption eines Teiles der Lichtenergie durch Umsetzung in Wärme in den in der Luft vorkommenden Gasen, vor allem im Wasserdampf der Luft, aber auch im Sauerstoff. Diese Absorption ist im höchsten Maße selektiv, das heißt der Betrag der absorbierten Energie ist von Wellenlänge zu Wellenlänge außerordentlich verschieden, was bei der unter 1. erwähnten Lichtschwächung, die nach mathematischen Gesetzen erfolgt, nicht der Fall ist. Diese Absorption äußert sich darin, daß gewisse Partien des Sonnenspektrums außerordentlich geschwächt, ja unter Umständen ganz ausgelöscht werden. Sie verursacht die sogenannten tellurischen Linien und Banden im Sonnenspektrum, die allerdings mit Ausnahme der A-Linie (Wellenlänge $\lambda = 759.4 \,\mu\mu$), die dem irdischen Sauerstoff zuzuschreiben ist, im infraroten Teil des Sonnenspektrums außerhalb des sichtbaren Gebietes liegen. Dafür beeinflussen sie den Betrag der von der Sonne zugeführten Wärmestrahlung erheblich. Diese Linien sind kenntlich daran, daß sie bei längerem Lichtweg durch die Atmosphäre, also bei tiefem Sonnenstand, bedeutend verstärkt erscheinen. Die Stärke dieser atmosphärischen Linien und Banden stellt geradezu ein Maß für die Menge des in der Luft enthaltenen Wasserdampfes dar.1)

Auch das in der Atmosphäre, insbesondere in hohen Schichten vorkommende Ozon bewirkt eine selektive Schwächung. Sie macht sich hauptsächlich im Ultravioletten bemerkbar, wo sie von der Wellenlänge $\lambda = 295,0~\mu\mu$ an abwärts überhaupt alles Licht absorbiert, so daß das Spektrum bei dieser Wellenlänge plötzlich abbricht. Eine breite Bande selektiver Ozonabsorption, die zwar keine hohen Beträge erreicht, liegt aber auch im sichtbaren Spektrum (Maximum bei $\lambda = 600~\mu\mu$)².

Die nachfolgenden Untersuchungen beziehen sich auf die unter 1. und 2. genannten Arten der Lichtschwächung.

Da der Lichtweg nicht für alle Strahlenrichtungen (bezogen etwa auf einen bestimmten Beobachtungsort der Erdoberfläche oder in der Höhe h. über derselben (genauer über Meeresniveau) der gleiche ist, hängt die Schwächung vom Zenitwinkel des einfallenden Strahles (gemessen am Beobachtungsort) ab. Man pflegt sie in der Weise näherungsweise zu berechnen und bei den Beobachtungen in Rechnung zu stellen, daß man zu ermitteln sucht, in welchem Verhältnis die vom Lichtstrahl durchlaufene Luftmasse zu derjenigen Luftmasse steht, die bei zenitalem Lichteinfall durchlaufen wird. Letztere wählt man als Einheit der Luftmasse. Das Verhältnis der am Ende eines unter dem Zenitwinkel z = 0 einfallenden Lichtstrahls gemessenen Intensität oder Energiemenge zur ursprünglichen (vor Eintritt in die Atmosphäre) nennt man den Transmissionskoëffizienten. Die Intensität J eines senkrecht einfallenden Lichtstrahls, in einem Punkte mit der Höhe h, über Meer, der also die Luftmasse 1 durchlaufen hat, ergibt sich durch Multiplikation der ursprünglichen Energie J mit dem Transmissionskoeffizienten p. Für einen unter einem andern, also von 0 verschiedenen, Zenitwinkel z einfallenden Lichtstrahl ergibt sich der Betrag der Schwächung aus dem Wert p^M, wo M die hierbei durchlaufene Luftmasse darstellt. Bis zu Zenitwinkeln, die 75° nicht übersteigen, kann mit genügender Genauigkeit $M = \sec z$

gesetzt werden. Diese Formel erklärt sich daraus, daß bis zu der erwähnten Zenitdistanz die Krümmung der Erdoberfläche und damit auch der einzelnen Luftschichten keine nennenswerte Rolle spielt, daß daher der Lichtweg in jeder einzelnen Schicht sec z mal länger ist als bei der Zenitdistanz z=o; es wird also der ganze Lichtweg und damit die gesamte Luftmasse sec z mal größer, da auch die Dichteverteilung grundsätzlich die gleiche ist.

Da wir überhaupt nicht zu Beobachtungen gelangen, die vom Einfluß der atmosphärischen Extinktion frei sind, wird die Intensität eines Lichtstrahls immer verglichen mit derjenigen, die derselbe Lichtstrahl am gleichen Beobachtungsort bei senkrechtem Lichteinfall hätte. Das Verhältnis der beiden Lichtintensitäten J_z und J_0 , wobei die Indizes sich auf den Zenitwinkel beziehen, ist dann

$$\frac{J_z}{J_0} = \frac{p^{\text{sec } z}}{p} = p^{\text{sec } z - 1}$$
 (Bouguer'sches Gesetz).

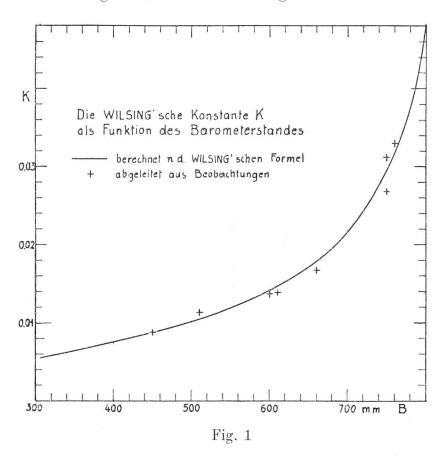
Die Extinktion wird meistens in Größenklassen ausgedrückt. Sie ergibt sich aus der Formel

$$\Delta m = -2.5 \log \frac{J_z}{J_0} = -2.5 \log p \text{ (sec z-1)} = k \text{ (sec z-1)}$$

Im weiteren ist aus den einleitenden Bemerkungen über das Zustandekommen der Lichtschwächung zu entnehmen, daß der Betrag derselben in
jedem Falle von der Wellenlänge des einfallenden Lichtes abhängig ist.
Daher kompliziert sich die Sachlage ganz wesentlich infolge der Tatsache,
daß in den seltensten Fällen sogenanntes monochromatisches Licht
zur Untersuchung gelangt, sondern daß die Lichtstrahlen sich in der Regel
aus Strahlen verschiedener Wellenlängen zusammensetzen. Man pflegt dann
mit einem mittleren Transmissionskoëffizienten zu rechnen, der natürlich
für visuelle Beobachtungen einen andern Wert hat wie für photographische
Messungen. Die Wellenlänge, welche diesem mittleren Transmissionskoeffizienten entspricht, wird dann als effektive Wellenlänge der betreffenden
photometrischen Apparatur oder der damit erhaltenen Meßresultate bezeichnet.

