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Korrelationsrechnung
Yon E. Früh, Kradolf

Streuung und Abhängigkeit

Ist eine Größe p so definiert, daß ihr zwischen den Grenzen a und b
ein wahrscheinlichster Wert mp zukommt, dann muß bei n Messungen
die Häufigkeit eines Wertes pi um so größer sein, je kleiner pi — mp
ist. Nach dem Gaußschen Yerteilungsgesetz ist mp so zu bestimmen,

zu einem Minimum wird. Diese Bedingung ist erfüllt, wenn

also gleich dem arithmetischen Mittel aller pi-Werte ist. Es leuchtet
ein, daß bei gegebener Meßgenauigkeit nur bei hinreichend großem n
(n —> oo) der „wahre" Mittelwert erhalten werden kann; das aus
einer beschränkten Zahl von Messungen sich ergebende arithmetische
Mittel ist als immerhin bester Annäherungswert noch mit einem von
n abhängigen Fehler behaftet.

Sind vi pi — mp die wahren Fehler, oder Abweichungen, be-

zogen auf das wahre Mittel mp, dann wird er als mittlerer Fehler,
mittlere Abweichung oder auch mittlere Streuung bezeichnet. Ist
m'p das angenäherte Mittel, dann erhält man als mittlere Streuung,
oder kurz Streuung

wenn unter [vv] nach Gauß die Summe aller Fehlerquadrate ver-
standen wird. Der Fehler des Mittelwertes wird dann

daß
n (j2 S (pi — mp)*

n
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(vgl. S. 59). Ist für einen Zahlenkomplex nicht ein wahres Mittel de-

finiert, dann kann auch die Streuung nicht auf ein solches bezogen
werden. Es ist in diesem Fall

„ _V'h3
' n

Weist zum Beispiel ein von a bis b reichendes Intervall keine Hau-
fungsstellen der Werte auf, dann ist das Mittel nur von den Intervall-
grenzen abhängig. Die Dichte der Besetzung des Intervalls spielt bei
der Berechnung des Mittels keine Rolle; die Streuung strebt mit
wachsendem n einem Grenzwert zu:

a b
~ 6

ist also bei homogener Besetzung des Intervalls ebenfalls unabhängig
von n. — Vor der Berechnung einer Streuung haben wir also stets

zu untersuchen, auf was für eine Art von Mittel diese zu beziehen ist.
Liegen zwei innerhalb beliebiger Grenzen veränderliche Größen

y und x vor, zwischen denen durch das Experiment, oder auf dem

Wege der Erfahrung eine Bindung irgendwelcher Art festgestellt wor-
den ist, dann wird einem bestimmten Wert der einen Größe eine

innerhalb eines gewissen Bereiches bleibende Wertegruppe der andern
Größe zuzuordnen sein. Zu einem x Xi gehören also ni Werte yi,
deren Mittelwert mj, und Streuung, bezogen auf m'y gewissermaßen
durch Xi bedingt sind. Ebenso wird für y Yi die Größe x innerhalb
eines beschränkten Bereiches variieren und somit die Streuung und
der Mittelwert mj, der xi-Werte als durch Yi bedingt zu bezeichnen
sein. Damit ist aber über die Art der Beziehung zwischen y und x
nicht eine Aussage gemacht so, als ob die eine der Größen eine unab-
hängig, die andere eine abhängig Veränderliche sei und man weitere
Möglichkeiten, wie etwa die der Beeinflussung beider Größen durch
dritte auszuschließen habe. Die Ausdrücke: bedingter Streuungs-
bereich, bedingtes Mittel, usw. haben lediglich den Sinn einer durch
die Existenz einer Bindung gerechtfertigten Zuordnung.

Wir haben Zusammenhänge zu unterscheiden:

A. Waefe rfer Mrf

a. Kausalzusammenhänge: Beziehungen zwischen Grund und
Folge, zwischen Ursache und Wirkung. Nach dem Kausalitätsgesetz
ist jede Veränderung durch eine andere bedingt; Beziehungen dieser
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Art feststellen heißt nichts anderes, als (Natur-) Gesetze entdecken. Es
leuchtet ein, daß diese Zusammenhänge außerordentlich wichtig sind.

b. Symptomatische Zusammenhänge. Folgen, die auf die nämliche
Ursache zurückzuführen sind. Sind Ereignisse das Ergebnis der Ein-
ilußnahme eines übergeordneten Erscheinungskomplexes, dann wird
man unter Umständen auch bei Unkenntnis desselben vom Eintreffen
des einen Ereignisses auf das Eintreffen des oder der andern schließen
können.

Sy: Streuungsbereich von y für x Xi
Sx: Streuungsbereich von x für y Yi
Sx setzt Sy voraus und umgekehrt.

B. Aucft (fer Ëwge (fer Bm(fuug

a. Funktionelle Zusammenhänge: Zu bestimmten Werten einer
oder mehrerer bedingenden Größen gehören bestimmte Werte der be-

dingten Größe. Eine Streuung ist also weder bei abhängig, noch bei
unabhängig Veränderlichen vorhanden. Funktionen sind durchaus
nicht nur rein theoretische Zuordnungen; man kennt eine ganze
Reihe empirisch festgestellter funktioneller Beziehungen, obwohl ja
zugegeben werden muß, daß alles nicht a priori Gültige nur mit einer

gewissen Wahrscheinlichkeit ausgesprochen werden kann. Diese
Wahrscheinlichkeit ist aber von völliger Sicherheit kaum zu unter-
scheiden.
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b. Korrelative Zusammenhänge (Ko-Relation Mitbeziehung).
Die Streuung von y (x, xi) ist eine durch x oder xi (y) bedingte,
(xi, i 1 — n bedeutet, daß y unter Umständen nicht nur von einem

einzigen x abhängig ist.) Je nach der Größe der bedingten Streuung
muß die Abhängigkeit als mehr oder weniger eng bezeichnet werden.
Die Untersuchung solcher korrelativer Beziehungen macht es not-
wendig, diese rein qualitative Aussage durch eine quantitative zu
ersetzen: Die Abhängigkeit muß gemessen werden können. Das Ver-
dienst, ein Abhängigkeitsmaß geschaffen und damit die Korrelations-
rechnung begründet zu haben, kommt dem Engländer Galton zu

(„Correlations and their measurement" 1888).

Das Abhängigkeitsmaß

Theoretisch muß es möglich sein, jede an einer Größe y auftretende
Veränderung auf Veränderungen einer Reihe von xi-Werten zurück-
zuführen, von denen y funktionell abhängig ist:

y f (Xj, Xjj, Xn).

Von den n möglichen Teilbeziehungen zwischen

y und Xj, y und Xj, usw.

wird der zwischen y und einem bestimmten x xi am ehesten fest-
zustellen sein, wenn man alle übrigen Größen, die von Einfluß sind,
konstant hält. Das ist nun vielfach nicht möglich und dieser Umstand
bedingt den korrelativen Charakter solcher Teilbeziehungen. Anders

gesagt: Korrelative Beziehungen zwischen zwei Größen lassen auf
andere, vielleicht unbekannte Einflüsse schließen. Eine Voraussetzung,
auf der die Korrelationsrechnung grundsätzlich aufbaut, kann unter
Umständen einen Zusammenhang als loser kennzeichnen, als er mög-
licherweise ist: sie nimmt eine lineare Beziehung zwischen x und y
an. Das schränkt die Anwendungsmöglichkeit der Korrelations-
rechnung nicht in so großem Maße ein, wie man es vielleicht glauben
möchte; abgesehen davon, daß lineare Beziehungen sehr häufig sind,
hat man oft die Möglichkeit, durch Logarithmierung nicht lineare Zu-
sammenhänge in lineare umzuwandeln. Ausdrücke von der Form:

y° — ax^

y a", usw.

das heißt Zusammenhänge, die sich in dieser Weise ausdrücken lassen,
sind also ohne weiteres auswertbar. Dazu kommt nun noch eine weitere
Methode, die an dieser Stelle etwas eingehender dargestellt werden
soll.

2
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Es sei festgestellt worden — vielleicht mit Hilfe der graphischen
Darstellung —, daß zwischen den einander zugeordneten Größen x und

y eine Beziehung bestehe, die vielleicht am besten durch eine Funk-
tion n-ten Grades :

y a + bx -(- cx^ + dx® + + kx"
dargestellt werden könnte. Untersucht man nun, in welcher Weise y
wächst, wenn man x immer um gleiche Beträge zunehmen läßt, dann
stellt man fest, daß die „Steigung" von y wieder durch eine Funk-
tion von x ausgedrückt werden kann, wobei aber als höchste Potenz
die (n — l)-te von x auftritt. Von dieser Funktion ermitteln wir
wieder die „Steigung"; sie ergibt eine Funktion mit x"~^ als höchster
Potenz — und wenden dieses Verfahren solange an, bis eine k-te
Differenzenreihe nur noch eine lineare Änderung zeigt. Man strebt mit
dem geschilderten Verfahren eine Beziehung an, die durch k-fache
Differentiation der Funktion f(x) erhalten werden kann, wenn gilt:

Hat man mit Hilfe der Korrelationsrechnung den Zusammenhang
zwischen f"'< und x festgestellt, dann kann man rückschreitend durch
Integration die ursprüngliche Funktion, das heißt jene, welche dem fest-
gestellten Zusammenhang am besten gerecht wird, wieder erhalten.

Das numerische Verfahren ist nun folgendes: Wir bilden die Dif-
ferenzen aufeinanderfolgender Werte von y, die x-Werten zugehören,
zwischen denen das Intervall stets dasselbe bleibt. Diese regelmäßige
Zunahme von x kann im praktischen Fall durch eine passende Klas-
seneinteilung erreicht werden, wobei dann an Stelle eines y der Mittel-
wert m'y aller der der Klasse angehörenden yi tritt. Die Differenz-
bildung wird nun solange durchgeführt, bis man annähernd konstante
Werte erhält, oder aber, bis diese Differenzwerte weder eine mit x
parallel gehende Zunahme, noch eine Abnahme zeigen. An dieser
Stelle setzt dann die Korrelationsrechnung ein. Ein Beispiel soll das

Gesagte erläutern.

fM a' + b'x (vgl. S. 51—56).

x y y' y" y'

0 2

1 9

2 22

3 41

4 66

5 97

6 134

7

13

19

25

31

37

6 10

6 16

6 22

6 28

6 34

40

4
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Der Einfachheit halber wurde ein funktioneller Zusammenhang ge-
wählt. Da die zweite Differenz y" den konstanten Wert 6 hat, ist leicht
zu berechnen, was für Werte y' für x 0,1, 2, annimmt. Sie sind
in der hintersten Kolonne angegeben.

Man findet:
y' 4 + 6x

und daraus

y 2 + 4x + 3x2

Wie wir sehen, ist die Beziehung zwischen x und y' linear. Hier hätte
man also für unbestimmt variable Werte von y" mit Hilfe der Kor-
relationsrechnung den Grad der Abhängigkeit zu bestimmen. So

würde folgendes Beispiel die Anwendung der Korrelationsrechnung
notwendig machen :

X y y' y" y'"

0 1,8
7,4

l 9,2 5,0
12,4 2,2

2 21,6 7,2
19,6 -2,3

3 41,2 4,9
24,5 -2,7

4 65,7 7,6
32,1 -4,0

5 97,8 3,6
35,7 5,0

6 133,5 8,6
44,3

7 177,8

Bei y" finden wir bereits Werte, die keinen Zusammenhang mit x mehr
erkennen lassen. Wir haben also y' mit x in Beziehung zu setzen. Da
die y' Werte der ersten Differenzreihe sind, haben wir ihnen als Argu-
mente zuzuordnen: 0,5, 1,5, 2,5 usw., so daß das der Korrelations-
rechnung zugrunde zu legende Zahlenmaterial folgendes wäre:

x: 0,5 1,5 2,5 3,5 4,5 5,5 6,5

y': 7,4 12,4 19,6 24,5 32,1 35,7 44,3

Wir werden später noch darauf zurückkommen. Es genügt vorläufig,
gezeigt zu haben, daß dann nichtlineare Zusammenhänge, die durch
Logarithmierung nicht in eine für die Korrelationsrechnung auswert-
bare Form gebracht werden können, einer Untersuchung zugänglich
zu machen sind, wenn es durch Bildung von Differenzreihen gelingt,
eine lineare Beziehung zu schaffen.
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Bei geeigneter Koordinatenwahl läßt sich eine lineare Bindung

zwischen den beiden Größen y und x in folgender Weise darstellen:

sie ist also durch proportionale Änderung von y und x gekennzeichnet.

In einem rechtwinkligen Koordinatensystem entspricht der Gl. y cx

eine durch den Nullpunkt des Systems führende Gerade. Für die

Ableitung des Abhängigkeitsmaßes, oder, wie es auch genannt wird,

des Korrelationskoeffizienten, benützen wir eine andere bildliche Dar-

Stellung, welche die Bedeutung der Streuung deutlicher erkennen

läßt. Setzen wir

dann ergibt sich die Porportion

y : x b : a

Fig. 2

Jeder von S ausgehende Strahl grenzt auf den Senkrechten durch

A und B (es brauchen keine Senkrechte zu sein; sie wurden nur ge-

wählt um die Symmetrie der Streuung in bezug auf SM besser dar-

stellen zu können) zu SM Strecken x und y ab, die die gegebene Pro-

portion erfüllen, mx und my sind Mittelwerte eines von Xj bis x.
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(yi bis y2) reichenden Intervalls. Der Streuungsbereich ist durch
Schraffierung hervorgehoben; man sieht — was übrigens noch be-
wiesen wird —, daß

y : x CTy : dx ist.

Denkt man sich beispielsweise von einem in S aufgestellten Ge-

wehr, dessen Visierlinie mit SM zusammenfällt, Schüsse auf in A und
B senkrecht zu SM aufgestellte Scheiben abgegeben, dann werden die
Schußbilder in diesen Scheiben Streuungen aufweisen, deren Quer-
schnittsmaße annähernd im Verhältnis a : b stehen. Die Streuung —
als Längenmaß — ist proportional dem Abstand von S, hängt also in
gleicher Weise von diesem Abstand ab, wie x oder y, so daß die oben

angeführte Beziehung eingentlich ohne weiteres verständlich ist.
Teilt man den Intervallbereich von Xj bis Xg in 2n Teile ein, so daß

also ein einzelner Teil

Ax " *1 _ mx—Xi
2n n

ist und die Abstände vom Mittelwert absolut genommen der Reihe
nach

lAx, 2Ax, 3Ax, usw.

sind, dann erhalten wir

- S Ax* - • • (P + 2^ +* n
'

n n* ^ '

1 (mx — Xi)* n- * •
ß

• (n + 1) • (2n + 1)
n ir b

und yV + l> (*"+!>
n 6

Entsprechend erhält man für

und daraus

_ Piy — yi ^
b

ctx mx — Xj a
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Die Ableitung des Korrelationskoeffizienten r ergibt sich nun aus
folgendem Ansatz:

r— 1)
Ax CTx

Der Sinn von r ist also folgender: Je mehr sich der Wert des Ab-
hängigkeitsmaßes der Zahl 1 nähert, um so mehr nähert sich der
Zusammenhang zwischen x und y einem streng linearen. Starke Ab-
weichungen von 1 zeigen also nicht immer lose Zusammenhänge,
sondern oft auch nichtlineare an.

Die Ableitung des Abhängigkeitsmaßes ist nun leicht möglich auf
Grund der Bedingung, daß die Summe aller Fehlerquadrate, die man
durch die Addition aller Gleichungen

Ay: Ax; J(——— r )2 Vj l 1, 2, n
CTy CTx

erhält, zu einem Minimum wird. Differenzieren wir

WW SrWïAll + A-Aï ET-,
O I 2 l '

CTy CTx CTy CT,

SAxiAyi 2oder n — 2r — + nr* Sv,
CTx Oy

nach r, dann ergibt sich

r "Ax,Ay,
2)

n CTx CTy

Die Grenzen für r erhalten wir aus der Minimumsbedingung: Man
findet

1 — A — S vf 3)
n

Da die rechte Seite positiv ist, muß es auch die linke sein; j r | kann
also nur Werte zwischen 0 und 1 annehmen. Wegen

VFWAnd a, "\/WCTx

n

kann man dem Abhängigkeitsmaß auch folgende Form geben:
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SAxAy
r __ A__ 4)

t A Ax- XAy*

Bezeichnenderweise ergibt sich derselbe Wert für r aus dem Ansatz

r— o)
Ay Gy

Da er, wie der erste, zur Bildung einer Beziehungsgleichung zwischen
Ax und Ay führt:

Ax r^* A y und 6)
Gy

Ay rAx (nach dem ersten Ansatz),
Gx

(Jx
können, wegen fehlender Reziprozität der Koeffizienten r - und

G ^
r ----- diese beiden Gleichungen unmöglich Gleichungen ein- und der-

selben Geraden sein. Sie entsprechen vielmehr zwei Geraden, die
einen um so größeren Winkel miteinander einschließen, je kleiner
r wird. Weil für Ax 0 auch Ay 0 wird, schneiden sich beide im
Punkt (nix, my), der übrigens wegen der vorgelegten Form, der

Gleichungen zum O-Punkt des Koordinatensystems wird. Für r 0

fallen die Geraden mit den Achsen zusammen, während für den
Maximalwert von r (1) nur eine Gerade sich ergibt. Es soll später noch

gezeigt werden, wie r funktionell mit dem Winkel zwischen beiden
Geraden zusammenhängt. Das Vorzeichen des Abhängigkeitsmaßes
richtet sich, wie die Beziehungsgleichungen zeigen, darnach, ob x und

y gleichzeitig zunehmen, oder abnehmen, oder aber, ob die Änderung
der beiden Größen eine ungleichsinnige ist. Im ersten Falle wird r
positiv, im zweiten negativ. Das läßt sich übrigens auch aus dem für
das Abhängigkeitsmaß gewonnenen Ausdruck herauslesen. Machen
wir den Punkt (mx, my) zum Nullpunkt des Koordinatensystems,
dann müssen bei gleichsinniger Änderung von x und y die Punkte
Pi (xi, yi) vorwiegend im ersten und dritten Quadranten liegen;
SAx Ay wird also positiv. Nimmt y bei zunehmendem x ab, dann
wird die Punktschar den zweiten und den vierten Quadranten be-

setzen; wegen ungleichem Vorzeichen von Ax und Ay wird die Summe
aller Ax; Ayi negativ. Zur Illustration des Gesagten mögen die folgen-
den drei Figuren dienen:
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-0

AX

Fig. 3

1. Fall: Unregelmäßige Verteilung der Punkte Pi, deren Koordi-
naten zusammenhängende Werte von x und y sind. Das Zusammen-
treffen ist als irgendwie Zufälliges zu bezeichnen. Nach Bildung der
Mittel

n n

wurde durch P (iUx, niy) ein neues System gelegt ; es ist leicht einzu-
sehen, daß das Produkt der auf dieses System bezogenen Koordinaten
(Axi • Ayi) in annähernd gleicher Häufigkeit positive und negative
Werte ergeben wird. Da auch die absoluten Werte, im gesamten ge-
nommen, kaum stark voneinander abweichen werden, erhält man
für SAxAy einen von Null nur wenig abweichenden Wert, r ist also

auch klein und bestätigt damit den losen Zusammenhang zwischen

x und y.
Man kann von vorneherein auf Beziehungslosigkeit zwischen x und

y schließen, wenn
a. homogene Besetzung des Feldes mit Punkten Pi (x;, yi) vorliegt;
b. die Punkte längs den Achsen, oder auf Geraden parallel zu diesen

sich vorfinden;
c. eine Häufung der Punkte in einem bestimmt zu umschreibenden

Bereich eintritt, durch den sich keine wegen spezieller Lagerung
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der Pi bevorzugte Achse legen läßt. Weist die Ebene mehr als

einen Häufungsbereich auf, dann müssen diese die in a und b für
die Pj angegebenen Bedingungen erfüllen.

y 4*
— — 0

o
o

0 +•

0

o

o
0

0

0 0

o

0
0

e
©

©

0
0

0 o

Fig. 4

2. Fall: Zunehmenden x-Werten entsprechen im allgemeinen zu-
nehmende y-Werte. Eine Beziehung zwischen den beiden Größen be-
steht also zweifellos. Das durch Pm (nix, my) gelegte Koordinaten-
system teilt die ganze Fläche in vier Quadranten auf, von denen aber,
im Gegensatz zum vorigen Fall, hauptsächlich der erste und der dritte
mit Punkten besetzt sind. Die Summe aller AxAy wird positiv und
damit auch der Korrelationskoeffizient r.

3. Fall: Die Beziehung zwischen x und y ist ebenfalls deutlich zu
erkennen. Der Abnahme von y bei gleichzeitig zunehmendem x ent-
sprechend finden sich die Punkte hauptsächlich im zweiten und vierten
Quadranten (vgl. Fig. 5). Für r muß sich also ein negativer Wert
ergeben.

Aus der Lage der Punkte in den letzten beiden Fällen läßt sich die

voraussichtlich lineare Abhängigkeit aus dem mehr oder weniger ge-
rade gerichteten Streuungs-„band" erkennen. Es besteht also kein
Anlaß, eine der im Anfang dieses Abschnittes angedeuteten Methoden

zur „Geraderichtung" der Bindung anzuwenden.
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Fig. 5

Die Beziehungsgleichung

Hat man auf die Frage nach der Möglichkeit eines Zusammen-

hangs zwischen zwei Größen die Antwort erhalten, daß — beispiels-
weise — für den Korrelationskoeffizienten der Wert von — 0,935 sich

ergeben habe und daß auf Grund dieses Resultates
1. die Existenz eines Zusammenhangs bejaht werden müsse,

2. die Bindung eine sehr enge und an ihrem linearen Charakter nicht
zu zweifeln sei,

3. die eine Größe zunehme, wenn die andere abnehme,
dann können vir diese Auskunft kaum als erschöpfende bezeichnen.

Wir begnügen uns nicht damit, zu wissen, daß mit der Veränderung
einer Größe die Veränderung einer andern parallel geht; wir möchten
darüber hinaus das Wieviel in Erfahrung bringen. Das führt zur Auf-
Stellung einer Beziehungsgleichung zwischen x und y, der wir die

Form geben wollen:

y; bxi + a; (i 1 -> n) 6)

Unter (x,, y,) sind dabei alle möglichen Paare von einander zuge-
ordneten Werten von x und y zu verstehen. Summieren wir über alle i
von 1 bis n, und teilen durch n, dann erhalten wir

niv bnix m» (ms -^ 7)
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Subtrahieren wir 7) von allen Gleichungen 6) und summieren neuer-
dings über alle i, dann muß wegen

SAy 0, SAx 0, SAa; 0

die gesuchte Gerade durch Pm (nix, my) gehen. Ihre Gleichung lautet

Es muß nun festgestellt werden, ob diese Beziehungsgleichung mit
der bereits früher aufgestellten 6) identisch ist.

Für jedes Wertepaar (Axi, Ayi) wird des nicht funktionellen, son-
dern korrelativen Charakters der Bindung wegen b von Fall zu Fall
einen andern Wert annehmen. Setzen wir dagegen einen bestimmten
Koeffizienten b in alle Gleichungen ein, dann werden wir bei jeder
mittels eines Summanden v; eine Korrektur vorzunehmen haben, so

daß die Gleichungen dann folgendes Aussehen bekommen:

Weil die Wahl eines bestimmten b die Korrektur durch Vi not-
wendig macht, wird man füglich vi als den durch b bedingten Fehler
der Gleichung bezeichnen können. Der beste Wert für b wird dann
nach der Methode der kleinsten Quadrate derjenige sein, für den die
Summe aller Fehlerquadrate zu einem Minimum wird. Quadrieren
wir alle Gleichungen und summieren über alle i, dann ergibt sich:

2Ay2 — 2b 2 A x A y + b^SAx^ Sv^ Min.

Wir differenzieren nach b und erhalten

also

yi — my b • (xi — mx) oder

Ayi b • Ax;

Ay, — b • Ax, V;

— 2 S A x A y + 2b 2 A x^ 0

2AxAyb -2Ax*
Drückt man Ax durch Ay aus:

xi — nix b* • (yi — my) oder

Ax; b* • Ayi

dann erhält man in ähnlicher Weise

10)

11)
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Diese neuen Maße b werden als Regressionskoeffizienten be-
zeichnet. Zur bessern Unterscheidung kennzeichnen wir sie mit be-
sondern Indizes: bai gibt an, um wieviel Ay zu- oder abnimmt, wenn
Ax sich um die Einheit ändert; b^ drückt entsprechend die Änderung
von Ax durch die von Ay aus. Also

A y bajAx
12)

Ax bj2 Ay

Infolge der korrelativen Beziehung zwischen x und y sind 12) nicht
Gleichungen ein und derselben Geraden, denn das Produkt bgi • b^
wird nicht zu eins, wie dies bei funktioneller Bindung der Fall sein

müßte. Wir erhalten vielmehr

f>21 • bj2 U

Damit werden die Ergebnisse, die bei der Ableitung des Ab--
hängigkeitsmaßes erzielt worden sind, bestätigt; die Regressions-
koeffizienten stimmen mit den bei 6) angegebenen Koeffizienten von
Ax und Ay überein :

S A x A y ay
S A X^ (Tx

13)
SAxAy _

<Tx

S A y^ cry

Bevor wir an die praktische Durchführung der Korrelationsrechnung
herangehen, haben wir noch die Verläßlichkeit der Rechnungs-
ergebnisse zu prüfen. Da diese sich auf ein dem Umfang nach be-
schränktes Beobachtungsmaterial stützen, ist es ohne weiteres denk-
bar, daß zusätzliche Beobachtungen ein bereits erzieltes Ergebnis
nicht, oder wenigstens nicht in vollem Umfange bestätigen werden.
Diesem Umstand muß in der Weise Rechnung getragen werden, daß

man zu der quantitativen Aussage einen möglichen Variabilitäts-
bereich beifügt, dessen Grenzen durch einen zu definierenden mittleren
Fehler — auch mittlere Abweichung oder Streuung genannt, wie dies
früher schon erwähnt wurde — bestimmt sind. Wenn dieser mittlere
Fehler im allgemeinen mit wachsendem n (mit n ist der Umfang des

der Rechnung zugrunde gelegten Zahlenmaterials bezeichnet) ab-

nimmt, dann kommt beim Korrelationskoeffizienten noch hinzu, daß

er, wie sein m. Fehler über die Sicherheit oder Unsicherheit einer Be-
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ziehung Aufschluß zu geben hat. r ist also selber eine Art Fehlermaß
und es ist deshalb verständlich, daß man sich bei der Definition des

mittleren Fehlers den Korrelationskoeffizienten zur Grundlage ge-
nommen hat. Nach Pearson ist

Eine Ableitung dieses Fehlermaßes kommt hier nicht in Frage; wir
haben aber die Möglichkeit, anhand der in 3) ausgedrückten Beziehung
f durch das Mittel der Fehlerquadrate auszudrücken. Dieses ist gleich
dem Betrag, um den r* von 1 abweicht. Da f den Ausdruck 1 — r*
ebenfalls im Zähler aufweist, kann dieser als Fehler einer Teilbestim-

mung von r mittels eines Wertepaares (x,, yj) aufgefaßt werden. Wir
hätten also:

fi i-Zv? 1 — i-2

n

Nun ist aber bekanntlich der Fehler eines Mittels von Werten, denen
die Fehler fj zukommen, in folgender Weise zu berechnen:

fm= -VSff
n

In unserem Falle sind alle Fehler unter sich gleich (1 — r^), so daß
sich ergibt:

f, -Vn .(1 —r*)*
n

_ +
1 — r*

Vir

Für die Regressionskoeffizienten ergeben sich die Fehler als Pro-
portionalwerte zu fr.

f (b„0 fr • —
<Jx

15)

f (b,0 fr • —
CTy
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Die Durchführung der Korrelationsrechnung

Der rechnerischen Auswertung des Materials sollte grundsätzlich
immer die graphische Darstellung vorangehen. Man trägt auf der
horizontalen Achse eines Koordinatensystems die Werte der nicht
bedingten Veränderlichen und auf der senkrechten die der bedingten
Veränderlichen ab. Jedes Wertepaar ergibt im System einen Punkt;
die Lagerung der Punkteschar hat uns darüber Aufschluß zu geben,
ob sich die Durchführung der Rechnung überhaupt lohnt und — wenn
dies der Fall sein sollte — um was für eine Art von Beziehung es sich
handelt. Zeitigt diese erste Prüfung ein positives Ergebnis und hat
man das Material in auswertbare Form gebracht (in welcher Weise
das bei nichtlinearen Bindungen geschieht, ist bereits früher dar-

gestellt worden), dann wäre der Arbeitsgang etwa folgender:
1. Ermittlung der arithmetischen Mittel der x;- und der y;-Werte.
2. Bestimmung der Abweichungen der x;- und der y;-Werte von

deren Mittelwert.
3. Bildung der Produkte Ax; • Ay; und Summierung derselben.

4. Quadrierung der Ax; und Ay; und Summierung der Quadrate.

Damit sind alle Elemente für die endgültige Berechnung des

Korrelations- und der Regressionskoeffizienten ermittelt. Es erweist
sich nun aber als zweckmäßiger, statt mit den Abweichungen vom
arithmetischen Mittel mit solchen von einem angenäherten Mittel zu
rechnen. Man kann sich dann den ersten Teil der Arbeit — das Be-
rechnen des Mittels — ersparen.

Nennt man das angenäherte Mittel ma, das arithmetische m, die
Einzelwerte a;, deren Abweichungen von m Vwi, die Abweichungen
von ma Vi, dann gilt:

aj m + Vwi
a^ m + Vw2

ag m + Vw3

n Ii n

Sa; n • m + Svwi n • ma + Sv;11 1

Definitionsgemäß wird m so gewählt, daß Svwi
folgt:

S v;
m ma +

n

ma + Vi
ma + Vg

ma + Va

0 wird. Daraus

16)
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Das wahre Mittel ist also gleich der Summe aus angenähertem Mittel
und dem Mittel aller Abweichungen gegenüber ma. Weiter ergibt sich:

S vi
Vwi ma — m + Vi Vi —

n

also <1 v* - 2vi
n n

2 2 o ^ Vi S V j v pvi« v^ — 2vj - + -)*

2<, Sv?-^Svi)» 17)

Die Formel gestattet die direkte Berechnung der Summe der
Quadrate der Abweichungen aus den Abweichungen gegenüber dem

angenäherten Mittel. Schließlich ist es auch möglich, den Ausdruck
2 Vwi v^, ohne Kenntnis der Mittel m und m', auf die sich die Ab-

weichungen Vw und v^ beziehen, zu berechnen. Werden wieder die

Abweichungen gegenüber den angenäherten Mitteln ma und m^ mit
v und v' bezeichnet, dann gilt:

S v; Svi
Vwi • V^i (Vi ~ —) • (Vi —-)

Sv,' .2V, SvjSv,
Vi Vi -Vi i - Vi—- + —

n n

2vj 2v; SviSvj
Vw2 • V^ V.Vj — V2 V, + — -n n m*

2 Vwi • v^i 2vi Vj — ^-2 vi 2v| 18)

Nach diesen Ausführungen soll nun die vollständige numerische
Rechnung an einigen Beispielen dargestellt werden.
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1. Beispiel: Die korrelativen Eigenschaften der Punkteschar in
Fig. 3. Angenommene Mittelwerte: Für x ma 30; für ym^ 30.

X y i X

- + +
A x ây âx* A y*

5 14 25 16 400 625 256
5 55 25 25 625 625 625

5 35 25 5 125 625 25

13 25 17 5 85 289 26

14 46 16 16 256 256 256

17 7 13 23 299 169 529

23 33 7 3 21 49 9

24 16 6 14 84 36 196

25 55 5 25 125 25 626

33 44 3 14 42 9 196

34 15 4 15 60 16 225
37 36 7 6 42 49 36

44 5 14 25 100 196 625

45 54 15 24 360 225 576
46 25 16 5 90 266 25

49 43 19 13 247 361 169

54 13 24 17 408 576 289
55 34 25 4 100 625 16

n 18 Summen 139 127 120 135 1810 1659 5012 5003

— 12 + 15 —151

12 144
m» 30 — — 29,33... S Ax* 5012 — - -- 5004

18 18

15 995
my 30 + — 30,583.. SAy^ 5003 — — 4990,5

18 ' 18

180
S Ax Ay — 151 + — — 141' 18

Als Korrelationskoeffizient ergibt sich :

141
r — 0,0282

V 5004 • 4990,5
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Fehler des Korrelationskoeffizienten:

fr 1-0'^! =± 0,235,
V18

r hat einen erwartungsgemäß von 0 sehr wenig abweichenden Wert;
zwischen x und y besteht also kein Zusammenhang. Diese Tatsache
wird noch unterstrichen durch D: Der Fehler des Korrelations-
koeffizienten ist nahezu zehnmal so groß, wie dieser selbst, so daß also

für r ein positiver Wert ebenso wahrscheinlich wäre, wie ein negativer.
Für die Regressionskoeffizienten erhalten wir:

^21 —

bio —

141

5004

141

4990,5

— 0,0282 ± 0,23«

— 0,0282 ± 0,23«

Da bai tga und b^ tga' cot (a + S) zu setzen ist, wobei
mit 3 der Winkel zwischen beiden Geraden bezeichnet wird, ist es

uns möglich, aus den Regressionskoeffizienten 5 zu berechnen.

3
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Es ist

te 5
tg (« + 5) — tg a

1 + tga tg (a + §)

1

vi—
_

bi2
b,^21

-*12

1 — r*

Wz + bji
19)

Für unser Beispiel ergibt sich:

te g Si - 0,0282*
^ __

0,9992
^ _®

— 2-0,0282 0,0564
"

Ö PO — 87°

Die beiden Geraden stehen also nahezu senkrecht aufeinander.
Weil das Vorzeichen negativ ist, müssen sie durch den II. und IV. Qua-
dranten laufen. Die Abweichung von Abszisse und Ordinate beträgt
je etwa 1,5®. Bei einer von englischen und amerikanischen Statistikern
bevorzugten Form der Beziehungsgleichung 8), oder 6), die man erhält,
wenn man für Ax ctx und für Ay cry als Maßeinheit wählt, werden die

Regressionskoeffizienten unter sich gleich und damit gleich r. Dann
gilt:

1 —
tg So - -- 20)

Es ist dies, wie später zu zeigen sein wird, der maximale Wert, der
bei keiner andern Wahl der Maßstäbe mehr erreicht wird. Er soll
inskünftig als neuer Parameter mit p bezeichnet werden. Drücken wir
umgekehrt r durch eine Funktion des Maximalwinkels aus, dann
erhalten wir:

1 — sin §o
r»-i \r — 21)

COS ÔO

Der Maximalwinkel ist für die Enge der Bindung ebenso charak-
teristisch, wie der Korrelationskoeffizient selbst.

Die Beziehungsgeraden zum vorstehenden Beispiel sind in der
folgenden Figur dargestellt.
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6e-

30

3o

Fig. 7

&/

éO

2. Beispiel. Punktsystem der Fig. 4. Als angenäherte Mittelwerte
für x und y wurden wieder je 30 gewählt (mx 30; my 30). Die
Ergebnisse sind hier vorausgenommen.

mx 30 —
1

20
,95 SAx® 4059 4058,95

20

1 5 225
niy 30 + — 30,75 S A y* 5939 — 5927,75

20 20

S Ax A y + 4605 + ~ + 4605,75
aU

4606 1—0,942
+ 0,940 fr —:— ± 0,026

V 4059 -5928 V20

4606

4059
+ 1,134 ± 0,037
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4606
+ 0,777 ± 0,022

P

5928

1 — 0,940** 0,1165

1.134 ; 0,777 1,911

3" 30'

0,1165

0,061

1,880
0,062 So 3° 34'

n X y
Ax

— +
A y A x A y A x* A y"

i 4 7 26 23 598 676 629

2 6 4 24 26 624 576 676

3 13 6 17 24 408 289 576

4 16 6 14 24 336 196 676

5 16 16 14 14 196 196 196

6 22 17 8 13 104 64 169

7 26 16 4 14 56 16 196

8 26 24 4 6 24 16 36

9 23 27 7 3 21 49 9

10 24 37 6 7 42 36 49

11 35 37 5 7 35 25 49

12 36 32 6 2 12 36 4

13 36 41 6 11 66 36 121

14 35 45 5 15 75 25 225

15 43 43 13 13 169 169 169

16 47 46 17 16 272 289 256
17 43 53 13 23 299 169 529

18 44 48 14 18 252 196 324
19 48 55 18 25 450 324 625
20 56 55 26 25 650 676 625

Summen 124 123 147 162 42 4647 4059 5939

1 + 15 + 4605

Der Korrelationskoeffizient hat einen hohen, positiven Wert; er
bestätigt den engen Zusammenhang, der sich schon aus der graphi-
sehen Darstellung ergibt und die gleichsinnige Änderung von x und y.
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Die Geraden ggj und gja, deren Gleichungen

Ay + 1,134 Ax

und Ax + 0,777 Ay

heißen, erhält man sehr einfach: Man berechnet aus den Regressions-
koeffizienten die Winkel, die die Geraden mit den Achsen einschließen,
und legt die g dann in der bestimmten Richtung durch P (nix, niy).
Die Richtung ergibt sich auch durch Konstruktion des rechtwinkligen
Dreiecks mit dem dem Regressionskoeffizienten entsprechenden Ka-
thetenverhältnis. Im vorliegenden Beispiel ist gai um 48° 40' gegen
die Horizontale und gjg 37° 50' gegen die Vertikale geneigt. Der
Winkel zwischen beiden Geraden ergibt sich, wie bei der direkten
Berechnung (vergleiche p') zu 3° 30'; er kann, wenn x und y in „Nor-
malmaß" (ax und ay) ausgedrückt werden, den maximalen Betrag
von 3° 34' erreichen.