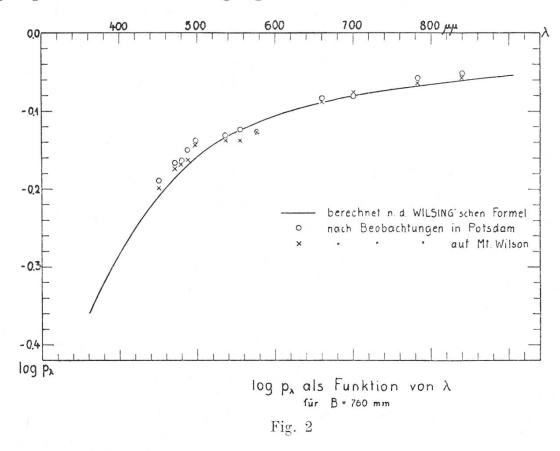
WILSING³) hat nun aus Beobachtungen von mehreren in verschiedenen Meereshöhen gelegenen Beobachtungsstationen abgeleitet, daß der Transmissionskoëffizient p_{λ} , dessen Wert von der Wellenlänge abhängig ist (daher die Bezeichnung p_{λ} an Stelle der früheren Größe p), der also die Schwächung eines Lichtstrahls beim Durchlaufen der Luftmasseneinheit, also bei zenitalem Lichteinfall, angibt, mit der Höhe h_1 der Beobachtungsstation veränderlich ist, und er hat aus den erwähnten Beobachtungen eine empirische Formel für p_{λ} abgeleitet:

log
$$p_{\lambda} = \frac{-K}{\lambda - 0,288}$$
, wo $K = \frac{0,01825 \text{ B}}{1 - 1,703 \text{ B}^4}$ (B gemessen in m)


eine Funktion des Barometerstandes der Beobachtungsstation darstellt. Führen wir das Verhältnis $\xi=B:B_0$ ($B_0=0.760$ m), so ergibt sich

log
$$p_{\lambda} = \frac{-\kappa}{\lambda - 0.288}$$
, wo $\kappa = \frac{0.01388 \xi}{1 - 0.56816 \xi^4}$

nun eine Funktion der relativen Dichte ξ der Luft ist.


Es steht wohl außer Zweifel, daß die WILSING'schen variablen Transmissionskoëffizienten die durch die verschiedenen zenitalen Luftmassen über verschiedenen Meereshöhen verursachten Schwächungsfaktoren darstellen. Die Veränderlichkeit des Transmissionskoëffizienten ist also durch die mit der Meereshöhe veränderlichen Luftmassen-Einheit bedingt.

WILSING hat angedeutet, daß in seinen Transmissionskoëffizienten der Einfluß von Staub und Dunst, wie auch des in der Luft gelösten Wasserdampfes enthalten ist. Diesem Umstande ist es wohl zuzuschreiben, daß die Werte von log p_{λ} oder die diesen Werten proportionalen Werte K, als Funktion des Barometerstandes graphisch dargestellt, nicht Punkte einer Geraden — wie es die Theorie erfordern würde — sondern eine deutlich gekrümmte Kurve ergeben, da die Verteilung von Staub und Dunst anderen

Gesetzen folgt als die Dichteverteilung der gasförmigen Lufthülle. Figur 1 zeigt K als Funktion des Barometerstandes B auf Grund der WILSING'schen Formel (Kurve) und nach Beobachtungen in Washington (10 m ü.M.), Potsdam (100 m), Orotava (auf Tenerifa, 100 m), Bassour (Algier, 1160 m) Mt. Wilson (1727 m), Pedrogil (Tenerifa, 1950 m), Alta Vista (Tenerifa, 3260 m) und Mt. Whitney (4420 m). Figur 2 zeigt die Abhängigkeit des Transmissionskoëffizienten von der Wellenlänge nach WILSING (Kurve) und nach Beobachtungen in Potsdam (Kreise) und auf Mt. Wilson (Kreuze), wobei sämtliche Transmissionskoëffizienten auf $\xi = 0$ umgerechnet sind. In beiden Figuren zeigen die Beobachtungen genügende Übereinstimmung mit der Theorie.

Wenn nun aber die Lichtstrahlen unter einem großen Zenitwinkel ankommen, so ändern sich die Verhältnisse grundlegend. Erstens geht es nicht mehr an, die Krümmung der Lichtstrahlen, wie auch die Krümmung der Erdoberfläche und der einzelnen Luftschichten zu vernachlässigen. Zweitens darf unter keinen Umständen mehr mit einem mittleren Extinktionsfaktor oder Transmissionskoëffizienten, entsprechend der für kleinere Zenitwinkel gültigen effektiven Wellenlängen gerechnet werden. Denn die Schwächungs-

faktoren für die einzelnen Wellenlängen ändern sich recht verschieden, so daß auch die effektive Wellenlänge sich beträchtlich ändern kann. Dies geht aus der wohlbekannten Tatsache der Rotverfärbung aller in tiefen Lagen beobachteten Gestirne hervor. Die effektive Wellenlänge des Lichtes, das von der untergehenden Sonne kommt, stimmt keineswegs mit der effektiven Wellenlänge des mittäglichen Sonnenlichtes überein.