3. Beispiel. System der Punkte in Fig. 5. Angenäherte Mittelwerte :

nix 30, my 30.
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n X y
A X

— +
Ax A y- + Ax* Ay*

i 2 43 28 13 364 784 169

2 2 48 28 18 504 784 324
3 5 36 25 6 150 625 36

4 5 45 25 15 375 625 225

5 ii 38 19 8 152 361 64
6 13 46 17 16 272 289 256
7 16 28 14 2 28 196 4

8 18 34 12 4 48 144 16

9 18 42 12 12 144 144 144

10 24 25 6 5 30 36 25

11 27 28 3 2 6 9 4

12 27 34 3 4 12 9 16

13 28 38 2 8 16 4 64

14 33 32 3 2 G 9 4

15 36 28 6 2 12 36 4

16 38 23 8 7 56 64 49

17 39 34 9 4 36 81 16

18 43 22 13 8 104 169 64

19 43 34 13 4 42 169 16

20 44 28 14 2 28 196 4

21 49 25 19 5 95 361 25

22 48 17 18 13 234 324 169

23 53 27 23 3 69 529 9

24 55 25 25 5 125 625 25

25 56 22 26 8 208 676 64

26 57 27 27 3 81 729 9

27 59 22 29 8 232 841 64

Summen 194 233 73 114 3281 148 8819 1869

+ 39 + 41 -3133

39
mx 30 + — 31,445 EAx^

27
8819

1521

27

my 30 + — 31,518* 27
8762,66.

S Ax Ay —3133—3^ 2Ay2 1869 — —' 27 27

—3192,2 1806,74
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- -0,804
V8763 • 1807

1 — 0,804^

V 27
+ 0,0681

bai — SB — 0,364" 8763

3192
h,» —1,768

1807

1 - 0,8042 0,354
p — — — O.lbb' — 0,364 — 1,768 2,132

5' —90 27'

0,354 0,354

2 • 0,804
~

1,608
— 0,220

§0 — 12® 24' (das Minuszeichen deutet an, daß die
Geraden durch den 2. und 4. Quadran-
ten laufen)

Der ungleichsinnigen Änderung von x und y entsprechend ist das Vor-
zeichen des Korrelationskoeffizienten und damit auch der b- und p-
Werte negativ, r ist kleiner als im vorigen Beispiel; ein Vergleich der
beiden Punktbilder in den Fig. 4 und 5 läßt leicht erkennen, daß beim
zweiten der Streuungsbereich größer, der Zusammenhang zwischen

x und y also ein lockerer ist als beim ersten.

Fig. 9 zeigt, daß die Regressionsgeraden sich gut in das Punkt-
system einfügen. Der Winkel zwischen beiden beträgt 9® 27' (max.
12® 24'), ist also wesentlich größer als im 2. Beispiel. Man erkennt
hieraus, daß p (5) ein empfindlicheres Maß der Abhängigkeit darstellt
als r. Nehmen wir die Werte des 2. Beispiels zur Grundlage, dann
haben sich die entsprechenden des dritten in folgender Weise geändert:
r ist, absolut genommen, um 0,136 kleiner; p dagegen um 0,158 größer
geworden
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</

Fig. 9

Fig. 10 stellt p als Funktion von r dar. Für r 1 ist p 0; in
diesem Punkt ist die Steigung von p absolut genommen 1, also

gleich der von r selbst. Sie nimmt nun aber mit sinkenden Werten
von r rasch zu: Für r 0,9 beträgt sie 1,118; für r 0,8 bereits

1,282, usw. p selbst erreicht für r — 1 + V2 den Wert 1. §„ ist
dann 45°, also gleich weit von 0° und 90° entfernt. Man kann daher
mit gutem Grund sagen, daß der Wert 0,414 für den Korrelations-
koeffizienten ungefähr die Mitte hält zwischen völliger Beziehungs-
losigkeit und streng funktionellem (linearem)Zusammenhang. Qualita-
tiv wären also Zusammenhänge, für die r kleiner als 0,414 ist, als
zweifelhafte zu bezeichnen. Eine völlige Beziehungslosigkeit liegt
nicht nur dann vor, wenn r 0 ist, sondern auch, wenn der Fehler
von r ebenso groß ist, wie r selbst. Als untere Grenze der Korrelation
wäre dann nach 14) festzulegen:

Sie ergibt sich als eine Funktion von n, also der Zahl der Wertepaare
(xi, yi), die der Korrelationsrechnung zugrunde gelegt werden. Mit
wachsendem n nähert sich rmi der Grenze 0. Die Sicherheit einer
Aussage nimmt mit wachsendem n zu. Die folgende Tabelle enthält
die rmi und die zugehörigen n. Man sieht, daß zum Beispiel bei 14

Wertepaaren der Korrelationskoeffizient nicht kleiner als 0,25 sein
darf, wenn überhaupt eine Beziehung noch möglich sein soll.

22)
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p
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41

398
98

42

23

14

9.2
6.3
4.4
3.2
2.3
0

\\\\\\

Es hat natürlich nur formale Bedeutung, die Werte
für n über rmi 0,30 hinaus anzugeben. Durch
2 Punkte läßt sich immer eine Gerade, durch 3

immer ein Kegelschnitt legen, so daß man also bei
2 oder 3 Wertepaaren in jedem Fall auf Grund des

Rechnungsergebnisses auf einen rein funktionellen
Zusammenhang zu schließen hätte. Um Fehl-
Schlüssen zu entgehen, wird man also der Kor-
relationsrechnung eine möglichst große Zahl von
Wertepaaren zugrunde legen — unter Berück-
sichtigung gewisser Vorbehalte, von denen später
noch die Rede sein wird.

Wir wollen an dieser Stelle uns
noch jenen Fällen nichtlinearer Be-

Ziehungen zuwenden, die nicht durch
Logarithmierung einer rechnerischen

Auswertung zugänglich zu machen
sind. Es handelt sich, wie bereits

pag. 18/19 erwähnt wurde, um Bin-
düngen, die sich am besten durch ra-
tionale Funktionen n-ten Grades dar-
stellen lassen. Hat die Bildung von
Differenzreihen, wie sie auch bei der

Interpolationsrechnung gebräuchlich
sind, eine k-te Reihe ergeben, die mit
dem Argument x sich linear ändert,
dann setzen wir diese Reihe mit der
der entsprechenden x-Werte in Be-

ziehung. Durch Integration läßt sich
die ursprüngliche „Funktion" wieder
gewinnen. Für die Ermittlung der
Konstanten stehen genügend in die-
sen lineare Gleichungen zur Ver-
fiigung.

o,? no Fig. 10
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4. Beispiel: Auswertung des aus dem 2. Differenzschema pag. 19

gewonnenen Zahlenmaterials.

m^ 3,5, mj 25

Der Einfachheit halber wurde für y' y gesetzt.

n X y ix
_!_

Ay
— +

ixiy- + ix' i y®

1 0,5 7,4 3 17,6 62,8 9 309,8
2 1,5 12,4 2 12,6 25,2 4 158,8
3 2,5 19,6 1 5,4 5,4 1 29,2
4 3,5 24,5 0 0,5 0 0 0,3
5 4,5 32,1 1 7+ 7,1 1 50,4
6 5,5 35,7 2 10,7 21,4 4 114,6
7 6,5 44,3 3 19,3 57,9 9 372,5

Summen 6 6 36,1 37,1 169,8 28 1035,5

0 1,0

fflx =3,5 28

my 25 — 0,143 24,857 SAy* 1035,5 — 0,143 1035,4

SAxAy 169,8

r +0,997
V28 • 1035,4

i o 9972
fr +0,002

\ 7

b„ + 6,06 b„ —— + 0,164" 28 " 1035,4

Mit Hilfe der Regressionskoeffizienten lassen sich nun folgende
Gleichungen aufstellen :

Ay' 6,06 A x und
Ax 0,164 A y'

Durch Umformung erhalten wir aus der ersten:

y' — my' 6,06 (x — mx)

y' — 24,857 6,06 (x — 3,5)

y' 6,06x + 3,65
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und aus der zweiten:

x — 3,5 0,164 (y' — 24,857)

x 0,164y' — 0,5766

y' 6,10x + 3,51

Wegen des annähernd funktionellen Zusammenhangs dürfen wir, ohne
dabei große Fehler zu begehen, die Differenzen der Koeffizienten aus-
gleichen. Wir erhalten dann an Stelle zweier Funktionen zwischen

x und y' nur eine einzige:

y' 6,08x + 3,58

Durch Integration ergibt sich:

y c + 3,58x + 3,04x^

Es bleibt nun noch übrig, die Konstante c zu bestimmen. Gehen wir
auf die ursprünglich vorgelegten Wertepaare (x;, yi) zurück, dann
können wir aus jedem einen Wert für c gewinnen; das Mittel aller
dieser Ci setzen wir dann in die oben erhaltene Gleichung ein.

Ist zum Beispiel x o, dann wird y c (vergleiche pag. 19)
1,8. In ähnlicher Weise finden wir die übrigen Ci. Sie sind nach-
stehend für alle Werte von x angegeben.

X y c

0 1,80 1,80

l 9,2 2,58
2 21,6 2,28
3 41,2 3,10
4 65,7 2,74
5 97,8 3,90
6 133,5 2,78
7 177,8 3,78

22,96
Mittel 2,87

Endgültige Gleichung, die dem Zusammenhang am besten gerecht zu
werden vermag :

y 2,87 + 3,58x + 3,04x*



/io

70o
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Berechnete Funktionswerte.

x y

0 2,87

l 9,49

2 22,19

3 40,97

4 65,83

5 96,77

6 133,59

7 176,89

Der Vergleich mit den „empirisch" ermittelten Werten zeigt, daß die
Differenzen geringfügig sind, was beweist, daß die hier dargestellte
Methode brauchbar ist. Die nebenstehende Fig. 11 enthält nicht nur
die, der oben angegebenen Funktion entsprechende parabolische
Kurve, sondern auch die der ersten Ableitung (ersten Differenzreihe)
entsprechende Gerade. Die Übereinstimmung der berechneten mit den

gegebenen Werten darf auch hier als sehr gute bezeichnet werden.
Erhält man für den Korrelationskoeffizienten einen kleinen Wert,
dann müssen die beiden Beziehungsgleichungen gesondert ausgewertet
werden, das heißt aus jeder ist eine Integral-,,Funktion" zu ermitteln.
Der Gang der Kechnung bleibt im übrigen derselbe.

5. Beispiel: Das vorgelegte Zahlenmaterial sei folgendes:

x: 0 1 2 3 456
y: 4,1 — 2,2 — 5,9

x: 7 8 9

y: 213,7 347,8 526,2

— 1,9 16,3 53,8 118,1

10

753,8

Es ist zu untersuchen, ob ein Zusammenhang besteht und welcher
Art dieser ist.
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Schon eine vorläufige Prüfung ergibt, daß eine lineare Beziehung
nicht in Frage kommen kann. Während x in gleichen Intervallen von
0 bis 10 fortschreitet, ist die Änderung von y weder in der Richtung,
noch im Betrag konstant. Eine logarithmische Behandlung ist der

negativen Werte von y wegen nicht möglich. Vielleicht führt aber die

Bildung von Differenzreihen zum Ziele.

X y y' y" y'"
0 4,1

— 6,3
1 — 2,2 2,6

- 3,7 5,1
2 — 5,9 7,7

4,0 6,5
3 - 1,9 14,2

18,2 5,1
4 16,3 19,3

37,5 7,5
5 53,8 26,8

64,3 4,5
6 118,1 31,3

95,6 7,2
7 213,7 38,5

134,1 5,8
8 347,8 44,3

178,4 4,9
9 526,2 49,2

227,6
10 753,8

Aus dem vorstehenden Schema ergibt sich eine zu der von x parallele,
mehr oder weniger lineare Zunahme der Werte der zweiten Differenz-
reihe (y"); der Zusammenhang zwischen x und y muß sich also am
besten durch eine Gleichung dritten Grades ausdrücken lassen. Wir
stellen mit Hilfe der Korrelationsrechnung die Bindung zwischen x
und y" fest und die Regressionsgleichung, die an Stelle der unbe-
stimmt variablen Werte von y'" einen konstanten setzt, kann in zwei
Schritten auf die ursprüngliche „Funktion" zurückgeführt werden. —
Man beachte, daß die Kolonnenüberschriften im Differenzenschema
(y\ y", usw.) nicht mit Ableitungen zu verwechseln sind; nur wo eine
k-te Differenzenreihe einen (annähernd) konstanten Wert ergibt, ist
sie numerisch der k-ten Ableitung gleich zu setzen.

Der Einfachheit halber setzen wir nachstehend für y" wieder y.
Angenommene Mittelwerte: mj 5; inj 25.
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n X y
Ax

-J-
Ay

1

A x A v
~ +

A x' Ay»

i 1 2,6 4 22,4 89,6 16 501,76
2 2 7,7 3 17,3 51,9 9 299,29
3 3 14,2 2 10,8 21,6 4 116,64
4 4 19,3 1 5,7 5,7 1 32,49
5 5 26,8 0 1,8 0 0 3,24
6 6 31,3 1 6,3 6,3 1 39,69
7 7 38,5 2 13,5 27,0 4 182,25
8 8 44,3 3 19,3 57,9 9 372,49
9 9 49,2 4 24,2 96,8 16 585,64

Summen 10 10 56,2 65,1 0 356,8 60 2133,49

0 8,9 + 356,8

mx 5 2 A x^ 60

QQ 70 01

my 25 + — 25,988.. S Ay* 2133,49 —

2124,69

356,8
SAxAy + 356,8

V'60 • 2124,7

+ 0,9993 + 0,0007

356,8 .OMR t _l ^56,8
I n 1R7Q»l>2i +~ßö~ ^ +5,9466.. b„ + + 0,16798

Regressionsgleichungen :

a) Ay" 5,9466..Ax

y" 25,988.. 5,9466. .(x — 5)

y" _ 3,744.. + 5,9466. .x

b) x 5 0,16798 (y" - 25,988..)

x 0,62642 + 0,16798 y"

y" — 3,7292 + 5,9530 x
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Wir erhalten weiter aus a):

y' Cj — 3,744. .x + 2,9733. .x*

y Co + Cj x — 1,8722. .x* + 0,9911. .x®

und aus b):

y' ci — 3,7292 x + 2,9765 x*

y Cq + Cj x — 1,8646 x^ + 0,9922 x®

Es bleibt nun noch übrig, die beiden Konstanten c„ und Cj zu be-
stimmen. Das kann in der Weise geschehen, daß man in den Gleichun-

gen für x der Reihe nach die Werte 0 bis 10 einsetzt, die, weil die zu-
gehörigen Werte von y auch bekannt sind, als einzige Unbekannte
noch Cq und c^ enthalten. Verlangt man, daß die Konstanten allen
Werten von y in gleicher Weise gerecht werden müssen, dann hat man
alle 11 Bestimmungsgleichungen zu je zweien zu kombinieren, was im
ganzen auf je 55 Bestimmungen von Cq und Cj führt. An Stelle dieser,
eine ganz erhebliche Rechenarbeit erfordernden Methode soll hier eine
andere zur Anwendung kommen, die sich wieder des Differenzschemas
bedient, von dem ausgegangen wurde.

Man setzt für y'" den aus der Regressionsgleichung sich ergeben-
den konstanten Wert ein (bei a) also bgj, bei b) den reziproken Wert von
von big) und baut von hier aus das ganze Schema wieder auf, wobei
sukzessive die Kolonnenwerte, bei denen der Einfluß vorderhand noch
unbekannter Koeffizienten zur Geltung kommt, den gegebenen ange-
glichen werden. Eine solche Korrektur ist im vorliegenden Fall bei
der ersten Differenzreihe (y') notwendig. Setzen wir einen beliebigen
ihrer Werte gleich a, dann ist damit auch die ganze Reihe bestimmt
und jede Korrektur an a, die durch Beifügung eines additiven Gliedes

vorgenommen wird:
ci 8; -f- k,

bedingt die gleiche Korrektur an allen Gliedern der Reihe. Daraus
ergibt sich ohne weiteres das anzuwendende Verfahren: Man stellt
eine willkürlich gebildete (das „willkürlich" bezieht sich auf die Wahl
eines Ausgangswertes) der Reihe der gegebenen Werte von y' gegen-
über und bestimmt den Verbesserungszuschlag k so, daß die Summe
der Abweichungen von der korrigierten Reihe gleich 0 wird. Aus
Zweckmäßigkeitsgründen wird man den Ausgangswert so wählen, daß
er mit einem der gegebenen Werte übereinstimmt.
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0 y" - - 3,744.. + 5,9466 ,x
y" (y') y' Abweichungen

1

—3,7444.. —6,3 —6,3

— +

2,2022.. —4,0977.. —3,7 0,3977
8,1488.. 4,0511.. 4,0 0,0511..

14,0955.. 18,1466.. 18,2 0,0533
20,0422.. 38,1888.. 37,5 0,6888..
25,9888.. 64,1777.. 64,3 0,1222
31,9355.. 96,1133.. 95,6 0,5133..
37,8822.. 133,9955.. 134,1 0,1044
43,8288.. 177,8244.. 178,4 0,5755
49,7755.. 227,6000 227,6

Summe —1,2533.. + 1,2533..

0

y' (y) y Abweichungen

— +
—6,3 4,1 4,1

—4,0977.. -2,2 —2,2

4,0511.. —6,2977.. —5,9 0,3977

18,1466.. —2,2466.. -1,9 0,3466

38,1888.. 15,9000 16,3 0,4000

64,1777.. 54,0888.. 53,8 0,2888..

96,1133.. 118,2666.. 118,1 0,1666..

133,9955.. 214,3800 213,7 0,6800

177,8244.. 348,3755.. 347,8 0,5755..

227,6000 526,2000

753,8

526,2

753,8

Summe der Abweichungen: — 1,7111.. + 1,1444..

—0,5666..
k — 0,5666.. : 11 — 0,0515..
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Anfangswert der berichtigten Reihe für y :

4,1 — 0,05151 4,0484..

Wie leicht einzusehen ist, entspricht der Rechenvorgang durchaus
dem, der bei der Bestimmung eines arithmetischen Mittels aus einem

angenäherten gebräuchlich ist. Als Anfangswert der ersten Differenz-
reihe wurde — 6,3 gewählt. Die Summe der Abweichungen der (y')
von den entsprechenden Werten der y' des ersten Schemas wird 0, so

daß die vorgegebene Reihe keiner Korrektur mehr bedarf. In gleicher
Weise wurde bei der Berechnung von k zur Angleichung der Reihe
der y-Werte an die gegebenen verfahren. Die berichtigten Funktions-
werte sind nachstehend angeführt.

X y
0 4,0484

l — 2,2515
2 — 6,3493
3 — 2,2981
4 15,8484
5 54,0373
6 118,2151
7 214,3284
8 348,3240
9 526,1484

10 753,7484

Die Bestimmung der Konstanten Co und Cj ist nun einfach. Alle
Funktionswerte ergeben dieselben Größen, so daß man sich auf deren

Ermittlung an den Stellen 0 und 1 beschränken kann. Man findet:

Co 4,0484..

Ci —5,4188..
Die aus der Regressionsgleichung a) sich ergebende beste Beziehungs-
gleichung lautet also:

y 4,0484... — 5,4188. .x — 1,8722. .x" + 0,9911. .x»

In ähnlicher Weise würde man aus b) finden:

y 4,29 — 5,55x — l,865x® + 0,992x®

Von der guten Übereinstimmung zwischen gegebenen und be-
rechneten Funktionswerten bekommt man einen Begriff, wenn man
die Abweichungen als Fehler der bedingt Veränderlichen auffaßt.
Bezeichnet man mit px den Fehler von x, mit py den Fehler von y,
dann gilt

Py y • Px
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An der Stelle 10 ist zum Beispiel [Xy 0,0515, y' 254,47,

[ix 0,0002 (Gleichung nach a), also praktisch gleich null.
Der Vollständigkeit halber mag hier noch die Koeffizientenbestim-

mung mit Hilfe des Gaußschen Eliminationsverfahrens erwähnt wer-
den. F. Baur (Korrelationsrechnung: Math.-Phys. Bibl., Bd. 75) er-
setzt x und y durch die entsprechenden Abweichungen von nix und

my und erhält so Bestimmungsgleichungen von folgender Form:

Ayj bo + bjAxj + b2Ax? -)- + bnAx"

Durch Multiplikation mit Ax; und Summation über alle i von 1 bis k

(k > n + 1) ergibt sich dann :

^x^Ay; boJjAxj + bj 2jAxh + * + + bn2^^f + "

Setzt man nun nacheinander h 0, 1, 2, bis n, dann erhält man
ein System von n + 1 Gleichungen, aus welchem die n + 1 Koeffi-
zienten b berechnet werden können. Vorausgesetzt wird, daß man den
Grad der Funktion kennt.

Es wurde bereits früher erwähnt, daß die Intervallgleichheit bei
der unabhängig Veränderlichen, welche Voraussetzung für die An-
Wendung des Differenzenschemas ist, gegebenenfalls durch eine pas-
sende Klasseneinteilung erreicht werden kann. Die Klassenbreite muß
mindestens so groß gewählt werden, daß jede Klasse mit Werten der

abhängig Veränderlichen besetzt ist. Den mit den Intervallmitte n
identischen x; werden dann die Mittelwerte m( aller der gleichen
Klasse angehörenden y; zugeordnet. Je nach der Zahl der an einem
solchen Mittelwert beteiligten Einzelwerte wird den m) grundsätzlich
ein von Fall zu Fall verschiedenes Gewicht pi zukommen und die Frage
ist nun, in welcher Weise diese Gewichte im Differenzenschema zu
berücksichtigen sind. Anders gesagt: Wie sind die Gewichte (Häufig-
keitswerte) der Glieder der einzelnen Differenzenreihen aus denen der
gegebenen mj, herzuleiten Um diese Frage beantworten zu können,
müssen wir wissen, wie sich die n-te Differenzreihe selbst aus der
0-ten, das heißt aus der Reihe der mj, ergibt.

Setzen wir das Intervall i der x-Werte gleich eins (i hat lediglich
die Bedeutung eines Proportionalitätsfaktors), dann können wir die
m( der Reihe nach als fk, fk_i, fk_2, • -fk_n, das heißt als Werte der

vorläufig noch unbekannten Funktion f (x) an den Stellen xk, xk_i,
xk_2, • • • Xk n auffassen, welche mit Hilfe der Korrelationsrechnung
dann so bestimmt werden muß, daß sie den gegebenen m), und damit
auch den y, am ehesten gerecht wird.



52

Da die Gewichte pi nicht dieser Funktion an und für sich, sondern
bestimmten Funktionswerten zukommen, geben wir f (x) eine Form,
die die Bedeutung der unabhängig Veränderlichen an vorgegebenen
Stellen auch in den Differenzreihen am leichtesten erkennen läßt.
Dafür eignet sich am besten die Reihenentwicklung nach Mac Laurin
oder nach Taylor. Sie bricht nach unserer Annahme mit f<"> (x) ab,
da wir die n-te Ableitung als konstant voraussetzen. Wir erhalten
also folgende Aufstellung nach M. L. :

fk fo + —77- f'0 + —-f'o +....+ k"
n!

+ ....+ fcu.w
n!

fk_2 fo + -V, " f'o + f'o +•••• + ^ ,^0n!

k
f ' 4

k*

1! ° 2!
'

k-lf,
1! °

-1)«
2!

- — 2)2

1! ° 2!

k-n-1 (k-n-l)%,
Io + I 0 + 2Ï o "f" ~f"

(k — n — l)%(n)__ t o

Der Einfachheit halber wurde fk, fo, usw. für f (k), f (0) : Funktions-
wert an der Stelle k, bzw. 0 gesetzt; entsprechend bedeutet f'o die
i-te Ableitung an der Stelle 0. Wegen i (Intervall) 1 wird Xk k,
Xk_i k — 1, usw. Die nachträgliche Wiedereinführung von i be-
reitet keine Schwierigkeiten.

1. Differenzen reihe

Wie leicht einzusehen ist, besteht die Aufgabe im wesentlichen
darin, gleiche Potenzen voneinander zu subtrahieren, wobei die Basis
des Minuenden stets um eins, d. h. das Intervall größer ist als die des

Subtrahenden. Nach dem binomischen Lehrsatz gilt nun

a — (a — 1) a-* — a~* + a-®—
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so daß wir erhalten:

£ I? J!î I

1
IÎ5Î I

~i~ 1
I

la I a — i — lo H- —— I o -r —j
I o ~r

4a» — 6a* + 4a — 1
I O T4!

und daraus als erste Differenzenreihe :

2k — 1 3k^ — 3k + 1
'o ' '

2!
' ° •"

3! o+

„ „ |
2(k 1) 1 3(k-l)«-3(k-l) + l„„Ai * ° + g] ° 37 °

2(k 2) 1 3(k — 2)s — 3(k 2) + 1
io + fo+ gl f o+..

Man erkennt, daß fk— fk_i auffk; fk l — fk_2 auf fk_i zurück-
geführt ist; Minuend und Differenz sind also gleichgewichtig.

Auch bei der Bildung der zweiten und aller folgenden Differenzen
bedienen wir uns der Beziehung, die sich aus der Binomialformel
ergibt; die Differenzen gleicher Potenzen werden wieder in Reihen
entwickelt, wobei die Zurückführung der Differenz auf den Minuenden
ein System von Potenzwerten mit gleicher Basis ergibt, so daß eine
weitere Zusammenfassung unter Bildung für die Reihe typischer
Koeffizienten möglich ist. Diese werden nach ihrer Zugehörigkeit zur
zweiten, dritten, usw. Reihe mit Iii, Uli, usw. bezeichnet. Weitere
Erklärungen sind bei der Übersichtlichkeit des Verfahrens nicht not-
wendig.

2. Differenzenreihe
ZXäk Z\lk Z\lk—1

(m) .pn-l _ (m) ^m-2 (m) gin-B —

(a — I)»-* — (a — 1)-' + (a — 1)-® —

(THCT*)»"-'
(?)[
(?)[

[

usw.

— + CY*)a~* —(V)a + ••]
_(m-2) ^m-3 _|_ (m-2) ^m-4 _ ^-2)^-5 + .]

+ (7®)a-*— C°7®)a-° + ...]
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Iii a"-'- Hg a""' + Us a~* - II, a""' + • • •,

wobei Hi (1) 2* — 2

II, + =2^-2
Ils (î)+(î) + (î) =2*-2
II. (Ï) + G) + G) + (Î) =23-2

Iii Ct') + et*) + • • • + (T)= 2 '+4 - 2

zu setzen ist. Da bei der Bildung der Differenzwerte in erster Linie der

Wegfall der Ableitung und die Beziehung der Differenz zu denen der

vorhergehenden Reihe, welche an ihrer Bildung beteiligt sind, interes-
siert, sind nur die beiden ersten Glieder der Reihenentwicklung für
irgend ein Ag angegeben. Man findet:

f"„ + (k - 1) f», + f'o + —^ "0 +
As f"o+((k-l)-l)f"o+

f"o + ((k-2)-l)f'"o+

3. Differenzen reihe

Ask — Ask Ask—1

Iii a"-" — II, a—' + II, a®"* —

Hi (a- ir-' - II, (a -1) — ^ + II3 (a -1) —4 -
Hi [(V) a"® — OA ') a®~* + OVO a»"® — (7®) a®-« + ]

Us [( - (V) a"' + C"A a—® _ CV) a—« + ]

II« (?)[( +(Y)a-»-(V)a"-®+...]
II4 [( — (T®)a~« + ...]

usw.
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III a»""»- III, a"* + III, - III, a—« +
nii © Iii
m, © Iii + © il,
m, © Iii + (S) Ii, + © Ii,

Uli et')iii + 't'ii,+ + G.ÎÏ) Iii
Differenzen :

p„,
24k — 36^,,„ 4! k — III,' » + 4!

' " ' ••• ' » "
4! ~ ' «

a *>» 24(k — 1) — 36
Z_\s i o + i o l~

24 (k 2) 36
0

11
0 + •

4. Differenzenreihe

a. Koeffizienten:

IVi © Uli
IV, © Uli + © III,
IV, ©IIIi+©IIl2+©IH,

IVi Ct®) nii + ••• + (i+S) nii
Reihe: IV j a—* a — IV, a®"® + IV, a-« •

b) Differenzen:

5!k-IV,I 0 + "I 0 + • •

A,

+ 51(k-2)-IV,^o +
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n. Differenzenreihe

Die Koeffizienten dieser Reihe seien mit Ni, die der vorhergehen-
den mit Mi bezeichnet.

a) Koeffizienten:

«1 (nil) Ml

Ns G±i)Mi + (°+i)M,

N3 e±î)Mx + (-+")M, + GI+î)M,

Ni c+iT') ^ + • • • + e+i=ö ^
Reihe: N^) a-» — N, (^) a—+ N3 („»„) a —»-» —

b) Differenzen:

Der Koeffizient von f ergibt sich zu:

Auf Grund der Ergebnisse ist also folgendes festzustellen:
1. Ist eine Funktion in einem von a bis b reichenden Gebiet stetig

und n-mal differenzierbar und ist f konstant, dann entspricht die
n-te Reihe eines auf n + 1 Funktionswerten aufgebauten Differenzen-
schémas der n-ten Ableitung der Funktion.

2. Eine arithmetische Reihe n-ter Ordnung läßt sich durch eine

ganze rationale Funktion n-ten Grades ausdrücken.

3. Jeder Wert des Differenzenschemas läßt sich auf einen be-
stimmten Funktionswert zurückführen und aus diesem auch direkt
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berechnen, wenn die Funktion bekannt ist. Daraus ergibt sich auch
die Gewichtsgleichheit bei empirisch bestimmtem Funktions- und
daraus abzuleitendem Differenzwert. Die Bindung gleichgewichtiger
Differenzwerte des Schemas ist immer eine Bindung zwischen Minuend
und Differenz.

Arg. Funkt. Gewicht Differenzgewichte

Xi fi Pi
Pi

X2 Î2 P2
P2

Pi
Pi

X3 fs P 3
Ps

P2
D ^F2

X4 f4 Pi
P 4

Ps
PF3

X5 is Ps
Ps

P 4

Xs f« Pe

X, ~-X2 X2 —X3 X3 — X4 i

Nachdem nun die Frage nach der Herleitung der Differenz- aus den
Funktionswerten bzw. der Gewichte der Differenzwerte aus denen der
Funktionswerte beantwortet worden ist, haben wir uns noch um die

Bildung der Gewichte zu bekümmern. Es ist bereits erwähnt worden,
daß die fi als Mittelwerte aller y; aufzufassen sind, die je einer Klasse

angehören. Definiert man nun die Gewichte lediglich als Häufigkeits-
werte, dann würde das Gewicht P; eines Mittels fi m) (Mittelwert
aller y, die der i-ten Klasse angehören) gleich m, das heißt der Zahl
aller an der Bildung dieses Mittelwertes beteiligten Einzelwerte sein.
Das geht nun aber nicht an, weil die Bedeutung eines Mittels nicht
nur durch n, sondern auch durch die Streuung, oder den mittleren
Fehler gekennzeichnet ist, und zwar so, daß mit wachsendem mittlerem
Fehler das Gewicht des Mittelwertes abnimmt.

Schreiben wir die gewogenen Mittel Y; und Yk in folgender Form:

y. _ PilJil + Pi2Yi2 + • • + Pinyin _ [piYi] _ [piYi]

P'l Pi2 + • • + Pin [pi] Pi

Yk - PklYkl + PkaYki + • + Pknykn ^ [pk yk] ^ [pk yk]

Pki ~f" Pk2 ~~l~ • • • ~t~ Pkn [Pk] Pk

dann sind Pi (Summe aller pj) und Pk (Summe aller pk) reine Häufig-
keitswerte, wie pi und pk. In dieser Form hat Pi nur Vergleichswert
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den pi, nicht aber Pk gegenüber und umgekehrt. Diesen Mangel
können wir beheben, wenn wir für die p; und pk eine „Gewichts-
einheit" einführen, die die p mit den mittleren Fehlern m der yj in
Beziehung zu setzen gestattet. Nehmen wir vorerst an, daß jedes y,
sich selber als Mittelwert einer Reihe von Bestimmungen ergeben
habe, von denen jede mit dem mittleren Fehler p zu behaften sei,
dann erhält man diesen mittleren Fehler zu

und für das Gewicht von y, findet man dementsprechend:

wobei p die Gewichtseinheit der p; ist. Setzen wir nun den für die p;
gefundenen Ausdruck in der Formel für Y; ein, dann erhalten wir

Man sieht, daß in beiden Ausdrücken p® herausfällt bzw. daß die
Gewichtseinheit p beliebig gewählt werden kann. Um Yi und Yk
vergleichbar zu machen, wählen wir für beide die selbe Gewichts-
einheit (was oben übrigens bereits vorausgenommen wurde), so daß
wir an Stelle von Pj und Pk die modifizierten Gewichte Qi und Qk
in folgender Form erhalten :

1

und entsprechend

Qk P^

Qi P^

Weil nur das Verhältnis von Qi zu Qk von Bedeutung ist, kann die

Proportionalitätskonstante p^ weggelassen werden. Dazu kommt nun
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noch, daß alle yi als Einzelwerte, soweit sie derselben Klasse ange-
hören, denselben mittleren Fehler aufweisen, so daß man für die ver-
gleichbaren Gewichte folgende endgültige Form erhält:

ni Pi) ist dabei die Zahl aller yi, die der i-ten Klasse angehören, m;
der mittlere Fehler dieser yi und m; der Fehler des Mittelwertes. Man
erkennt, daß die Gewichte Q die an sie gestellten Bedingungen er-
füllen: Sie nehmen mit wachsendem n zu und mit wachsendem mitt-
lerem Fehler ab. Zwischen P und Q besteht folgende Beziehung:

Bei der vorauszusetzenden korrelativen Bindung zwischen x und y,
die jedem xi eine Schar von y-Werten zuweist, von denen einer,
nämlich der Mittelwert, der wahrscheinlichste ist, hat man sich zu
merken, daß auch bei einer durch eine Teilung in Intervalle oder
Klassen bewirkten Zusammenfassung der y, je für die, welche der-
selben Klasse angehören, ein wahres Mittel gemäß dem Gaußschen

Verteilungsgesetz zu definieren ist, und zwar um so eher, je kleiner die
Intervallbreite i ist. Dieses wahre Mittel ist nun nicht identisch mit
dem arithmetischen und darum darf auch nicht der mittlere Fehler
als Mittel der Quadrate aller Abweichungen gegenüber dem arith-
metischen Mittel berechnet werden.

Bezeichnen wir das nicht bekannte, wahre Mittel mit M, das

arithmetische mit Ma, die Einzelwerte, aus denen Ma berechnet
wurde, mit aj, die Abweichungen (Fehler) von Ma mit vj, von M mit
Vwi, die Differenz zwischen Ma und M mit m (der wahre Fehler des

Mittelwerts wird dabei dem mittleren gleichgesetzt), dann gilt:

m Ma — M

Vi ai — M

Vwi ai — M ai — Ma + m v; + m

[vwVw] [vv] + 2m[v] + n • m®

[vv] + n • ïïF

1

Mi*

1

Mk*

P nF • Q
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Nun ist ferner
VwVw n • [i-

wenn mit jj, der mittlere Fehler eines Einzelwertes bezeichnet wird
und

1 ,/ h
m -Vn • |D -7=n Vn

Daraus folgt:

n jj,2 [vv] + |D

[x y [vv] m V- ^
n — 1 n (n — 1)

m. F. eines Einzel-, des Mittelwertes.

An Stelle von [x und m wäre wie oben m und M zu setzen (m. F.
mittlerer Fehler).

Bei der Bestimmung der Differenzwerte wurde das Intervall
i 1 gesetzt. Für i =j= 1 ändert sich der Ausdruck für eine n-te
Differenzenreihe

von f w + A • ff»+y + B • fk+"> +
An

in i°f'V + A • ii+ lf(n + l) B jn + 2f(n+2)

Entwickelt man die Funktion statt an der Stelle 0 nach Taylor
an der Stelle a, dann findet man:

f(a + k) fa + yy f'a + f"a + • • •

f +k —*f I +(a + k—1) — la H yj—I a i gl lad-...

Für die Koeffizienten ergeben sich die gleichen Werte wie bei der

Entwicklung der Funktion in einer Beihe nach Mac Laurin. Man hat
in den Differenzen an Stelle der f'o die selben Ableitungen an der
Stelle a: f'a zu setzen.

Zusammenfassend ist folgendes zu sagen:

Läßt sich eine korrelative Beziehung zwischen zwei Größen am
besten durch eine ganze, rationale Funktion n-ten Grades ausdrücken



61

— was sich entweder aus der Darstellung der Beziehung in einem

Koordinatensystem, oder aus einem Differenzenschema, das sich auf
den Werten der bedingt Veränderlichen („Funktionswerten") aufbaut,
ergibt —, dann ändern sich die Werte der (n — l)-ten Differenzen-
reihe mehr oder weniger linear mit dem in gleichen Intervallen fort-
schreitenden Argument und können daher mit diesem zusammen der

Korrelationsrechnung zugrunde gelegt werden.

Aus den Regressionsgleichungen erhält man durch Integration die
Funktionen n-ten Grades, die dem Zusammenhang am besten ge-
recht zu werden vermögen. Bei sehr engem Zusammenhang, d. h.

wenn r einen von 11 j nur wenig abweichenden Wert hat, wird man
die beiden Regressionsgleichungen auch vereinigen können (vgl.
4. Beispiel).

Zur Bestimmung der n — 1 noch unbekannten Koeffizienten kann
ebenfalls das Differenzenschema benutzt werden: Man baut es, bei der
n-ten Differenzenreihe, die bgi, oder b^ als konstanten Wert aufweist,
beginnend nach rückwärts wieder auf, wobei jede neu aufzustellende
Reihe der entsprechenden des gegebenen Schemas so angeglichen
wird, daß die Summe der Abweichungen 0 ergibt. Aus beliebigen
n — 1 der schließlich so gefundenen Reihe der Funktionswerte können
dann die Koeffizienten bestimmt werden.

Hat man zur Gewinnung gleicher Intervalle beim Argument (x)
eine passende Klasseneinteilung vorgenommen, dann ordnet man den

Intervallmitten das Mittel aller yj, die dieser Klasse angehören, zu.
Jedes dieser Mittel ist gemäß seinem Gewicht zu berücksichtigen. Das
Gewicht ist proportional der Anzahl der y;, aus denen das Mittel be-
rechnet wurde und umgekehrt proportional dem Quadrat des mittleren
Fehlers, bzw. der Streuung. Bei der Berechnung des mittleren Fehlers
hat man zu berücksichtigen, daß für die derselben Klasse angehören-
den yj ein wahres Mittel existiert. Im Differenzenschema geht das

Gewicht gemäß der funktionellen Beziehung immer vom Minuenden
auf die Differenz über (vgl. die Darstellung pag. 57).