Die gebräuchlichen Transmissionskoëffizienten — und auch die nach der WILSING'schen Formel berechneten — stellen stets integrale Schwächungsfaktoren dar, die sich ergeben, wenn ein von außen kommender Lichtstrahl eine sehr große Zahl von Luftschichten mit sehr verschiedenen Durchlässigkeitswerten durchlaufen hat. Um die Schwächung eines unter großem Zenitwinkel ankommenden Lichtstrahls mit einiger Sicherheit ermitteln zu können, müssen wir versuchen, die differentiellen Transmissionskoëffizienten für die einzelnen Schichten, etwa in Abhängigkeit von der Dichte der betreffenden Schichten oder als Funktion der Höhe über Meeresniveau — immer bezogen auf die Einheit der Luftmasse — zu berechnen. Dies ist auf folgende Weise möglich:

Ein Lichtstrahl, der — von außerhalb der Erdatmosphäre kommend (Figur 3) — unter dem Zenitwinkel $z=0^{\circ}$ am Grunde der Atmosphäre (in der Höhe $h_0=0$ ankommt, hat nach LAMBERT die Intensität

$$J_0 = J \cdot e^{-\int_0^\infty \alpha_\lambda \, \rho \, dh}.$$

Für einen Lichtstrahl, der unter dem Zenitwinkel z=0 ankommt, erhalten wir in der Höhe h_1 analog die Intensität

$$J_1 = J \cdot e^{-\int\limits_{h_1}^{\infty}} \alpha_{\lambda} \; \rho \; dh \label{eq:J1}.$$

Darin ist J wieder die extraterrestrische Intensität des Lichtstrahls, e die Basis des Systems der natürlichen Logarithmen (= 2,71828...); α_{λ} ist der

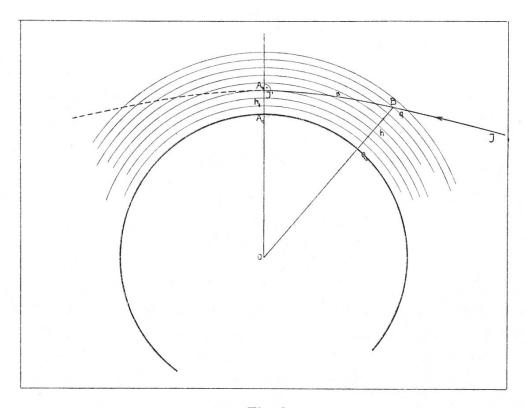


Fig. 3

sogenannten Extinktionskoëffizient für die Wellenlänge λ , ρ die Dichte der Luft in der Höhe h, dh das Wegelement in derjenigen Schicht, in welcher die Dichte den Wert ρ hat. Das Verhältnis der beiden Intensitäten ist

$$\sigma = \frac{J_0}{J_1} = e^{-\left(\int_{h_0}^{\infty} \alpha_{\lambda} \rho \, dh - \int_{h_1}^{\infty} \alpha_{\lambda} \rho \, dh\right)} = e^{-\int_{h_0}^{h_1} \alpha_{\lambda} \rho \, dh}. \tag{1}$$

Andererseits ergibt sich

$$J_0 = J \cdot p_0,$$

$$J_1 = J \cdot p_1,$$

wo p_0 und p_1 die für die Meereshöhen $h_0 = 0$ und $h_1 > h_0$ geltenden Werte des Transmissionskoëffizienten sind. Hieraus folgt wieder

$$\sigma = \frac{J_0}{J_1} = \frac{p_0}{p_1}.$$

Es ist also

$$\begin{array}{ccc}
-\int_{0}^{h_{1}} \alpha_{\lambda} \rho \, dh \\
e^{h_{0}} & = \frac{p_{0}}{p_{1}},
\end{array}$$

oder

oder

$$-\int_{p_0}^{h_1} \alpha_{\lambda} \rho \, dh = \log \operatorname{nat} \left(\frac{p_0}{p_1} \right) = -\log \operatorname{nat} \left(\frac{p_1}{p_0} \right) \tag{2}$$

Führt man nun an Stelle des Extinktionskoëffizienten α_{λ} den (nunmehr auch variablen) differentiellen Transmissionskoëffizienten q_{λ} ein durch

$$e^{-\alpha_{\lambda} \rho_{0} H} = q_{\lambda},$$
 $-\alpha_{\lambda} \rho_{0} H = \log \operatorname{nat} q_{\lambda},$
 $\alpha_{\lambda} = -\frac{1}{\rho_{0} H} \log \operatorname{nat} q_{\lambda}.$
(3)

so wird

also

Hier bedeutet ρ_0 die Dichte in Meereshöhe, das heißt beim Barometerstand $B_0 = 760 \text{ mm}$, $\rho_0 = 0{,}001293 \text{ gr cm}^{-3}$, H die Höhe der sogenannten homogenen Atmosphäre, das heißt einer hypothetischen Atmosphäre von konstanter Dichte ρ_0 , welche den gleichen Druck in Meereshöhe erzeugt, wie die tatsächlich vorhandene Atmosphäre. Der Wert von H ist $H = 7{,}991 \text{ km}$.

Setzen wir nun den für α_{λ} gefundenen Ausdruck in (2) ein, so erhalten wir

$$\int_{\mathbf{h_0}}^{\mathbf{h_1}} \frac{1}{\rho_0 \, \mathrm{H}} \, \log \, \mathrm{nat} \, \, q_\lambda \, \rho \, \, \mathrm{dh} = - \, \log \, \mathrm{nat} \, \, \Big(\frac{p_1}{p_0} \Big),$$

$$\frac{1}{H} \int_{p_0}^{h_1} \frac{\rho}{\rho_0} \log \operatorname{nat} q_{\lambda} dh = -\log \operatorname{nat} \left(\frac{p_1}{p_0}\right),$$

oder, wenn wir $\xi = \frac{\rho}{\rho_0}$ setzen und zu dekadischen Logarithmen übergehen:

$$\frac{1}{H} \int_{\mathbf{h_0}}^{\mathbf{h_1}} \xi \log q_{\lambda} d\mathbf{h} = -\log \left(\frac{\mathbf{p_1}}{\mathbf{p_0}}\right) = \log \mathbf{p_0} - \log \mathbf{p_1}. \tag{4}$$