6. Beispiel : Es betrifft einen Zusammenhang, der durch den Über-

gang zu den Logarithmen der Auswertung zugänglich gemacht werden
kann: Beziehung zwischen Arbeitslosigkeit und Preisgestaltung in
Großbritannien, Januar 1920 bis Juni 1921. Da hier nur das Ver-
fahren interessiert, sei als einziger Kommentar ein Passus aus „La
Crise de Chômage 1920—1923" (Bureau International du Travail,
Genève 1924) angeführt, welcher Arbeit übrigens auch das Zahlen-
material entnommen ist.
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,,De même qu'aux Etats-Unis et au Japon, on constate en Grande-
Bretagne une relation étroite entre les statistiques des prix de gros et
du chômage.

Pendant la période d'activité d'avril 1919 à avril 1920, où les prix
sont montés de 95,9 points en douze mois, le pourcentage de chômage
est tombé pendant une certaine période au-dessous de 1 pour cent.
De plus, malgré l'augmentation considérable du nombre des grèves,
la transformation des industries de guerre en industries de paix et la
démobilisation rapide, le pourcentage mensuel moyen le plus élevé

enregistré par les syndicats pendant toute la période de prospérité
n'a été que de 3,2. La baisse des prix survenue en mai 1920 a coïncidé
avec l'augmentation du chômage et, en juin 1921, lorsque le chômage
atteignait 23,1 pour cent, les prix étaient tombés de 129,8 points."
(pag. 21/22.)

Zeit P% A% Zeit po/-* /o A%
1920 J 288,6 2,9 1920 O 282,2 5,3

F 306,3 1,6 N 263,3 3,7

M 308,0 1,1 D 243,8 6,1

A 313,1 0,9

M 305,9 1,1 1921 J 232,0 6,9

J 300,8 1,2 F 215,3 8,5

J 299,5 1,4 M 208,5 10,0

A 298,2 1,6 A 199,8 17,6

S 292,6 2,2 M 190,8 22,2

J 183,3 23,1

Wir stellen also fest, daß die Anwendung der Korrelationsrechnung
in diesem Fall sachlich gerechtfertigt ist. Die in der Tabelle angeführ-
ten Zahlenwerte (P Großhandelspreise, A Arbeitslosenzahl in %
der Gewerkschaftsmitglieder) lassen ohne weiteres die Gegensätzlich-
keit von Preisbewegung und Änderung der Arbeitslosigkeit erkennen.
Noch deutlicher zeigt dies die folgende graphische Darstellung.

Eine Unregelmäßigkeit im Kurvenverlauf (A) ist nach den An-
gaben der „Crise de Chômage" auf eine Streikbewegung im Oktober
1920, die eine unverhältnismäßig starke Zunahme der Arbeitslosigkeit



Fig. 12

in diesem Monat, und — nach Beilegung des Arbeitskonflikts — im
folgenden eine vorübergehende Erholung auf dem Arbeitsmarkt zur
Folge hatte, zurückzuführen.

Im übrigen läßt sich unschwer erkennen, daß die Änderung von
P zeitlich der von A vorangeht: Während unter anderm die Preis-
Senkung im April-Mai 1920 einsetzt, ist eine deutliche Zunahme der
Arbeitslosigkeit erst im September-Oktober zu beobachten und die
vom Dezember desselben Jahres an zu konstatierende Abschwächung
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des Preisfalls wirkt sich anscheinend im Mai 1921 auf den Gang der

Beschäftigung aus. Aus dieser Priorität der Preisbewegung (sie wird
übrigens durch das Int. Arbeitsamt in Cr. d. Ch., pag. 22, 137 u. a.

bestätigt) ergibt sich für die Korrelationsrechnung der Schluß, daß

P als bedingende und A als bedingte Veränderliche aufzufassen ist.
Es genügt nun aber nicht, zu wissen, daß P und A miteinander in

Beziehung stehen und welche Größe durch die andere bedingt ist;

0

Q

0

0

0

0

o

0

% o
°00 0

0 2* 0 2 o 0 £ o *ö .JiV* o

Fig. 13
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wir können mit der Korrelationsrechnung erst dann einsetzen, wenn
wir uns über die Art des Zusammenhangs orientiert haben —
wenigstens so weit, daß wir uns klar sind darüber, ob er linear ist, oder
nicht. Fig. 12 zeigt nun deutlich, daß weder in der Änderung von P
in der Zeit, noch in der Änderung von A in der Zeit irgendwelche
Gesetzmäßigkeit enthalten ist; weder P noch A sind zeitbedingt.
Würde man die drei senkrecht aufeinander stehenden Achsen eines

Raumkoordinatensystems P, A und der Zeit T zuordnen, dann wäre
die durch die drei Größen bedingte Raumkurve also dadurch gekenn-
zeichnet, daß höchstens ihre Projektion auf die PA-Ebene (Ebene
durch die P- und die A-Achse) einen irgendwie gesetzmäßigen Ver-
lauf zeigen würde. Man erhält sie, wenn man den Kurvenbildern von
P und A in Fig. 12, welche den Projektionen der Raumkurve in der
PZ- und der AZ-Ebene entsprechen, zusammengehörende Werte ent-
nimmt. Sie sind die Koordinaten der Punkte in der PA-Ebene.

In der nebenstehenden Figur 13 ist die Zeitkomponente ausge-
schaltet. Man erkennt, daß die Punkte auch nicht annähernd auf
einer geraden Linie liegen und daß infolgedessen eine direkte Aus-

wertung des Zahlenmaterials gar nicht in Frage kommen kann. Rech-
net man nun mit der Möglichkeit, daß eine Art hyperbolischer Kurve
der Lage der Punkte im System eher gerecht zu werden vermöchte,
dann könnte man den Zusammenhang im allgemeinsten Fall etwa in
folgender Form ausdrücken:

P* • A^ C, oder

P • A"'* C\

wobei a, b, C, bzw. C' beliebige Konstanten wären. Eine solche Be-

ziehung wird nun linear, wenn man zu den Logarithmen übergeht. Wir
erhalten dann:

log P + —log A C"
a

Die Rechnung wird nun zeigen, ob und wie weit unsere Vermutung
gerechtfertigt ist. In der nachfolgenden Tabelle ist x für log P und y
für log A gesetzt. Angenommene Mittelwerte:

m'x 2,420 m'y 0,814

5
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X y
Ax

_[_
Ay A x* A y2

1920

J 2,461 0,462 0,041 0,352 0,00168 0,123
F 486 204 066 610 436 372

M 489 041 069 773 476 598

A 496 9,954 076 860 578 740

M 486 0,041 066 773 436 598

J 479 079 059 735 348 540

J 476 146 056 668 314 446

A 474 204 054 610 292 372
S 466 333 046 481 212 231

0 450 724 030 090 090 008

N 420 568 000 246 000 061

D 387 786 0,033 028 109 001

1921

J 365 839 055 0,025 302 001

F 333 929 087 115 757 013

M 320 1,000 100 186 1000 035

A 301 246 119 432 1416 187

M 281 346 139 532 1932 284

J 264 364 156 550 2434 303

Summen 0,689 0,563 6,226 1,840 0,11298 4,910

0,126 4,386

nix 2,420 — • 0,063 2,413 ZAx* 0,11298
0,01588

18 18

0,11210

1 19 237
my 0,814 — — • 4,386 0,570 HAy* 4,910 -

18 " 18

3,841
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Ax Ay
+

A x A y
_j_

A xAy
+

1 0,0144 7 0,0374 13 0,0014
2 403 8 329 14 100
3 533 9 221 15 186
4 654 10 027 16 514
5 510 11 000 17 739
6 434 12 0,0009 18 858

Sumine: — 0,6041
0,0009 — 0,6032

0 5596
SAxAy — 0,6032 — ' — 0,6339

0,6339

V 0,1121 -3,841
— 0,967 ± 0,016

0,6339 0,0688
bo, — 5,654 p ; — 0,01185" 0,1121 ^ 5,81

S' 40,'8

0,6339 0,0688
b,o =—0,1650 p =_0,0357'* 3,841

'
1,930

5 =2® 18'

Aus den rechnerischen Ergebnissen ist zu entnehmen, daß durch
den Übergang zu den Logarithmen es tatsächlich gelungen ist, die

Beziehung zu „strecken", das heißt sie in eine lineare umzuwandeln.
Der hohe Wert des Korrelationskoeffizienten wäre sonst nicht denk-
bar. Der Tatbestand wäre also für Großbritannien und für den Zeit-
abschnitt vom Januar 1920 bis Juni 1921 folgendermaßen auszu-
drücken :

Trägt man auf der Abszisse eines Koordinatensystems die Loga-
rithmen der Großhandels-Indexziffern und auf der Ordinate die

Logarithmen der Arbeitslosenziffern ab, dann liegen die Punkte, die

zusammengehörende Werte als Koordinaten haben, annähernd auf
einer Geraden.
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Der Richtungskoeffizient hat einen zwischen — 5,654 und — 6,060
liegenden Wert: Einer Abnahme von P entspricht eine Zunahme von
A; die Änderung des Logarithmus von A, gemessen an der des Loga-
rithmus von P, ist 5,654, bzw. 6,060mal größer.

^ Die Formulierung ist eine ähnliche, wie
in dem nach Pareto benannten Gesetz, das
über die korrelativen Beziehungen zwischen
Einkommenskategorien und zugehörigen Per-
sonenzahlen eine entsprechende Aussage
macht. Im vorliegenden Fall aber handelt es

sich, wenn auch an der Beziehung als solcher
nicht zu zweifeln ist, nicht um ein Ergebnis
von allgemeiner Bedeutung. Die Aufgabe be-
stand nach der sachlichen Rechtfertigung der
Anwendung der Korrelationsmethode (vgl. die
Einleitung zu diesem Beispiel) in erster Linie
darin, die Beziehung in eine lineare um-
zuformen. Aus dem hier erzielten positiven
Ergebnis ist nicht einfach der Schluß zu
ziehen, daß bei weiteren Untersuchungen
dieser Art das Resultat — soweit dies die Art
des Zusammenhangs betrifft — das gleiche
sein müßte; es ist wohl möglich, aber nicht
sicher, daß man auch für andere Staaten
und für andere Zeitabschnitte zu entspre-
chenden Feststellungen gelangt. Für die Kor-
relationsrechnung heißt dies aber, daß ihre
Anwendung im Dienste der wissenschaftlichen
Forschung nur in einer möglichst großen Zahl
gleichartiger Fälle sinnvoll und zweckmäßig
sein kann.

Die beiden folgenden bildlichen Darstel-
lungen zeigen die Regressionsgeraden und.die
beim Übergang zum Numerus aus ihnen sich
ergebenden Kurven. In beiden Fällen sind
auch die Wertepunkte eingetragen. Man sieht,
daß die Streuung, das heißt die Abweichung
von den errechneten Beziehungslinien, ver-
hältnismäßig gering ist. Nur der früher schon
erwähnte Oktoberwert macht eine Ausnahme.^ Die beiden Geraden (Fig. 14) weichen nur um

2,2 2,3 2>
Fig. 14
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41' voneinander ab — eine selbstverständliche Folge der aus der

Rechnung sich ergebenden engen Beziehung. Die Kurven lassen sich

für Indexwerte über 260 nicht mehr gut auseinanderhalten. Aus den

Regressionskoeffizienten ergeben sich die Beziehungen folgender-
maßen :

— 5,654 (log P — 2,413)

— 5,654 log P + 14,213

— 0,165 (log A — 0,570)
2,507

a) log A — 0,570

log A
b) log P — 2,413

log P — 0,165 log A
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Weiter erhalten wir:

a) A 1,634 • 10" • P ~ (KO

b) P 3,216 • 102 A - ".«s

oder A 1,550 • 10" P - «.<*1 (Kg)

An dieser Stelle mag noch erwähnt werden, daß der hier unter-
suchte wenigstens keinen Einzelfall darstellt: Für die Schweiz konnten
für die Zeit vom Januar 1921 bis Februar 1922 (Material aus dem
Stat. Jahrb. der Schweiz; do. Cr. d. Ch.) für den Zusammenhang
zwischen log A und log P ein Korrelationskoeffizient von ebenfalls
0,967 und Regressionskoeffizienten von — 5,22 und — 0,18, also

Werten, die nur wenig von denen des vorliegenden Beispiels abweichen,
festgestellt werden.

Die Wahl anderer Maßstäbe

Man müßte der Korrelationsrechnung die Objektivität absprechen,
wenn ihr Resultat durch Zufälligkeiten, wie u. a. die der Wahl anderer
Maßstäbe beeinflußt würde. Es ist aber leicht einzusehen, daß dies für
den wichtigsten Parameter, nämlich r, nicht der Fall ist. Soll eine
Größe k, die mit der Maßeinheit a gemessen wird, durch das Maß b

ausgedrückt werden, dann erhalten wir an Stelle von k:

k' \ ck
b

Einen andern Maßstab wählen heißt also nichts anderes, als mit
einem konstanten Faktor, nämlich mit dem Maßverhältnis (altes M. :

neues M.) multiplizieren. Wird nun mit Hilfe der Korrelationsrechnung
die Beziehung zwischen den Zahlenfolgen Xj, Xg, .Xn und y^, y2,

y„ untersucht und messen wir sowohl die x-, als auch die y-Werte
mit andern Maßen, dann tritt an Stelle der xî der neue Wert Cx • x;
und an Stelle der y; die Cy, yi, wobei die c für die Maßverhältnisse

altes Maß
c

neues Maß

gesetzt werden. Entsprechend werden alle für die Berechnung der

Korrelationsparameter in Betracht fallenden Größen mit den Kon-
stanten behaftet. Wir erhalten also:



71

CxCySAxAy 2 A x A y

b 21

bi2

V'c' 2 Ax- • Cy A A y- V A Ax-SA y-

CxCySAxAy Cy SAxAy
c;'S Ax- Cx

' " S Ax-

CxCy SAxAy Cx SAxAy
c® S A y-

"
cy

'
S A v-

Während sich also bei der Wahl anderer Maßstäbe an der Ab-
hängigkeit zwischen x und y als solcher nichts ändert, erhalten die

für die bildliche Darstellung maßgebenden Koeffizienten b neue
Werte. Nimmt bai zu, dann nimmt b^ im gleichen Verhältnis ab und
umgekehrt. Wir haben es also beispielsweise in der Hand, durch be-
stimmte Wahl der c die Regressionskoeffizienten gleich groß zu
machen. Dann ergibt sich:

1
o2

y y. aSAx^ SAy^

1 1
Cx : Cy : — und

Cx Cy

t>2i bj2 r

Dieser Wahl der Reziprokwerte der Streuungen als Maßverhält-
nisse kommt deshalb eine besondere Bedeutung zu, weil auf diese

Weise die Beziehungsgleichung in der von englischen und ameri-
kanischen Statistikern bevorzugten Form („Normalform") erhalten
wird (vgl. pag. 34). Setzt man

X für —, Y für
Cx Cy

dann lauten die linearen Beziehungsgleichungen :

Y — — r • (X— —)
Oy CTy

23)
X — — r • (Y ——)

Cx Cy

Alle Größen in diesen Gleichungen sind unbenannte Zahlen. Die
beiden Regressionsgeraden haben symmetrische Lage zur Winkel-
halbierenden des durch P (mx, my) gelegten Systems.
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Ist allgemein y f (x), (kor. Bez.)

dann geht bei Einführung von Normalkoordinaten diese Beziehungs-
gleichung über in

Y<7y f (X<Tx)

oder Y — f (X«tx)
(Jy

Der Parameter p [19]) muß in der Normalform aus Symmetrie-
gründen einen Extremwert (Maximum oder Minimum) erhalten.
Durch eine kleine Umformung geht 19) über in

1 — O
P ïP* + ~b~

wobei b für bgi, oder b^ gesetzt werden kann.
Da die Wahl anderer Maße den Zähler nicht beeinflußt, haben wir

lediglich festzustellen, für was für ein b die Summe

s b + —-
b

am kleinsten wird. Daß s kein Maximum haben kann, ist ohne weiteres
einzusehen. Wir finden:

ds U
1 — o b r

db b^

Die zweite Ableitung wird positiv (an der Stelle b r: 2/r), wie dies

zu erwarten war. b hat gleiches Vorzeichen wie r, so daß nur die

positive Wurzel in Betracht fällt. Der Übergang zu Normalkoordinaten
bedingt also ein minimales s und damit ein maximales p:

1 p2

p —-— in Übereinstimmung mit 20)

Von den mathematischen Eigenschaften der Funktion p (für ver-
änderliches r!) ist bereits früher schon (pag. 23) die Rede gewesen.
Ergänzend sei noch nachgetragen, daß sich die Kurve (Fig. 10)
asymptotisch der Ordinate und der Geraden

r

Pjf-2-
nähert. Wählen wir die letztere als Abszisse, dann wird

p' r' ^ V 5



73

Zusammenfassend läßt sich sagen, daß
1. das Abhängigkeitsmaß als solches unbeeinflußt bleibt von der

Wahl der Maßstäbe, in denen die zueinander in Beziehung ge-
setzten Größen gemessen werden;

2. die für die bildliche Darstellung maßgebenden Regressions-
koeffizienten abhängig sind von den Maßen und daß deren Wahl
so getroffen werden kann, daß die b-Werte gleich dem Abhängig-
keitsmaß r werden ;

3. der Winkel zwischen den Regressionsgeraden sich nicht nur mit
der Abhängigkeit, sondern auch mit den Maßen der einander be-

dingenden Größen ändert und daß er einen für den Grad der

Abhängigkeit kennzeichnenden Maximalwert bei der Messung
in Normalmaß annimmt.

Die partielle Korrelationsredinung

Bereits früher wurde schon erwähnt, daß der korrelative Charakter
einer Beziehung zwischen zwei Größen auf den möglichen Einfluß
noch weiterer zurückgeführt werden könnte. Neben das wichtige
Problem der „Streckung" nichtlinearer Beziehungen tritt also das

andere, die Bindung auch von mehr als zwei Größen mit Hilfe der

Korrelationsrechnung zu untersuchen. Dieser Aufgabe widmet sich
die als partielle bezeichnete: Sie bestimmt den Sondereinfluß jeder
„bedingenden" Größe auf die „bedingte" und drückt das Ergebnis der

Untersuchung in partiellen Korrelations- und Regressionskoeffizienten
aus. Der Ableitung dieser Koeffizienten sei der folgende Abschnitt
gewidmet.

Eine Reihe von Größen Xj, Xn, sei linear in der Weise ver-
bunden, daß sich setzen läßt:

bj Xj + b2 X2 4- bn Xn + a 0

Sind die Werte xi k-mal empirisch bestimmt worden, und verlangt
man, daß die Koeffizienten b, so gewählt werden, daß sie, in den k
Bestimmungsgleichungen eingesetzt, für a einen kleinsten Wert er-
geben sollen, dann bestimmen wir die b; folgendermaßen: Wir sum-
mieren alle Gleichungen:

bj Xjj -j- bg Xj2 bß Xj3 -f- -j- bnXjn +^1 0

bi Xgi ~f~ bg Xgg -f- bß Xgg -j- bnXgn -f- clg 0

bi Xki + bg Xk2 + bgXk3 4" • • • 4~ bnXkn + 3-n — 0

bj Sxij ~f~ bg S Xjg -f- bn -S Xjn 2 — 0
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Durch Bildung der Differenzen aus xin und dem Mittel aller xik er-
geben sich k weitere Gleichungen von der Form:

bi(xii--^) + b.(x„- ?£»-) +

+ bn (Xin — y" + (a; — Y") 0

oder kürzer:

bj Axii + baAxij + + bn Axin + Aai o

Summiert man über alle i von 1 bis k, dann muß wegen

SAxii 0) • • • -SAxin 0 auch SAa* o sein.