Endlich können wir für $\log p_1$ und $\log p_0$ die aus der WILSING'schen Formel sich ergebenden Ausdrücke einsetzen:

$$\frac{1}{H} \int_{h_0}^{h_1} \xi \log q_{\lambda} dh = \frac{1}{\lambda - 0.288} (\varkappa_1 - \varkappa_0).$$

Durch Differentiation erhalten wir schließlich

$$\frac{1}{H} \xi \log q_{\lambda} = \frac{d \left(\frac{1}{\lambda - 0.288} (\varkappa_{1} - \varkappa_{0})\right)}{dh},$$
also
$$\log q_{\lambda} = \frac{H}{\xi} \frac{1}{\lambda - 0.288} \frac{d (\varkappa_{1} - \varkappa_{0})}{dh}.$$
(5)

Einer Publikation von LINK & SEKERA⁴), die mir von der Eidgenössischen Sternwarte in Zürich in verdankenswerter Weise zur Verfügung gestellt wurde, habe ich die Werte für ξ für Höhen bis 75 km entnehmen können, und zwar handelt es sich um Werte, die für die unteren Atmosphärenschichten aus aerologischen Aufstiegen, für Höhen zwischen 20 und 45 km aus Anomalien der Schallausbreitung und für Höhen über 45 km aus Meteorbeobachtungen und Dämmerungserscheinungen erhalten wurden, also nicht um Werte, die auf Grund irgend einer Theorie über den Aufbau der Atmosphäre sich ergeben, sondern um Beobachtungen entstammende, für Winter und Sommer getrennt ermittelte Werte. Diese Tafeln enthalten auch die Weglängen s, gemessen vom erdnächsten Punkt A_1 bis zu denjenigen Punkten des Lichtweges, die verschiedene Höhen $h \ge h_1$ haben,

Aus den Werten von ξ ergeben sich die Werte der WILSING'schen Funktion \varkappa für verschiedene Höhen, hieraus die Differenzen $\varkappa_1 - \varkappa_0$, wo \varkappa_0 den zu h = 0 gehörigen Wert von \varkappa bedeutet, sowie endlich durch numerische Differentiation die Werte $\frac{d (\varkappa - \varkappa_0)}{d h}$ und zwar vermittelst eines von H. von SANDEN⁵) gegebenen Ausgleichsverfahrens, das im folgenden erläutert werden soll.

ebenfalls getrennt für Winter und Sommer (Tafel 1).

Es soll eine Funktion dritten Grades $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ bestimmt werden, die irgend 5 äquidistante Werte y_{k-2} , y_{k-1} , y_k , y_{k+1} , y_{k+2} , einer tabellenmäßig gegebenen Funktion, die zu den Höhen h_{k-2} ,

h	log	gξ	h	lo	g ξ	h	lo	gξ
km	Winter	Sommer	km	Winter	Sommer	km	Winter	Sommer
0	+0,003	-0,024	15	-0,836	-0,808	30	-1,904	-1,803
1	-0.054	071	16	904	875	32	2,046	934
2	102	114	17	972	941	34	182	2,108
3	149	159	18	1,041	1,009	36	312	255
4	196	205	19	110	076	38	433	393
5		0.251	20	-1,178	1 142	40	- 2 546	2,518
6	288	297	21	247	208	42	644	629
7	336	342	22	317	274	44	739	731
8	388	390	23	387	341	46	82	82
9	442	437	24	456	407	48	90	90
10	0.500	- 0,490	25	-1,526	1 472	50	-3,98	2 02
11	-0.500 -563	-0.490 543	$\frac{25}{26}$	-1,526 604		52	V	
12	631	608	27	679	539 604	$\frac{52}{54}$	3,05	$3,05 \\ 12$
13	700	674	28	755	670	56	19	19
14	767	741	29	828	737	58	26	26
14	101	141	20	020	191	30	20	20
15	0,836	0,808	30	-1,904	-1,803	60	-3,33	-3,33

Tafel 1. Die relative Dichte der Atmosphäre nach LINK & SEKERA.

 h_{k-1} , h_k , h_{k+1} , h_{k+2} und den an Stelle derselben angenommenen x-Werten -2, -1, 0, +1, +2 gehören, möglichst gut darstellt. Diese ergibt sich nach H. v. SANDEN mit Hilfe der Methode der kleinsten Quadrate. Die Koëffizienten dieser Ausgleichsfunktion sind:

$$a_{0} = \frac{1}{35} \left(-3 y_{k-2} + 12 y_{k-1} + 17 y_{k} + 12 y_{k+1} - 3 y_{k+2} \right),$$

$$a_{1} = \frac{1}{12} \left(y_{k-2} - 8 y_{k-1} + 8 y_{k+1} - y_{k+2} \right),$$

$$a_{2} = \frac{1}{14} \left(2 y_{k-2} - y_{k-1} - 2 y_{k} - y_{k+1} + 2 y_{k+2} \right),$$

$$a_{3} = \frac{1}{12} \left(-y_{k-2} + 2 y_{k-1} - 2 y_{k+1} + y_{k+2} \right).$$

Diese Funktion läßt sich nun vorerst zum "Glätten" der gegebenen Tabellenwerte benützen. Insbesondere ergibt sich für die Mitte eines Intervalles an Stelle des Tabellenwertes y_k der Ausgleichswert f_k gleich dem Funktionswert $f(0) = a_0$ des betreffenden Intervalles, also

$$f_k = \frac{1}{35} (-3 y_{k-2} + 12 y_{k-1} + 17 y_k + 12 y_{k+1} - 3 y_{k+2}).$$

An Stelle der "Randwerte" erhalten wir die folgenden ausgeglichenen Werte

$$f_{k-2} = \frac{1}{70} (69 \ y_{k-2} + 4 \ y_{k-1} - 6 \ y_k + 4 \ y_{k+1} - y_{k+2}).$$

$$f_{k-1} = \frac{1}{35} (2 \ y_{k-2} + 27 \ y_{k-1} + 12 \ y_k - 8 \ y_{k-1} + 2 \ y_{k+2}),$$

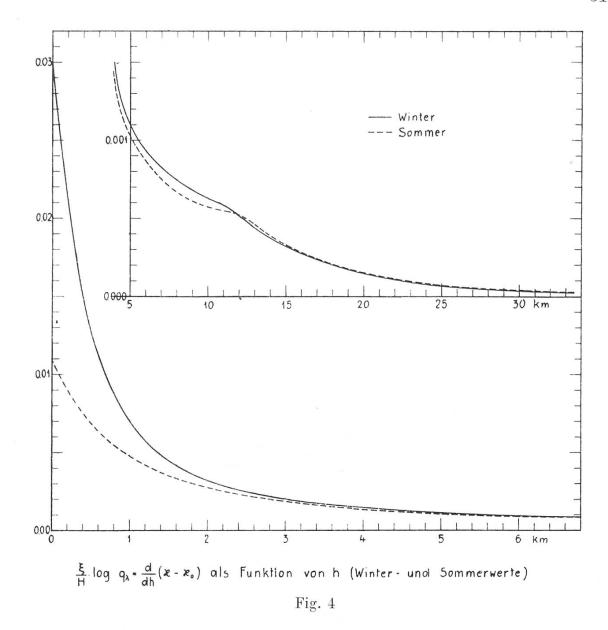
$$f_{k+1} = \frac{1}{35} (2 \ y_{k-2} - 8 \ y_{k-1} + 12 \ y_2 + 27 \ y_{k+1} + 2 \ y_{k+2}),$$

$$f_{k+2} = \frac{1}{70} (-y_{k-2} + 4 \ y_{k-1} - 6 \ y_k + 4 \ y_{k+1} + 69 \ y_{k+2}).$$

Die für das Intervall h_{k-2} bis h_{k+2} gültige Ersatzfunktion f(x) kann nun auch zur Differentiation der gegebenen Funktion benützt werden. Nach den Regeln der Differentialrechnung ist der Differentialquotient

$$f'(x) = a_1 + 2 a_2 x + 3 a_3 x^2.$$

Für irgend einen Wert h_k innerhalb eines aus mindestens 5 äquidistanten Werten y_{k-2} bis y_{k+2} ergibt sich der Wert des Differentialquotienten


$$\begin{split} f'_{k-2} &= \frac{1}{84} \, \left(-125 \, y_{k-2} + 136 \, y_{k-1} + 48 \, y_k - 88 \, y_{k+1} + 29 \, y_{k+2} \right), \\ f'_{k-1} &= \frac{1}{42} \, \left(-19 \, y_{k-2} - y_{k-1} + 12 \, y_k + 13 \, y_{k+1} - 5 \, y_{k+2} \right), \\ f'_{k+1} &= \frac{1}{42} \, \left(+5 \, y_{k-2} - 13 \, y_{k-1} - 12 \, y_k + y_{k+1} + 19 \, y_{k+2} \right), \\ f'_{k+2} &= \frac{1}{84} \, \left(-29 \, y_{k-2} + 88 \, y_{k-1} - 48 \, y_k - 136 \, y_{k+1} + 125 \, y_{k+2} \right). \end{split}$$

Tafel 1 enthält auszugsweise die Werte der relativen Dichte ξ für verschiedene Höhen nach den Tafeln von LINK & SEKERA. In Tafel 2 (Seite 50) sodann sind die durch Ausgleichung gefundenen Werte ξ angegeben, wobei mit Hilfe derselben Ausgleichsfunktionen auch Zwischenwerte berechnet wurden. Weiter enthält Tafel 2 die aus der WILSING'schen Formel berechneten Werte von $\varkappa(\xi)$, deren Differenzen $\varkappa(\xi) - \varkappa(\xi_0)$, kurz bezeichnet mit $\varkappa - \varkappa_0$, sowie endlich die auf Grund der oben angegebenen Formeln berechneten Werte des Differentialquotienten $\frac{d (\varkappa - \varkappa_0)}{d h}$. Figur 4 (Seite 51) gibt eine graphische Darstellung der Werte $\frac{d (\varkappa - \varkappa_0)}{d h}$ in Abhängigkeit von h.

Durchläuft nun ein Lichtstrahl die Atmosphäre so, daß er in einem Punkt A_1 in der Höhe h_1 über Meer unter dem Zenitwinkel $z = 90^{\circ}$ ankommt, so