Setzen wir also:

bi Axn + bg Axia + bg Ax^ + + bn Axm Vj

bi Axgi + b-2 Axj2 + bg Axag + + bn Axan Vg

bj Axki + bg Axkg + bg Axkg + + bn Axkn v„,

dann können wir nach der Methode der kleinsten Quadrate die
Koeffizienten bi so bestimmen, daß 2v] zu einem Minimum wird.
Durch Quadrierung und Summierung über alle k ergibt sich:

VVb^AxJ„ + 2VV bnbm Axkn Axkm Vvf Min.

11 11
Differenzieren wir partiell nach allen bi, dann erhalten wir ein System
von n in den Koeffizienten lineare Gleichungen (für Ax ist unten x
gesetzt ; als Summenzeichen wird [ ] verwendet) :

bi [xi xj + bg [xi xj + bg [xi Xg] + + bn [xj x„] — o

bi [Xi Xa] + ba [Xa Xg[ + bg [Xa Xg] + + bn [Xg Xn] 0

bi [Xi Xg] + ba [Xa Xg] + bg [xg Xg] + + bn [Xg x„] o

bi [Xi Xn] + bg [Xg Xn] + bg [Xg Xn] + + bn [Xn Xn] 0

Dieses homogene Gleichungssystem gestattet selbstverständlich nicht,
die bi zu berechnen, sondern je nach der Wahl eines der Xi-Werte (hier
nicht als Differenzwert aufzufassen!) als abhängige Veränderliche, zu
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ihnen proportionale Größen. Dividiert man zum Beispiel mit bj, dann
drücken wir Xj (urspr. Bedeutg.) durch alle übrigen xi aus, usw. Wir
schreiben inskünftig

für — nach Yule: bn^.-.n,
bi

wobei die hinter dem Komma folgenden Indizes auf alle xi Bezug
haben, denen bu,... nicht als Koeffizient zugehört. Aus einem be-
rechneten Koeffizienten ergeben sich durch zyklische Vertauschung
der Indizes alle übrigen.

a) Drei verbundene Größen.

bi [xj Xj] + b2 [xi xj + bg [xi Xg] o

bi [Xi Xg] + bg [Xa Xg] + bg [Xg Xg] 0

bl [Xl Xg] + bg [X2 Xg] + fag [Xg Xg] 0

Wir dividieren die erste Gleichung mit [xj xj, die zweite mit [xg Xg],
die dritte mit [X3 Xg] ; ferner alle, um die Abhängigkeit der ersten
Größe von den übrigen zu bestimmen, mit bj. Dann erhalten wir:

1 + bj2,3 b 22 + bj3,2 b
g 2 0

b22 ~h b22,3 ~h b23,2 bgg =" 0

b23 ~h b22,3 bg3 + b23,2 0

Die Regressionskoeffizienten bestimmen wir aus der zweiten und
dritten Gleichung.

1 b22 bigbgg
12)3 | __ „2

23

v, bj3 b22bg3
13)2 —

-* 23

Durch eine kleine Umformung gehen diese Ausdrücke über in:

V, **12 1*22 ÏJ3 T23

h
'

I |dUj2 J- ^23

2. ^13 1*13 U2 -^*23

"'3-ä ~ U
'

| j.2"31 -* 23

bi2,3 gibt an, um welchen Betrag sich die erste der verbundenen Größen

ändert, wenn, bei Konstanthaltung der dritten, die Änderung der
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1*21 ^23^*31 ^*12 ^12 r23ri3
1 - 2

13 bi2 1 -- 13

1*23 1*21 '*13 ^3 *'23 D2 D3
1 - 13 1*32 1 -_ ' 13

b,i - 1*32 1*21 ^*13 Ds- ''23 *12

1 - ,•2
12 bi3 1- - 12

1*32 1*311*12 r23 r23 — ^13^12

1 - |-3
~

* 12 b23 1 -—42

zweiten Größe als 1 angenommen wird, r^ mißt die Abhängigkeit
zwischen (urspr. Bed.) und x.g, r^ diejenige zwischen Xj und Xg,

usw.
Die übrigen b-Koeffizienten lauten :

1*21,3 ~

023,1

1*31,2 —

1*32,1 —

Man erkennt ohne weiteres, daß die ursprünglichen Koeffizienten
bi, bg, bä des homogenen Gleichungssystems wieder gefunden werden
können: b^g und b^g enthalten beide den Ausdruck 1 — 4 im
Nenner; ebenso bg^ und bgg,i den entsprechenden 1 — 4, usw. Wir
setzen also:

bi 1 — 4; bg 1 — 4; bg 1 — 4
und betrachten diese Ausdrücke als zu [xj xj, [xgXg], [X3 X3] zuge-
hörig. Daraus ergibt sich folgendes Schema der ursprünglichen Koeffi-
zienten :

bi b2 bg

(1 — 4) — -T— (ri2 ~ Ds Tas) — (ris — Da ^3)
D21 ^31

" (*"l2 l'jg 1*23) + (1 4) — (r23 l'i2 1*13)
i riz 1 13/ i
U12 D32

— ~ *»s) — (Gs — Da r„) + (1 — 4)
^13 Ö23

Es zeigt sich, daß die Bedeutung der Koeffizienten b; ganz davon
abhängig ist, in welcher der 3 Gleichungen sie stehen. Bezeichnen wir
die letzteren der Reihe nach mit I bis III, dann müßte

bu bjjU bj^jjj sein, usw.
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Für ein aus Pütter, „Die Auswertung zahlenmäßiger Beobachtungen
in der Biologie", pag. 48 u. f., entnommenes Beispiel ergeben sich aber
folgende Werte:

bj bg bg

I 0,721 0,492 4,02

II 1,444 1,0 8,19 (absolute Werte)

III 0,0485 0,0336 0,285

Diese Tatsache erklärt sich aus dem korrelativen Charakter der Be-

ziehung. Immerhin bleibt die Proportionalität der Koeffizienten
(bj : bg : bg) einigermaßen gewahrt.

Die Korrelationskoeffizienten berechnen wir als geometrische Mit-
tel aus den zugehörigen b-Werten.

c — Kb b — V ki'ii
112,3 — ' "l2,3 "21)3 ~~ V i —;

bi,i b2,n

1*12 Tj3 1*23

**13,2 —

K(l- 4) (1-4)
Ks — Pl2 1-23 24)

^ 1 — 4) (1 — Ks)

^23 p2 p3

^(1 — 4) (1 — 4)
Die Regressionskoeffizienten lassen sich bei Einführung neuer

Streuungsmaße auf eine 13) ähnliche Form bringen. Setzen wir:

"12 — <*i ^ 1 4> "13 — <*i ^ 1 4' ^)
usw.

dann ergibt sich mit Hilfe dieser, als bedingte bezeichneter Streuun-

b — r ^ b — r -"l2,3 — 112)3 "l3,2 — 13)2
'23 <*32

26)
h — r ^ ^ <*21
"21,3 — 1 12,3 "23,1 — 23,1

<*13 <*31

USW.
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Es mag an dieser Stelle erwähnt sein, daß die auf Yule zurück-
gehende Theorie (vgl. M. Exner: „Über die Korrelationsmethode")
die Regressionskoeffizienten mit Streuungsmaßen höherer Ordnung
bestimmt. So wird beispielsweise

^12,3 — **12,3 *
<*i,23

gesetzt, wobei
<*2,13

<*1,23 (T/1 — r^ • F1 -12 _ p
2

13,2

<*2,13 <*2^1 — r^ •Fl-12 ' — r 2
23,1

(vgl. Korrelationsrechnung mit 4 verbundenen Größen).

Es läßt sich aber leicht zeigen, daß der für bi2,3 angegebene Aus-
druck sich in den einfacheren von 26) umformen läßt. Man findet:

7i Ü1 — r. ^
13,2

er, Ü1 — rA
und

23,1

1 — ÜB,2
_

(1—r'a) (1—Jfis) (1—r»—4—4+ ^r^r^)
1 — Ü3,i (1—) (1—**>) (1—r*s—ris—r£±r + 2r„r„r„)

1 r ^
23

Die Beziehungsgleichungen können in eine 23) nachgebildete
„Normalform" übergeführt werden, wenn man sie durch die bilateralen
Streuungsmaße, die in den b-Werten im Zähler auftreten, dividiert.
Wir erhalten auf diese Weise:

Xj — mxi
1*12,3

X2 — nix 2 + 1*13,2
X3 — nix 3

<*12 * <*13 <*12 " <*23 <*13 ' <*32

Xa — nix 2 ~ 1*12,3
Xj — mxi + 1*23,1

Xg — nixg

<*21 ' <*23 <*21 ' <*13 <*23 * <*31

X3 — nixä
— 1*13»2

Xj — mxi
T" 1*23,1

Xg — mx2

<*31 ' <*32 <*31 ' <*12 <*32 * <*21

27)

Aus diesem Ergebnis ist der Schluß zu ziehen, daß das Fehlen von Be-

nennungen in der Normalform 23) nur dem Umstand zu verdanken ist,
daß bei n zueinander in Beziehung gesetzten Größen die xj — mxi
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durch n — 1 a-Werte zu dividieren sind; bei zwei Größen also durch
einen, bei dreien durch zwei, bei vieren durch drei, usw.

Das Vorzeichen der Koeffizienten 26) entspricht dem der Korrela-
tionskoeffizienten selbst bei expliziter Darstellung der Gleichungen.

Es bleibt nun noch übrig, die Grenzen der partiellen Korrelations-
koeffizienten zu bestimmen. Wohl ist anzunehmen, daß sie, wie die
zweiseitigen Koeffizienten, Werte zwischen — 1 und + 1 mit Ein-
Schluß dieser Grenzen annehmen können; die in 24) gewonnenen Aus-
drücke schließen aber die Möglichkeit größerer und kleinerer Werte
nicht aus. Sie lassen lediglich erkennen, daß

1. positive, wie negative Werte möglich sind;
2. irgend ein iab,c 0 wird für i'ab iac rbc;
3. alle partiellen Koeffizienten r zu Null werden für r^ r,g

r23 0 (völlige Beziehungslosigkeit) ;

4. keiner dieser Koeffizienten zu Null wird, wenn nur einer der zwei-
seitigen (lab) gleich Null ist, wobei die Möglichkeit größerer
Werte, als 1 ; dahingestellt bleibt. Kleinere würden erhalten,
wenn die Summe der Quadrate der von 0 verschiedenen r.. selbst
kleiner als 1 wäre. Die Erfüllung dieser Bedingung ist zum min-
desten wahrscheinlich, weil das Fehlen einer Beziehung zwischen
zwei Größen kaum vereinbar ist mit der Existenz enger Zu-
sammenhänge beider zu einer dritten Größe ;

5. für rab 0, i'ac — o auch i'ab,c und rac,b zu Null werden,
während sich für rbc,a ein mit rbc übereinstimmender Wert
ergibt. —

Bezeichnen wir mit f den Ausdruck

(1 — 4) (1 — 4) (1 - 4,3)

(1-4) (1-4) (1-4,)
(1-4) (1-4) (1-4,)
1 + 2r„ ri3 r^g — 4 — 4 — 4, 28a)

dann ist leicht einzusehen, daß für
f >0
rab,c i < 1 wird.

Man kann also an Stelle der partiellen Koeffizienten r auch f unter-
suchen. Hat dieses Extremwerte, dann müssen seine partiellen Ab-
leitungen erster Ordnung verschwinden. Nun ergibt sich etwa aus
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of
"5 — Ï23 2rj2 0

Ï'l2 ~ I"i3 f23

Tu ist also durch die beiden andern zweiseitigen Koeffizienten be-

stimmt, und zwar liegt in diesem Falle ein durch r^ bedingtes Maxi-
mum von f (fm) vor:

fm 1 + 4 4 - 4 - 4
(i — 4) (i — 4)

fm kann also durch einen positiven, echten Bruch dargestellt werden.
Bilden wir die Differenz fm — f, dann finden wir

fm— f (^13 Ï23 > 0

f kann also ebenfalls nur Werte zwischen 0 und + 1 annehmen,
woraus weiter sich ergibt, daß die partiellen Kkf. rab,c nicht größer
als + 1 und nicht kleiner als — 1 werden könnend

* Extremwerte von f.
Aus der Nullsetzung der partiellen Ableitungen erster Ordnung ergibt

sich vorerst:
1*12 — 1*13 T23

1*13 ~ 1*12 ^*23

ras i'i2 r,3

Im Falle eines Extremwertes sind also entweder keine, oder zwei der
Koeffizienten negativ. Multipliziert man mit r,2 bzw. r„, bzw. rza, dann
erhält man ferner:

2 2 2
*12 ~ Bs — ^23

Der in den Koeffizienten symmetrische Ausdruck f hat also nur einen
Extremwert für

i Ï12 | | r« | [Ï23 [•

Ersetzen wir daher die r^ durch x, dann geht f über in
f 1 ± 2x» — 3x*,

also in eine Funktion dritten Grades, die zwei Stellen haben muß, an denen
fx Null wird:

1 df
v, -,— 4- x* — x 0 x=0, bezw. +16 dx ~

d*f
- 2x — 1

dx*
f hat also ein Maximum für x 0 (f^ — 1) und ein Minimum für x 1

(f '
o). Da x I nur Werte zwischen 0 und 1 haben kann, bleibt auch der^ m ' I I '

Variabilitätsbereich für f innerhalb dieser Grenzen und daraus folgt ander-
seits

°= Kb.c!
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Aus + l4 f 4 0 folgt ferner

1 + 2r^ rig rag 4 4 + 4 + 4
Aus dieser Ungleichheit ist ohne weiteres zu erkennen, daß bei vor-
geschriebenen r^ und t'23 der dritte Koeffizient r^ nicht beliebig groß
oder klein sein darf. Die Auflösung nach r^ (entsprechende Ausdrücke
für Tjg und ^3 erhält man durch zyklische Vertauschung) ergibt:

Da Us — ^(1 — 4) (1 — 4)

fl2 =D3 U3 + V(1 — rjg) (1 — 4) 28)

rig variiert also innerhalb eines Bereiches, dessen gesamte Breite
durch

2b 2 I 41-4) (4=4) I

bestimmt ist, während füglich r^ ^3 als „Mittelwert" von r^ be-
zeichnet werden darf. Setzen -wir

rj2 cos a

rig cos ß

rag cos y,

dann geht 28) über in

cos (ß + y) =cos a 4 cos (ß — y)

Den geometrischen Sinn dieser Beziehung kann man sich klar
machen, wenn man durch die Spitze eines gleichschenkligen Dreiecks
mit der Schenkellänge s 1 und dem Basiswinkel ß eine Gerade g so

legt, daß sie die Basis unter dem Winkel y schneidet, cos (ß + y) und
cos (ß — y) ergeben sich dann als Projektionen der Schenkel auf der
Geraden (Fig. 16).
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M' S b sin ß sin y

M' P'i M' P'a cos ß cos y

SP'i cos (ß — y)

SP'2 cos (ß + y)

Für y 0 (i'23 1) wird

cos a cos ß; r^ Gg.

Besteht zwischen zweien von drei zueinander in Beziehung ge-

setzten Größen ein linear-funktioneller Zusammenhang, dann ist der

korrelative beider zur dritten Größe durch denselben Koeffizienten r
gekennzeichnet.

Für y ß, d. h. bei Koeffizientengleichheit kann r^ 1 sein.

Werden die Beziehungen zwischen einer Größe und zwei andern

durch gleiche Korrelationskoeffizienten ausgedrückt, dann stehen

diese andern Größen möglicherweise in funktionellem Zusammenhang.
Als untere Grenze für r^ findet man 2r^ — 1. Dieser Wert wird

gleich Null, d. h. es besteht keine Beziehung zwischen Xi und Xg, wenn

Gs Gs ± 0,707

Bei einer verhältnismäßig engen Bindung zwischen Xj und X3 einer-

seits, Xg und X3 anderseits umfaßt der mögliche Variabilitätsbereich
für rj2 die volle Breite von Null bis Eins.
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Für y 90 (i'gg 0) erhalten wir

_ Fl-~r^< + - 4
r- -|- 1

12 I A13 > A

Aus diesem letzten Ergebnis lassen sich folgende Vorzeichenregeln
ableiten :

Ist die Summe der Quadrate zweier Koeffizienten rjk größer als

Eins, dann ist der dritte positiv oder negativ, je nachdem die beiden
ersten gleiches, oder ungleiches Vorzeichen haben. Ist die Summe
kleiner als Eins, dann können die negativen Vorzeichen in beliebiger
Anzahl auftreten.

b) Vier verbundene Größen.

In gleicher Weise, wie bei drei verbundenen Größen, gewinnt man
aus dem Gleichungssystem:

bj [xi xJ + ba [xi Xg] + bg [xi Xg] + b4 [xj xj 0

bj [Xi Xg] + ba [Xg Xg] + =0
W [Xi Xg] +
usw.

das durch Division mit [xj xj, bzw. [xg Xg], usw. und — um die

Abhängigkeit der ersten Größe von den übrigen Größen auszudrücken

— mit bj übergeht in:

1 + bi2, • bgi + big,.. bgi + bj4,.. b^ 0

big + bjg,.. + bj3,. bgg + bj4,.. b4g 0

bi3 ~b big,.. bgg + big,.. + bj4,.. big 0

bi4 H~ bj2> • • b24 -j- bj3j. b g 4 + b^4, 0

die Regressionskoeffizienten

1.
b>12,4 bi3,4bgg,4

^
"12,34

1 ,.2
1 1

* 23,4

V, __
bl2,3 bj4,31^42,3

^ ^
£>12,43 i 2 V /

24.3

v, _ bj3,4 ^12,4 bgg,! ^
^13,24 ^ '

23.4

1,
^21,4 bgg,4 bgi,4 ^

"21,34 4 __2 1

13.4

usw.
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Aus ihnen erhalten wir unter Berücksichtigung der Möglichkeit, die

Reihenfolge der hinter dem Komma aufgeführten Indizes zu ändern,
also beispielsweise neben einem b^^ ein bj2,43 zu unterscheiden,
insgesamt 12 Korrelationskoeffizienten. Sie ergeben sich wieder als

geometrische Mittel zusammengehörender b-Werte. Da sich wegen

1>21,3 1*14,3 1*42,3 1*12,3 1*41,3 b24,3 ^2,3 1*14,3 ^4,3

beispielsweise für bj2,34

1*12,4 1*12,4 1*13,4 1*23,4

V) 1 1*2
"21,4 23.4

und für bai^
1*12,4 1*42,4 1*43,4 1*23,4

V) 1 7*2
^12,4 -*• * 13,4

setzen läßt, erhalten wir u. a.

1*12,4 1*13,41*23,4
'

12> 34 —
^(1 — 4,4) (1 — 1*23.4)

1*12,3 1*14,3 1*24,3
* 12,43 — A

*

^(1-4,3) (1-4,3)
1*13,4 1*12,4 1*23,4

* 13,24 —

41-4,4) (1-4,4)
1*14,3 1*12,3 1*24,3

114,23 — —

41-4,3) (1-4,3)
usw.