h	rel. D	oichte	χ	(ξ)	χ-	-χ ₀	d (χ — χ₀) d h				
	Winter	Sommer	Winter	Sommer	Winter	Sommer	Winter	Sommer			
0,0	1,0068	0,9470	0,03356	0,02419	-0,00000	-0,00000	-0,02999	-0,01097			
2	0,9792	9272	2846	2219	0510	0200	2125	0909			
4	9532	9080	2492	2053	0864	0366	1490	0755			
6	9287	8894	2234	1915	1122	0504	1117	0631			
8	9057	8711	2036	1798	1320	0621	0878	0550			
1,0	0,8838	0,8531	0,01878	0,01694	-0,01478	-0,00725	-0,00708	-0,00484			
2	8631	8356	1750	1604	1606	0815	576	421			
4	8437	8184	1645	1525	1711	0894	486	371			
6	8249	8018	1554	1455	1802	0964	424	334			
8	8069	7854	1475	1391	1881	1028	366	303			
2,0	0,7895	0,7693	0,014067	0,013333	-0,01949	-0,01086	-0,003164	-0,002772			
5		7303	12639	12082	2092	1211	2476	2240			
3,0		6931	11497	11072	2206	1312	2062	1842			
5	6722	6578	10554	10218	2301	1397	1713	1576			
4,0		6239	09757	09475	2380	1471	1471	1379			
5	0,5725	0,5609	0,008464	0,008249	-0,02510	-0,01594	-0,001091	-0,001020			
6	5152	5051	7449	7281	2611	1691	0934	0882			
7	4610	4543	6567	6461	2699	1773	0829	0755			
8	4098	4082	5781	5757	2778	1843	0746	0670			
9	3616	3647	5068	5113	2849	1908	0681	0602			
10	0,3161	0,3247	0,004414	0,004535	-0,02915	-0,01966	-0,000629	-0,000567			
11	2734	2851	3808	3973	2975	2022	585	551			
12	2339	2471	3252	3437	3031	2075	516	519			
13	1999	2118	2778	2943	3078	2125	439	466			
14	1708	1816	2371	2524	3119	2167	374	387			
15	0,1460	0,1556	0,002027	0,002160	-0,03153	-0,02203	-0,000318	-0,000334			
16	1247	1334	1731	1853	3183	2234	272	284			
17	1066	1144	1480	1588	3208	2260	234	246			
18	0909	0980	1262	1360	3230	2283	200	212			
19	0777	0839	1078	1164	3248	2303	169	187			
20	0,0663	0,0721	0,000921	0,001001	-0,03264	-0,02319	-0,000146	-0,000151			
22	0482	0534	669	741	3289	2345	106	116			
24	0350	0392	487	544	3307	2365	079	084			
26	0250	0289	347	401	3321	2379	060	060			
28	0176	0214	245	297	3332	2389	042	045			
30	0,0125	0,0157	0,000174	0,000219	-0,03339	-0,02397	-0,000030	-0,000038			
32	0090	0115	123	160	3344	2403	20	29			
34	0066	0078	092	108	3347	2408	13	21			
36	0049	0059	068	077	3349	2411	10	17			
38	0037	0041	051	056	3351	2413	07	09			
40	0,0028	0,0030	0,000040	0,000042	-0,03352	-0,02415	-0,000005	-0,000006			
42	0023	0024	32	33	3353	2416	4	4			
44	0018	0019	25	26	3354	2416	3	3			
46	0015	0015	21	21	3354	2417	2	2			
48	0013	0013	17	17	3354	2417	2	2			
50	0,0010	0,0010	0,000014	0,000014	-0,03355	-0,02418	-0,000001	-0,000001			
1	1 -,	1 -,	13,000021	1 3,000 - 1	1 2,2000	1 -,	1 -,	1 2,230001			

Tafel 2. Die relative Dichte der Atmosphäre (ausgeglichene Werte), die WILSING'sche Funktion $\varkappa(\xi)$ und der Differentialquotient $\frac{d(\varkappa-\varkappa_0)}{dh}$ in Abhängigkeit von der Höhe über Meer.

ist, wenn wieder J die extraterrestrische Intensität ist, die im erdnächsten Punkt A_1 zu messende Intensität J_1 gegeben durch

$$J_1 = J \cdot e^{\int\limits_0^\infty lpha_\lambda \;
ho \; ds}$$
 .

Der Schwächungsfaktor ist

ist
$$\sigma = \frac{J_1}{J_0} = e^{-\int\limits_0^\infty \alpha_\lambda \; \rho \; ds}.$$

Das Integral erstreckt sich über den ganzen Lichtweg von außerhalb der Atmosphäre bis zum erdnächsten Punkt A_1 , von welchem aus die Weglängen s gezählt werden. Durch Logarithmieren erhalten wir

$$\log \, \operatorname{nat} \, \sigma = - \int_{0}^{\infty} \alpha_{\lambda} \, \rho \, \operatorname{ds}.$$

Gehen wir wieder zum Transmissionskoëffizienten q_{λ} über, indem wir setzen:

$$e^{-\alpha_{\lambda} \rho_{e} H} = q_{\lambda}.$$
 $\alpha_{\lambda} = -\frac{1}{\rho_{e} H} \log \operatorname{nat} q_{\lambda},$

oder

so wird schließlich

$$\label{eq:sigma} \text{log nat } \sigma = -\int\limits_0^\infty \!\! -\frac{1}{\rho_0\;H} \log \, \text{nat } q_\lambda \; \rho \; ds = \frac{1}{H} \int\limits_0^\infty \!\! \xi \; \log \, \text{nat } q_\lambda \; ds,$$

oder wenn wir an Stelle der natürlichen Logarithmen wieder die dekadischen Logarithmen einführen:

$$\log \sigma = \frac{1}{H} \int_{0}^{\infty} \xi \log q_{\lambda} ds, \tag{6}$$

und wenn wir schließlich noch die in (5) gefundenen Ausdrücke für log q_{λ} einsetzen:

$$\log \sigma = \frac{1}{\lambda - 0.288} \int_{0}^{\infty} \frac{\mathrm{d} \left(\varkappa - \varkappa_{0}\right)}{\mathrm{dh}} \, \mathrm{ds}. \tag{7}$$

Wir tragen auf einer s-Achse die zu einer gegebenen Höhe h gehörige Weglänge s (Lichtweg, gemessen vom erdnächsten Punkt bis zu demjenigen Punkt, der die Höhe h über Meer hat) ab und errichten im Endpunkt ein Lot von der Länge $\frac{d(\varkappa-\varkappa_0)}{dh}$. Die von diesen Punkten gebildete Kurve, der s-Achse und der Achse der $\frac{d(\varkappa-\varkappa_0)}{dh}$ -Werte umschließen eine Fläche, deren Flächeninhalt den Wert des Integrals $\int_0^\infty \frac{d(\varkappa-\varkappa_0)}{dh} ds$ darstellt. Die Fläche kann mit Hilfe eines Planimeters ausgemessen werden.

In Figur 5 sind die zu den Minimalhöhen h = 0, 1, 5, 10, 20 km gehörigen $\frac{d\left(\varkappa-\varkappa_{0}\right)}{d\,h}\text{-Kurven dargestellt. Man achte auf die von Kurve zu Kurve verschiedenen Maßstäbe für die }\frac{d\left(\varkappa-\varkappa_{0}\right)}{d\,h}\text{-Werte.}$

Die Werte des Integrals
$$\int\limits_0^\infty\!\!\frac{d\,(\varkappa-\varkappa_0)}{d\,h}\,ds=(\lambda-0.288)\,\log\,\sigma_\lambda\,\,{\rm sind}\,\,{\rm in}$$