Die vor dem Komma stehenden Indizes bezeichnen die Größen,
zwischen denen die Abhängigkeit zu ermitteln ist. Hinter dem Komma
sind die Konstanten angeführt. Wie dies bereits bei den Regressions-
koeffizienten festgestellt werden konnte, wird zwischen der dem
Komma unmittelbar folgenden und der nach dieser stehenden Größe
ein Unterschied gemacht. Denkt man sich z. B. in ^2,34 den Index 4

weg, dann geht der vierseitige Koeffizient in den entsprechenden drei-
seitigen ^2,3 über. Ähnlich wird aus ^2,431*12,4- Nimmt man also an,
daß z. B. in ^2,3 der Einfluß der Größe X3 ausgeschaltet wird, dann
ist dies auch in ^2,34 der Fall, während im Gegensatz dazu die Größe

X4 schon in jenen dreiseitigen Koeffizienten eliminiert wird, auf die
sich der vierseitige zurückführen läßt. Die Korrelationskoeffizienten
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und noch auszuschaltenden Größen und wir haben darum zu unter-
suchen, oh dies vielleicht nur in formeller Weise geschieht.

Setzen wir vorerst willkürlich z. B. ^2,34 1*12,43, dann ergibt
sich nach 30) hieraus :

V(1 r'1^3) (1 ^4 3) 0*12,3 1*14,3 **24,3)

*4 — 4.4 >0 4M) ~
Nach 28 a) ist nun

• « fabc

<1 CO rj-.
Mit Hilfe dieses Ausdrucks geht die linke Seite der Gleichung über in

4i-4) (i-4)
41-4) (i-4)

Die rechte Seite wird nach einigen Umformungen:

1*12 1*13 T23 Tj2 **34 T24 + ^3 ^4 ^4 + ^4 ^3 ^4 ^
'*12 1*13 **23 1*12 1*34 **14 **24 **13 ^4 ^4 + ^4 ^3 ^4

Da die Gleichung identisch erfüllt ist, machen wir die nicht unwichtige
Feststellung, daß die Änderung der Reihenfolge der Konstanten ohne

Einfluß auf die Größe eines Korrelationskoeffizienten bleibt. Es ist also

r12,34 — * 12,43

*13,24 " **13,42

USW.

Jeder vierseitige r-Wert läßt sich also auf zwei Arten berechnen. Das-
selbe trifft nun auch für die Regressionskoeffizienten zu.

Es ist

1*12,34 " **12,4 *12,4 **1

1*21,4 1 **23,4

14 — 4,4 _' * 12,34

0*24 **23,4

a 1,34

» 2,34
m
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wenn man als neues Maß der bedingten Streuung (vgl. pag. 77)

oa.bc da • Vi r;„ • Vi r^_g 31)

einführt. Nun gilt weiter

Vi — I"ao ' ^abc ^fabc
öa,bc — c>a * — ~ — Ca

Kl _ r- • Vi — r: }/l^ bc

und Oa.cb Ca • Vi — r';„ • Vi r:

r;

Vi -4 • Vfabc Vfabc
— Ca • - - — Ca •

Vi— r'L • Vi —4 Vi — 4g

Somit C7a,bc — 0"a,cb5

wie bei den Korrelationskoeffizienten, so können also auch bei den

Streuungsmaßen die hinter dem Komma stehenden Indizes (Kon-
stante) vertauscht werden. Daraus folgt weiter:

h _ °U>34 _ gl,43 __ ^^12,34 *12>34 * 12,43 — V>]L2,43

g2,34 g2,43

und allgemein

_ Ca,cd
>,cd — Dab,de — • l'ab.cd

Cb,cd

Ca,de

Cb,de

32)

Tab,de

Zusammenfassend läßt sich also sagen, daß bei den vierseitigen
Koeffizienten r und b, die sich übrigens der Form nach nicht wesent-
lieh von den entsprechenden dreiseitigen unterscheiden, als neue
Eigenschaft die Yertauschbarkeit der hinter dem Komma aufgeführ-
ten Indizes, welche die Konstanten bezeichnen, festgestellt werden
kann. Daraus ergibt sich die Möglichkeit, jeden vierseitigen Koeffi-
zienten auf zwei Arten zu berechnen. Ebenso gilt dies von den neu
eingeführten Streuungsmaßen ca,bc, die aus einem Korrelations-
koeffizienten die zugehörigen b-Werte zu berechnen gestatten. Sie

sind, wie wir neuerdings feststellen, niedrigerer Ordnung, als sie von
der Theorie angegeben werden (vgl. pag. 77).

Über die Vorzeichen der Koeffizienten läßt sich folgendes aus-

sagen:
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Die Streuungsmaße haben positives und negatives Vorzeichen.
Die Korrelationskoeffizienten sind positiv oder negativ, je nach-

dem die im Zähler auftretende Differenz

l*ab,d I*ac,d I*bc,d

positiv oder negativ ist.
Die Regressionskoeffizienten b haben gleiches oder ungleiches Vor-

zeichen, wie die Korrelationskoeffizienten, je nachdem die Be-

ziehungsgleichung in expliziter oder impliziter Form dargestellt wird.
Die Grenzen der partiellen Korrelationskoeffizienten vierter

Ordnung ergeben sich aus Ausdrücken f, die nach 28 a) zu bilden sind.
Wir haben im ganzen deren vier:

^123,4! ^124,3' ^134,2 Und f234,l

zu unterscheiden. Der hinter dem Komma auftretende Index ent-
spricht jener Größe, welche schon in den dreiseitigen Korrelations-
koeffizienten ausgeschaltet, d. h. als Konstante behandelt wird. Die
andere, in ^2,34 etwa die Größe X3, wird den Größen gleichgesetzt,
zwischen denen der Korrelationskoeffizient die Beziehung zu messen
hat. Somit ist beispielsweise fi23,4 symmetrisch in ^2,4, 1*13,4 und
r23,4 und da aus diesen dreiseitigen r-Werten drei vierseitige sich

ergeben, sind diese auch ^23,4 zuzuordnen, was heißt, daß von den
f-Werten aus gesehen insgesamt 12 Korrelationskoeffizienten vierter
Ordnung zu unterscheiden sind. Davon sind aber, wie wir gesehen
haben, je zwei einander gleich, so daß jeder der sechs verschiedenen
zwischen zweien der f-Werte vermittelt. Allgemein ist

fabftd (1 —I*L,d) (1 —:"bed) (1 — Tab,cd)

(1 — Tab.d) (1 - i*L.a) (1 - l'acbd)
33)

(l-r^J (1-rLj (1-CJ
~ 1 *ab,d Gic.d *be,d + ^ab.d *ac,d D>c,d

Man sieht deutlich, daß fabc.d in gleicher Weise von den Korrelations-
koeffizienten dritter Ordnung abhängig ist, wie fabc von den r-Werten
zweiter Ordnung. Da bereits nachgewiesen worden ist, daß die r-Werte
dritter Ordnung innerhalb desselben Wertebereiches bleiben, wie jene
zweiter Ordnung, wird auch fabc.d, wie fabc, nie kleiner als Null und
nie größer als Eins sein. Daraus folgt aber:

0 Tab,cd 1

Die Korrelationskoeffizienten vierter Ordnung haben also Werte
zwischen — 1 und + 1 mit Einschluß dieser Grenzen.
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Die neu gewonnenen Koeffizienten gestatten nun, die Be-
ziehungsgleichung zwischen vier verbundenen Größen aufzustel-
len. Setzen wir der Einfachheit halber xk für

X _ W,34 ^1,24 "l,23
•*1 — * 12,34 2 i * 13,24 -*-3 r I 14>23 "M

"2,34 "3,24 "4,23

Dividiert man die Gleichung durch die drei im Zähler auftretenden
Streuungsmaße, dann geht sie in die „Normalform" über (vgl. 27)
und 23)). — Zu obiger Gleichung gehören noch drei zusätzliche, in
denen Xj, bzw. X3, bzw. X4 durch die übrigen x^ ausgedrückt werden.

Wir haben noch die Beziehung zwischen den f-Werten vierter
Ordnung zu untersuchen. Es ist

fabc.d
_

(1 -O (1 - rg„J (1 - 4,Cd)
fabd,c (1 — r^ J (1 — r^,o) (1 - r«b,od)

^ ~^ ^ ~ (1 — O (1 — rp
(1 - rad,c) (1 - 4d,c) (1 — r'd) 1- 4d)

Besteht zwischen xc und x<j eine streng lineare Beziehung, dann geht
dieser Quotient in

fabc
^

fabd

über. Je lockerer dagegen der Zusammenhang zwischen Xc und Xd,
also zwischen den Größen, die in den Korrelationskoeffizienten rab,cd
als Konstante behandelt werden, ist, um so stärker werden sich auch
die beiden f-Werte vierter Ordnung voneinander unterscheiden. Ihr
Quotient kann somit als Maß der Beziehung zwischen den Konstanten
aufgefaßt werden.

c) n verbundene Größen.

Es ist leicht einzusehen, daß das Gleichungssystem
II

2bi [xjXi] 0
1

n

^bi [xgXi] 0

n

Sbi [XnXi] 0
1
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Koeffizienten bik,... unci aus diesen abgeleitete nk,.., ai,..,
fiki,... liefern wird, die sich von den entsprechenden dritter und
vierter Ordnung nicht in der Form, sondern nur in der Zahl der Kon-
stanten unterscheiden werden. Das Ableitungsverfahren, das an zwei
Beispielen ausführlich dargestellt worden ist, ergibt folgende allge-
meine Formeln:

**ab,d ' * * n **ac,d • • • n l*bc,d • • • n
I*ab,cd n — ~

^(1 — 4,a,.n) (1 — ïbcd.J

^a,bc lmn *an) 0 ^am,n) *al.mn)'

34)

• (1 r^o- • - lmn) 35)

36)

Ca,c. -n
Oab,c n — * Tab,c. .n

ö"b,c. n

ab,c. .n
Dba,c n • Tab,c. .n

0"a,c. n

fabc.d n (1 - r^a.. J (1 — r£e,d.. n) (1 - üb,cd.. n)

(1 - 4,d n) (1 — Bic,d n) (1 ~ î"ac.bd n)

(1 — r^a n) (1 — 4,d J (1 — ^bcad n)

— 1

ab,d n ac,d.. n bc.d n

+ 2r„b,a n üc.d n Üe,d n 37)

Sie bestätigen schon früher gemachte Feststellungen, soweit sich
diese auf den Wertebereich der Korrelationskoeffizienten, auf deren

Größenbeziehungen untereinander, auf das Auftreten von bestimmten
Vorzeichen bei Korrelations- und Regressionskoeffizienten usw. be-
ziehen. Man lese hierüber die Ausführungen pag. 79/83 und 87 nach.

Wir haben nun weiter noch zu untersuchen, ob auch bei Koeffi-
zienten n-ter Ordnung die Möglichkeit der Permutierung der Kon-
stanten besteht, wie sie bereits nachgewiesen worden ist für Koeffi-
zienten vierter Ordnung. Dies ist schon darum notwendig, weil nach
Exner („Über die Korrelationsmethode") von Yule Formeln ange-
geben werden, die von den oben angeführten etwas abweichen. So ist
nach Yule

**12,34..(m— 1 **lm,34..(m— 1) **2m,34 (m—l)
*12,34. • -m —

(1 Gm,34 (m — 1 (1 Üm,34 (m — 10
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Ändern wir in diesem Korrelationskoeffizienten die Reihenfolge der
Konstanten in

ri2,m34 (m— 1)>

dann ergibt sich auch nach 34) der angeführte Ausdruck. Wenn also

nachgewiesen werden kann, daß diese Änderung den Wert des Kor-
relationskoeffizienten nicht beeinflußt, dann ist damit auch gezeigt,
daß nicht nur nach der Yuleschen Formel das r n-ter Ordnung be-
rechnet werden kann, sondern daß es insgesamt (n — 2) Möglich-
keiten gibt, r zu ermitteln. — Yule gibt ferner folgendes allgemeine
Maß der bedingten Streuung an :

<23...m <(1 — 4) (1 ~ 4,2) (1 — 4,23) • • • •

^lm,23 (m — l)

Führen wir bei diesem Streuungskoeffizienten die Konstanten in der
umgekehrten Reihenfolge auf, dann erhalten wir wiederum nach 35)
die Yulesche Formel. Wir haben also zu zeigen, daß auch bei den Streu-
ungsmaßen die Reihenfolge der hinter dem Komma aufgeführten
Konstanten beliebig ist. — Endlich hat man nach Yule die Regres-
sionskoeffizienten nach folgender allgemeiner Formel zu berechnen:

I, _ <7I>23. -m
F>12,3- • • m — 112,3- • • m •

0*2J13' • • m

Sie unterscheidet sich von 36) insofern, als sie die Regressions-
koeffizienten b aus den zugehörigen r-Werten mit Größen cj höherer
Ordnung bestimmt. Auf diesen Umstand ist bereits bei der Be-

sprechung der Koeffizienten dritter und vierter Ordnung hingewiesen
worden. Es ist also unsere Aufgabe, festzustellen, ob für jedes beliebige
m der Quotient

.m ®1,3- m

<72,13. m <72,3. • m

ist. —
Wir fragen uns vorerst, ob sich der Wert eines Korrelations-

koeffizienten nicht ändert, wenn die Konstanten permutiert werden.
Es genügt dabei, zu untersuchen, ob etwa

l'l2>3k- • -n 1*12,k3 n

sei, das heißt die Änderung der Reihenfolge der beiden dem Komma
unmittelbar folgenden Indizes (Konstanten) keinen Einfluß auf die
Größe von r habe. Denn nach 34) wird jedes r n-ter Ordnung auf
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r-Werte (n — l)-ter Ordnung zurückgeführt, bei denen die Möglich-
keit einer solchen Inversion der Indizes auch besteht. Geht man bis
auf die Korrelationskoeffizienten vierter Ordnung zurück und zieht
man alle Inversions-, bzw. Transpositionsmöglichkeiten in Betracht,
dann lassen sich auch für rj2,...n alle (n — 2)! Permutationen der
Indizes hinter dem Komma erhalten. Es ist nun

_ __
l"l2,k..n h3,t..nb3,k..n

* 12,3k..

^(l-4,k..n)(l-4,k..n)
und

0'2,3..n Gk,3 ..n Gk,3 .n
*12,k3..n —

4,3.. n) (I" 4,3..n)

Aus der Gleichheit dieser beiden Korrelationskoeffizienten wäre nun
zu schließen, daß

12,k 11 A 13 fc _ n 123,k n4l~ 4,k..n) (I" 4.k..n) _
^(l-4,3..n) (Ï -4.3..J *"" ' * " ~ ^ ' • "

sei. Formen wir diese „Gleichung" in der pag. 60 dargestellten Weise

um, dann geht die linke Seite über in

43k,..J*,,,.. (1 — 4 J(1 - 4, )(1 — 4 .J(1 - r^J
4 — 4.. (i — 4,.. (i — 4, ..)(i — 4,.. fi3k,.. f-23k,..

4 — 4,..) (1 — 4,..) _ ^

4 4.4' 4.0
Für die rechte Seite ergibt sich

t'i-2, •• Gk,Gk,.. G2,.. r^,.. ± Gk,.. Gk,.. Gk,..

G3, • • Ga,.. + Gk, • • G3> • • Gk, •
~k Gs, Gk,.. Gk, •

k • ;—
G2> •• Gs,.. G3, • G2, - Gk>-' — Gs>.. Gs, Gk> • •

— Gk,.. Gk,.. Gk,.. 1*23, •• Gk,.. T~ Gs, Gk,. Gk,.
k

Aus diesem Ergebnis ist zu schließen, daß tatsächlich

I"l2i3k. G2k3. •

ist. Es besteht also für alle partiellen Korrelationskoeffizienten
höherer als dritter Ordnung die Möglichkeit, die Indizes hinter dem
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Komma zu permutieren. Jeder Indexpermutation entspricht eine be-

stimmte Anordnung der Konstanten, d. h. jener Größen, die bei der

Messung der Beziehung zwischen irgend zwei x-Werten ausgeschaltet
werden — und damit auch einem bestimmten Modus der Koeffizien-
tenberechnung. Denn wenn auch grundsätzlich alle rab - • - n identisch
gleich sind, wird doch sowohl in 34), als auch in der von Yule ange-
gebenen Formel zwischen auszuschaltenden und ausgeschalteten
Größen ein Unterschied gemacht und damit die Reihenfolge der
Konstanten als wesentlich hingestellt. Haben wir die Beziehungen
zwischen n verbundenen Größen zu ermitteln, dann läßt sich somit

jeder der (") Korrelationskoeffizienten n-ter Ordnung auf (n — 2)!
Arten berechnen. Ein möglicher Berechnungsmodus wird in der Yule-
sehen Formel, ein anderer in 34) angegeben. Beide sind gleichwertig.

Wir haben in zweiter Linie nun festzustellen, ob bei den Streuungs-
maßen or die Reihenfolge der Indizes hinter dem Komma geändert
werden kann. Das ist dann der Fall, wenn u. a. aus zwei benachbarten
Indizes eine Inversion sich bilden läßt, denn durch Vertauschungen
benachbarter Elemente erhält man jede beliebige Permutation. Es ist
nach 35)

Sa, hk • • • n Oa • • k'l Uk,... ' ^ Uh.k... • • • •

_
T,,... 1 I — r^ • yy......

n iL...

*a....kh...n «Ta. H >'k.. • n Gk,,...- • • •

«Ta--. 1'äh ' ^fahk, ...• • •

]/1 — r'2 • V' 1 — T"*'

ah.... hk

folglich ^a,...hk...n — Ga,...kh...n

Auch bei den Streuungsmassen ist also die Reihenfolge der hinter dem
Komma aufgeführten Konstanten beliebig, woraus wieder auf ver-
schiedene Berechnungsmöglichkeiten und die Gleichwertigkeit von 35)
mit der Formel von Yule geschlossen werden kann.

Nach Yule sind endlich — auch Exner und Pütter verwenden
übereinstimmend die nämlichen Formeln — die Koeffizienten b mit
Streuungsmaßen höherer Ordnung, als sie in 36) angegeben sind, zu
berechnen. Streuungsmaße höherer Ordnung sind aber gleichbedeutend
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mit vermehrter Rechenarbeit und darum kommt der Untersuchung,
ob etwa

Si,23. • .0 ,,yf *.,« .»

<72,13 • • n C2,3 • • n

zurückgeführt werden könne, auch eine gewisse praktische Bedeutung
zu. Nach 35) ist nun

<7l,23 • -n <*1 Vi Ii3, ..n Vi ^12,8 n

<72,13- n ^2 • - - -
Vi 1*33, ..n Vi G'2,3 n

Im Zähler und im Nenner fällt der letzte Faktor weg, so daß der
Quotient übergeht in

<7i,3 • -n

<72,3 - - n

Geben wir die Streuungsmaße n-ter Ordnung nach Yule an, dann
erhalten wir

CT 1,23 • • n 7^1-4 vi — 4 Vi

<72,13- -n <72 Vi — rj. Vi — 4i Vi — 4,g....
Die beiden zweiten Faktoren in Zähler und Nenner fallen durch Kür-
zung weg. Je die dritten n-ten Faktoren gehören demselben

f-Werte an und können deshalb auf Faktoren niedrigerer Ordnung
zurückgeführt werden. So ist zum Beispiel

Vi - 4,2 Vi --4
Vi — 4,i Vi--4
Vi ~~ Gl.23 Vi Gl,3

Kl r Vi r24,13 ^

Somit geht der Quotient über in

24,3

usw.