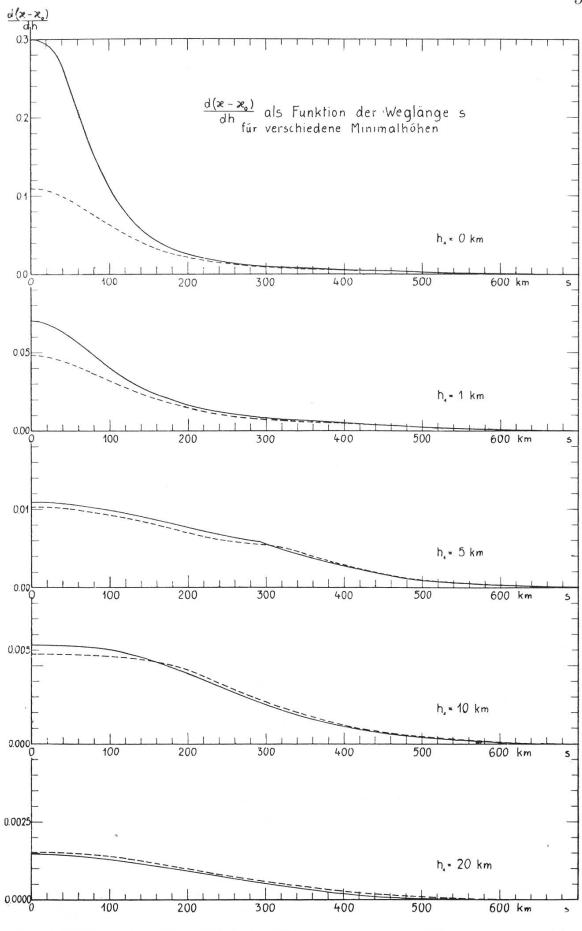


Fig. 5

h	$\int_{0}^{\infty} \frac{d (\varkappa - \varkappa_{0})}{dh} ds =$	(λ—0,288) log σχ
	Winter	Sommer
0	3,0950	-1,6060
1	1,0846	0,8639
2	0,6667	0,5995
3	0,4887	0,4537
4	0,3842	0,3660
5		- 0,3064
6	0,2797	0,2683
7	0,2507	0,2398
8	0,2226	0,2125
9	0,1992	0,1940
10		- 0,1757
12	0,1359	0,1404
14	0,0958	0,1018
16	0,0699	0,0755
18	0,0501	0,0562
20	-0.0371	0,0406
$\frac{20}{24}$	0,0244	0,0279
28	0,0122	0,0154

Tafel 3. Werte des Integrals $\int_{0}^{\infty} \frac{d(\varkappa - \varkappa_{0})}{dh} ds$.

Tafel 3 angegeben; die für verschiedene Wellenlängen berechneten Schwächungsfaktoren σ_{λ} selbst sind in Tafel 4 zusammengestellt. Die Sommerwerte sind außerdem in Figur 6 graphisch in der Weise veranschaulicht, daß sowohl für gegebene Wellenlängen λ als auch für bestimmte Minimalhöhen h diejenigen Punkte errechnet wurden, die vorgeschriebenen Schwächungsfaktoren (den Werten $\sigma_{\lambda}=0.0001,\,0.001,\,0.01,\,0.05,\,0.1\,0.2,\,\ldots$ bis 0,9) entsprechen. Punkte gleicher Schwächung sind durch Kurven "gleicher Schwächung" miteinander verbunden. Die Darstellung gestattet, für jede beliebige Höhe h und jede beliebige Wellenlänge λ die Schwächung herauszulesen, die ein von außen in die Atmosphäre eintretender, in der Höhe h horizontal ankommender Lichtstrahl auf seinem Weg durch die Lufthülle erfahren hat.

Wir erkennen, daß in der Höhe h = 1 km die Intensität des sichtbaren Lichtes im Winter auf weniger als $1^{\circ}/_{00}$ der extraterrestischen herabgedrückt wird. Noch in der Höhe h = 10 km beträgt die Intensität des blauen Lichtes ($\lambda = 500~\mu\mu$) erst etwa 15 % der extraterrestischen. Erst in 20 km Höhe

Tafel 4. Schwächungsfaktoren σ_{λ} (Winter und Sommer)

h ₁		0	Н	O)	က	4	n	0	9	~	∞	6	10	11	12	14	16		18	50	24	28	
00	Sommer	0,00556	0612	1439	2306	3062	6	0,5(15	4200	4605	5029	5341	 0,5666	5991	6351	7195	7835		0,8339	8770	9137		
1000	Winter	0,00004	0300	1158	2059	2887	6 0 0	10000	4048	4445	4866	5250	0,5641	6057	6441	7335	9262		0,8503	8870	9240	9611	
006	Sommer	0,00237	0388	1009	1814	2523	0916	0,5100	3644	4056	4328	4820	0,5162	5510	5897	6820	7529	78	0,8097	8587	9006	9439	
6	Winter	0,00001	0169	0814	1590	2356	0.500.0	0,2370	3491	3894	4328	4726	0,5138	5581	6111	6974	7687		0,8281	8697	9122	9550	
800	Sommer	0,00073	0205	0675	1300	1928	1020	U,2021	2992	3405	3846	4178	0,4537	4904	5319	6327	7120		0,7770	8333	8820	9330	
∞ 	Winter	0,00000	00762	0499	1110	1777	0.0051	0,2551	2976	3239	3674	4082	 0,4511	4981	5427	6500	7303	9	0,7981	8462	8959	9461	
002	Sommer	0,00013	00800	0279	0792	1293	0 1004	0,1004	2233	2618	3049	3382	0,3745	4126	4534	5661	6557		0,7305	7970	8557	9175	
).	Winter	0,00000	00233	0241	0651	1168	10 0 0	0,1000	2094	2463	2882	3285	0,3719	4205	4812	5854	6765		0,7558	8128	8725	9341	
00	Sommer	0,00001		01198	0351	0671	0.1049	0,10±2	1413	1703	2084	2389	0		3548		5728		0,6604	7412	8140	8925	
009	Winter	0,00000	00033	00729		0587	06000	0,030	1269	1572	1934	2299	0,2708	3184	3668	4931	5970	,	0,6909	2092	8352	9139	
200	Sommer	0,00000	80000	00149	00725	0188	02600	0,0508	0543	0739	0994	1216		1790		3311	4405		0,5431	6435	7386	8460	
90	Winter	0,00000	00001	00072	00495	0154	60600	\supset	0479	0657	0891	1145	0,1463	1857	2285	3528	4681		0,5803	6883	7671	8757	
400	Sommer			0,00000 0,00000	60000	00054	0.00184	0,00104			01267	01851	0,0270	0385	8890	1233	2119		0,3149	4340	5635	7287	
40	Winter			0,00000	00004	28000	0.00194	40100,0	00318	00578	01029	0166	0,0263	0413	0612	1395	2376	1	0,3570	4663		7780	
ਜੀਜੀ 0 (Sommer																0,00000 0,00000		0,00007 0,00002 0,3570	00041	00473	0764	
ਜੀ 008 = 7	Winter																0,00000		0,00007	00081	00927	0963	
þ	•	0	Н	03	က	4	70	. c	9	~	∞	6	10	11	12	14	16		18	20	24	28	

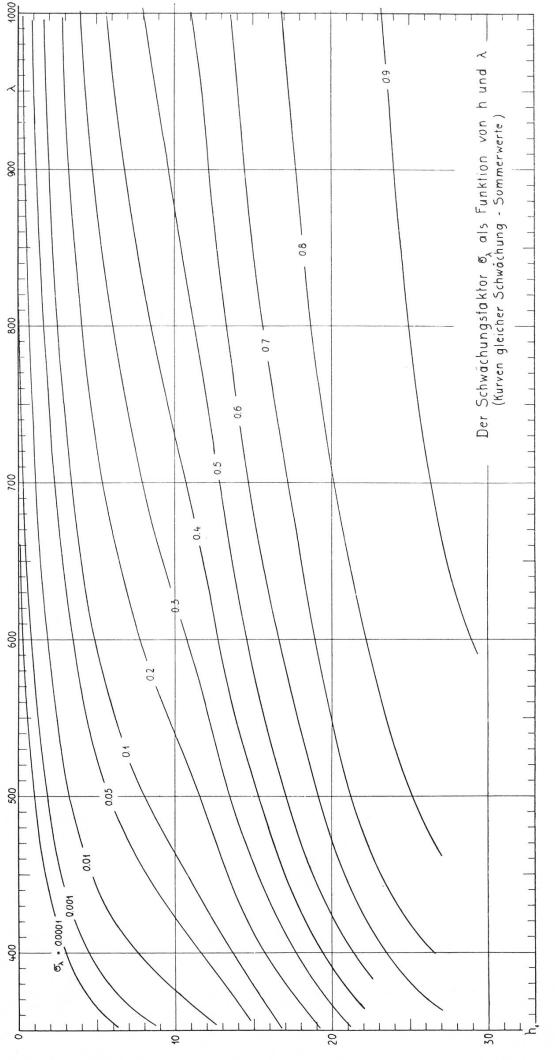


Fig. 3

läßt die Atmosphäre mehr als 50 % eines jeden vom menschlichen Auge empfundenen Lichtstrahls durch. Die Darstellung zeigt, daß für $\lambda=400\,\mu\mu$ erst in Höhen von mehr als 14 km, für $\lambda=500\,\mu\mu$ oberhalb 8 km, für $\lambda=600\,\mu\mu$ oberhalb 5 km, für $\lambda=700\,\mu\mu$ oberhalb 3½ km, für $\lambda=1000\,\mu\mu$ dagegen schon von 2 km an 10 und mehr Prozent des Lichtes durchgelassen wird. Insbesondere für die Wellenlängen des sichtbaren Lichtes steigt dann der Betrag der durchgelassenen Strahlung verhältnismäßig rasch bis auf zirka 80 %, welcher Betrag für $\lambda=400\,\mu\mu$ in etwa 32 km, für $\lambda=500\,\mu\mu$ in 25 km, für $\lambda=600\,\mu\mu$ in 22 km, für $\lambda=700\,\mu\mu$ in 20 km, für $\lambda=1000\,\mu\mu$ in 17 km erreicht wird. Dieser Anstieg geht also in einer 15—18 km dicken Luftschicht vor sich. In 70—80 km Höhe erst dürfte die Absorption so gering sein, daß ein Lichtstrahl praktisch ungeschwächt die Atmosphäre durchsetzt.

Die Winterwerte ergeben ein prinzipiell nur wenig verändertes Bild, weshalb auf dessen Wiedergabe hier wohl verzichtet werden kann. Die Gestalt der Kurven ist einheitlicher als die der Sommerkurven. Für die untersten Atmosphärenschichten ergibt sich eine ganz erheblich stärkere Absorption als im Sommer. Der Abstieg der Durchlässigkeit von 10 auf 90 % erfolgt im Winter rascher, beginnt in etwas größerer Höhe, ist in geringerer Höhe als im Sommer vollendet. Möglicherweise durchquert ein Lichtstrahl schon in 50 km Höhe über der Erdoberfläche die Atmosphäre fast ungeschwächt. Die Atmosphäre ist also in tieferen Schichten undurchlässiger, in höheren Schichten aber durchsichtiger wie im Sommer. Dies erklärt sich ohne weiteres durch größere Dichte der bodennahen Luftschichten, den rascheren vertikalen Dichteabfall der winterlichen Atmosphäre.

Literatur

- ¹ C. G. ABBOT und F. E. FOWLE. Astrophysical Journal 34 (1911), 35 (1912), 37 (1913), 38 (1913), 40 (1914), 42 (1915).
- ² HANN-SURING, Lehrbuch der Meteorlogie. Fünfte vollständig neubearbeitete Auflage, 1. Lieferung. Leipzig 1940, S. 22.
- ³ J. WILSING. über die Helligkeitsverteilung im Sonnenspektrum nach bolometrischen Messungen und über die Temperatur der Sonnenoberfläche. Publikation des Astrophysikalischen Observatoriums zu Potsdam, 23. Band (1917).
 - ⁴ LINK & SEKERA. Dioptrische Tafeln der Erdatmosphäre. Prag 1940.
- ⁵ H. v. SANDEN. Mathematisches Praktikum I. Teubner's Technischer Leitfaden, Band 27. Leipzig Berlin 1927.