*1 VÏ — 4 Vi — 4,3 <Ji,3. n

<79 Vi — rL Vi -4,3.... <72,3... n

Die Formel 36) besteht also zu Recht und dürfte der Yuleschen vor-
zuziehen sein.
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Zusammenfassend stellen wir also fest:
Alle für die korrelativen Beziehungen zwischen n Größen maß-

gebenden Koeffizienten r, ct und b haben gemeinsam, daß sie formal,
aber nicht grundsätzlich zwischen den Konstanten, bzw. den Indizes,
die für diese stehen, einen Unterschied machen. Das hat zur Folge,
daß es eine vom Grad der Koeffizienten abhängige Zahl von Möglich-
keiten gibt, diese zu berechnen. Als zusätzliches Ergebnis darf ferner
vermerkt werden, daß die Berechnung der Regressionskoeffizienten
aus den zugehörigen r-Werten mit Hilfe von Streuungsmaßen nied-
riger Ordnung, als Yule sie angibt, erfolgen kann.

Einige Eigenschaften der partiellen Korrelationskoeffizienten

Wir haben den zweiseitigen Korrelationskoeffizienten als Maß für
die zwischen zwei Größen bestehende Beziehung kennen gelernt. Je

enger die Beziehung ist, um so mehr nähert sich der absoluteWert von
r der Grenze Eins. Umgekehrt läßt ein Wert r 0 auf das völlige
Fehlen einer Beziehung schließen. Sind mehrere Größen unter-
einander verbunden, dann mißt der partielle Korrelationskoeffizient
die Beziehung zwischen je zweien, indem er die übrigen konst.
setzt und damit ihren Einfluß ausschaltet. Nun ist zu berücksichtigen,
daß sich die Annahme der Existenz mehrseitiger Beziehungen auf die

Voraussetzung primär zweiseitiger Zusammenhänge stützt. Das
Warum? ist leicht zu beantworten. Es besteht nämlich niemals die

Möglichkeit, auf empirischem Wege Veränderungen einer Größe als

bedingt, oder bedingend (darüber entscheidet unsere Vorstellung von
der Art der Beziehung) festzustellen, wenn nicht mit dieser Größe
auch andere Größen sich verändern. Diesem Umstand trägt auch das

Bildungsgesetz der maßgebenden Koeffizienten Rechnung: Ein r-Wert
n-ter Ordnung wird auf r-Werte (n — l)-ter und damit schließlich auf
solche zweiter Ordnung zurückgeführt. — Nehmen wir nun an, es sei

bei drei vorgegebenen Größen Xj, Xj und X3 einerseits die Beziehung
zwischen und Xj, anderseits jene zwischen Xj und X3 als ausge-
sprochen eng festgestellt worden. Nun wird offenbar der Korrelations-
koeffizient 3. Ordnung ^2,3, der die Beziehung zwischen Xj und Xg

unter Ausschaltung des Einflusses von X3 mißt, keinen sehr hohen
Wert haben können, da für X3 konst. Xj den Bewegungen von Xj
kaum in dem Maße folgt, wie es die enge Verbindung zwischen Xj und
X2 erwarten ließe. Je größer die Zahl der miteinander in Zusammen-
hang stehenden Größen ist, um so kleiner müßte also der Einfluß,
ausgedrückt durch die partiellen Korrelationskoeffizienten, sein, den
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jede einzelne auf eine bestimmte „bedingte" Größe hat. Nehmen wir
an, es werden bei n verbundenen Größen alle zweiseitigen Beziehungen
durch den gleichen Korrelationskoeffizienten gemessen. Dann werden
auch alle partiellen r-Werte gleich groß und wir erhalten — der Ein-
fachheit halber sei für

Tab, • • • n * r^)
gesetzt

p2) -
r<3)

*<4)

f(B)

r und für r 1

r 1

1 +T ~ 2

r _
1

1 + 2r ~ 3

r _
1

1 + 3r ~ 4

1

n — 1

Wir stellen also fest, daß für den Fall gleicher zwei- und mehrseitiger
Beziehungen der Wert der Korrelationskoeffizienten um so kleiner
ausfällt, je höher ihre Ordnungszahl bzw. die Zahl der verbundenen
Größen ist. Ist insbesondere der zweiseitige Koeffizient r gleich 1 und
läßt somit auf linear-funktionelle Beziehungen zwischen je zwei
Größen schließen, dann wird der zahlenmäßig durch 1 ausgedrückte
Gesamteinfluß gleichmäßig unter alle n — 1 „unabhängige" Größen

aufgeteilt. Daß das so sein muß, kann leicht gezeigt werden. Es sei

Xi ^2 — &13 X3 ct^n Xn

und entsprechend

X2 — &21 ^1 ~ ^23 X3 ~ ~ ^2n Xn

usw.

wobei die Proportionalitätskonstanten ajk positiv oder negativ sein
können. Nun ist zum Beispiel

X] clj2 -^2 ^13 X3 Xn

n — 1 n — 1 n — 1 n — 1

so daß sich ergibt:

i(n)
1 + (n — 2) r
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Xi — (^12 X2 + ^13 X3 + -f- Xn),
n — 1

oder, wenn man die ap< durch — ersetzt :

0-2

l,ö"i 0*1 0*1-
Xi - — Xj H X3 + + -Xn)

n 1 G*2 CJ3 CJ*n

Ebenso erhalten wir:

1
/ ^*9 0*9 ^*9 \

X2 — Xj -( X3 + + - - Xn) 38)
n — 1 öl 0-3 Un

1 <7n
1

Cn
Xn X^ + Xg + + — — Xn _ 1)

n 1 ö*i ö*2 ö*n — 1

Es ist klar, daß eine Gleichung allein den zwischen je zwei Größen
bestehenden funktionellen Beziehungen nicht gerecht wird. Ist bei-
spielsweise Xk als Funktion aller übrigen xi dargestellt, dann ist
irgendein Xm mit einem Xn nur über xk und nicht direkt verbunden.
Alle Größen außer Xk werden somit unzutreffenderweise als unab-
hängige Veränderliche gekennzeichnet. Das n Gleichungen umfassende

System 38) dagegen entspricht den Voraussetzungen, von denen aus-

gegangen wurde: Es ist nur identisch erfüllt, wenn gesetzt werden
kann :

(7k (7k (7k
Xk Xj - X2 Xn

0*1 0*2 <7n

Der Vergleich von 38) mit dem System der Regressionsgleichungen:

®1,3- • n
X2 + J"i3, •

<D,2 ' • n

(72,3 • • n
• n ~

(73,2 • • n

(72,3 • n
•Xi + 1*23, •

(72,1 • • n

(7l,3 • • n
• n

(73,1 • n

(73,2 • • n
T—1X ~l~ 1*23, •

(72,3 • n

(7l,2 • • n
• n —

(72,1 • n

'X3 +
39)

il3> • • n
(7i,2 • • n

USW.

zeigt nun deutlich, daß der Faktor
^

für die partiellen Kor-
n — 1

relationskoeffizienten steht; sind diese unter sich gleich, dann erhält
man als allgemeine Beziehungsgleichung
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ok • r xi
Sk rT7 •>, 2 • 40)

1 + (n — 2) r cri

die in eine der Gleichungen von 38) übergeht, wenn man r 1 setzt.
Sind alle xi unter sich gleich und gleich Xh, dann wird weiter

(n — 1) r (7k
xk= / xh 41)

1 + (n — 2) r ah

In diesem Ausdruck ist n, die Zahl der verbundenen Größen in N
n — 1), die Zahl der Fälle, in denen zwischen den zwei Größen

Xk und Xh derselbe korrelative Zusammenhang festgestellt werden
kann, überzuführen. Dann ergibt sich:

Nr (7k* i—(N-wör^-*'
Für N 1 wird

Ok
Xk r • - • xh ;

Oh

42) geht also in 6) über.
Nr

Wv 43)
1 + (N — 1) r '

entspricht somit dem Korrelationskoeffizienten r, wenn die Messung
des Zusammenhangs zwischen xk und xh N-mal denselben Wert er-
geben hat. Da nun Wj, mit wachsendem N zunimmt und dabei für
jeden von Null verschiedenen Wert von r asymptotisch der Grenze 1

sich nähert, ziehen wir den Schluß,

daß die TFa&rsc/ieinZieMeii eines /nnfciioneKen Znsammenfeanys

zwischen «j, tind % mii der ZaTd der Fdße, in denen sieü dieseföe

fcorreWire Bezieimng zwischen Seiden Größen eryaè, znnimmf.

Maß dieser Wahrscheinlichkeit ist w^. Ergeben sich in N Bestimmun-

gen verschiedene Werte von r, dann ist entsprechend zu setzen:

Sr
Wn

1+(N-1)^ ^
Auch in diesem Fall nimmt w^ mit N zu.

Nach dieser Feststellung vom Wesen und der Bedeutung der zwei-

seitigen Beziehungen, die sich aus der Betrachtung der partiellen
7
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Korrelationskoeffizienten ergeben hat, kehren wir zu den letztern
zurück. Die r-Werte n-ter Ordnung werden, wie wir gesehen haben,
um so kleiner, je enger die zweiseitigen Beziehungen zwischen n
Größen sind. Deren mehrfache Messung wird in diesem Falle wichtiger
sein, als die Durchführung der partiellen Korrelationsrechnung. Zu
untersuchen bleibt nun aber, unter was für Umständen sich hohe
Werte für die partiellen Korrelationskoeffizienten ergeben, bzw. was
solche hohe Werte zu bedeuten haben.

Bereits wurde gezeigt, daß die zwischen n Größen bestehenden
korrelativen Beziehungen nicht in einer Gleichung allein dargestellt
werden können. Die Koeffizienten r n-ter Ordnung sind ja partielle,
d. h. sie messen nach geltender Auffassung den Zusammenhang zwi-
sehen zwei Größen unter Ausschaltung weiterer und nehmen infolge-
dessen auch primäre zweiseitige Beziehungen an. Ändert sich also eine

Größe, dann müssen grundsätzlich alle mit ihr verbundenen Größen
sich auch ändern und ist ein Teil derselben gleich konstans oder

gleich Null gesetzt, dann ist dies auch bei den übrigen der Fall. Eine
Gleichung, die erwa xk durch die übrigen x; ausdrückt, kann unmög-
lieh all diesen gegenseitigen Bindungen gerecht werden; sie stellt
vielmehr die xi als unabhängige Veränderliche dar, d. h. billigt ihnen
die Möglichkeit zu, sich innerhalb beliebiger Grenzen unabhängig
voneinander zu verändern. Diese Möglichkeit ist aber auszuschließen.
Vom Standpunkt der partiellen Korrelationsrechnung hat man unter
linearer Beziehung einen Zusammenhang zu verstehen, der ent-
sprechend 38) alle zwischen n Größen bestehenden Bindungen in
einem System von n Regressionsgleichungen [vgl. 39)] darstellt. In
diesem geben die partiellen Korrelationskoeffizienten an, wie die
Größen Xi, durch die etwa Xk ausgedrückt wird, an dem auf xk aus-
geübten Gesamteinfluß partizipieren. Dieser ist bei streng linearem
Zusammenhang gleich 1 zu setzen.

Wenn es üblich ist, zu erklären, der partielle Korrelationskoeffi-
zient messe die Beziehung zwischen zwei Größen bei Konstanthaltung
(Piitter), oder Nullsetzung (Exner) aller übrigen, so ist diese Er-
klärung dahingehend zu ergänzen, daß die auf die verschiedenen x;
entfallenden Teilbeziehungen oder Teileinflüsse als additive Kom-
ponenten aufzufassen sind, von denen jede nur auf Kosten aller übri-
gen groß sein kann. Es ist dem partiellen Korrelationskoeffizienten als
solchem ein Höchstwert zuzubilligen, aber Höchstwerte in Mehrzahl
schließen sich gegenseitig aus. Das ergibt sich auch aus folgendem:

Es wurde bereits festgestellt (vgl. pag. 82), daß bei linear-funk-
tionellem Zusammenhang zwischen zwei Größen die Beziehungen
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beider zu einer dritten Größe durch den selben Korrelationskoeffi-
zienten gekennzeichnet sind. Für

rj2 ± 1 ist also

l'ik ± Uk

Daraus folgt weiter:

i l'i2 l'ik Uk i

I2)k ± ± 1
V 1 _ r2 Fl _ r'2

lk 2k

r,k., + -.^--^k_-=Q
Fl - r'jj kl - 4

und ebenso ^,1 0; ferner

_ 4- '"<k Fi Tki
*ik,i — — —i—rr:::—: —

Fi -4 Vi

Tgk l'ai Tki
2k,i ± —=Fi-4

also rjk.i ± rak,i

Wir können also allgemein schließen:

Ist rhk ±1,
dann wird auch

l'hk,. .n i 1 45)

und l'hi,. n ± l'ki,.. n

Thi,k..n — I*ki,h..n — 0
46)

Eine streng lineare Beziehung zwischen zwei Größen bleibt somit
auch dann streng linear, wenn man Einflüsse weiterer Größen auf die

ersten beiden berücksichtigt.
Hat man bei der Untersuchung der partiellen korrelativen Be-

Ziehungen zwischen mehreren Größen festgestellt, daß zwischen zweien

von ihnen der Zusammenhang ein streng linearer ist, dann wird die

Verbindung beider mit derselben dritten Größe durch den absolut
gleichen Koeffizienten r gemessen. Dabei ist vorausgesetzt, daß die an
der Verbindung nicht beteiligte Größe nicht gleich konstant gesetzt
wird; ist dies dagegen der Fall, dann erhält der Koeffizient r den

Wert Null.
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Es darf an dieser Stelle abschließend noch darauf hingewiesen
werden, daß das in 45) und 46) dargestellte Verhalten der partiellen
Korrelationskoeffizienten durchaus den Vorstellungen entspricht, die
wir uns vom Wesen und von den Eigenschaften mehrseitiger Be-

Ziehungen machen. Das gilt auch für den eingangs dieser Betrachtun-
gen untersuchten Spezialfall gleicher Beziehungen zweiter Ordnung.

Korrelationsverhältnis und totaler Korrelationskoeffizient

In der partiellen Korrelationsrechnung treten neben den Kor-
relationskoeffizienten als der Form und teilweise auch dem Wesen
nach neue Maße die der bedingten Streuung auf. Auf die bedingte
Streuung haben wir im folgenden noch einzugehen, da sich aus ihr
weitere Maße ergeben, die für die Beurteilung eines korrelativen Zu-
sammenhangs von einiger Bedeutung sind.

Besteht zwischen zwei Größen, etwa zwischen y und x, eine einiger-
maßen lockere, d. h. korrelative Bindung, dann entspricht einem be-

stimmten x X; nicht ein bestimmtes y Y;, wie bei funktionellen
Zusammenhängen, sondern eine Gruppe von yi-Werten, die im besten
Fall eine Häufungsstelle Y; gemäß dem Gaußschen Verteilungsgesetz
besitzen. Nehmen wir als wahrscheinlichsten Wert Yi wiederum jenen
an, für den

S (y; - Yi)»

zu einem Minimum wird, dann ist

1 *

Yi — Syi
ni

und oA - -2(yi — Yi)»' ni

Durch x Xj ist also nicht nur ein Mittelwert Yi, sondern auch eine

Streuung a) bestimmt, die man füglich als bedingte bezeichnen

könnte. Man zieht es aber vor, die quadratischen Abweichungen über
alle i im ganzen Bereich zu summieren und das aus dieser Summe sich

ergebende Mittel Quadrat der bedingten Streuung zu nennen. Ist die
Zahl der y-Werte gleich N, dann ergibt sich

^ ^SS(y,-Y,)»

-lÈpi(yi-Yi)3 47)



101

Diese Art der Berechnung der bedingten Streuung gestaltet sich nun
etwas mühsam. Es ist aber möglich, oy auf die allgemeine Streuung
cjy zurückzuführen. Bezeichnet man — vgl. Fig. 17 — mit my das

Mittel aller y-Werte im ganzen Bereich von Xa bis Xb, dann wird

S(yi-my)» Spi((yi-:Yi) + (Yi-

Épi (y; — Yi)2 + Dpi (Yi — my)®

woraus sich durch Division mit N weiter ergibt:

my))'

48)

Y

1 É|r
H y/

Yi

/77y

À
Fig. 17

Die bedingte Streuung ist also stets kleiner, als die allgemeine. Wäre

cry ay, dann müßten alle Yi mit my übereinstimmen. Das ist aber

nur dann möglich, wenn zwischen y und x keine Beziehung besteht.
Anderseits müssen für Oy 0 die yi mit den Y; zusammenfallen;

jedem Xj würde dann nur noch ein y Y; entsprechen, was nur bei
funktionellen Zusammenhängen zwischen y und x möglich ist. Ein
Vergleich der bedingten Streuung mit der allgemeinen gibt uns also

die Möglichkeit, den Grad der Verbundenheit zweier Veränderlicher
zu bestimmen. Dividieren wir 48) mit cF, dann erhalten wir

l-(-V)
Oy

49)

und entsprechend

Pi (--)'
Gx

(^).
Gx
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ps wird nach Pearson als Korrelationsverhältnis bezeichnet. Wie
49) zeigt, ist es nur positiver Werte von Null bis Eins fähig, unter-
scheidet sich also in dieser Beziehung vom Korrelationskoeffizienten.
Dagegen ist es wie dieser in der Lage, festzustellen, wie eng die Bin-
dung zwischen y und x ist. Aus dem obern Grenzwert + 1 ergibt
sich ein funktioneller Zusammenhang; 0 läßt auf das Fehlen einer
korrelativen Bindung schließen. Während aber der Korrelations-
koeffizient nur hohe Werte annehmen kann, wenn zwischen zwei Ver-
änderlichen eine lineare Beziehung besteht, sagt das Korrelations-
Verhältnis nichts über die Art des Abhängigkeitsgesetzes aus. Darin
liegt auch sein Vorzug vor dem Korrelationskoeffizienten: p^ ist tat-
sächlich ein Abhängigkeitsmaß, während r nur dann diese Bedeutung
zukommt, wenn man die Beziehung mit Sicherheit als lineare an-
sprechen kann.

Der Zusammenhang zwischen r und p^ ergibt sich aus folgender
Überlegung:

Hat man einer Reihe von x-Werten eine Reihe von y-Werten so

zugeordnet, daß irgendeinem x Xi ein oder mehrere Werte y; zu-
gehören, dann wird der Korrelationskoeffizient r die Aufstellung
folgender Regressionsgleichung erlauben:

Y — my r • ^ • (X; — nix)

Geben wir X; vor, dann wird sich zu diesem Wert ein einziges Y be-
rechnen lassen, das die Gleichung identisch erfüllt. Setzen wir da-

gegen in der Gleichung eines der Wertepaare der Korrelationstabelle
ein, dann wird sie bis auf einen Fehler v richtig sein. Bekanntlich wird
nun r so bestimmt, daß die Summe aller Fehlerquadrate zu einem
Minimum wird. Diese Summe ist nach Früherem

-^2((yi — my) — r * ^ ' (Xi — %))' • (1 — r*)

Da r • — • (X; — nix) Y — my,
C7y

folgt:
i

S ((yi — my) — (Y — my))*
i

Eta-?)»
S((yi - Yi) + (Yi - Y))« N aj • (1 — r»)
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Nach Division mit N wird somit

50)

wenn JL(Yj — Y)* gesetzt wird.

Nun ist nach 49)

(Ty • (1 py),

woraus weiter folgt:

4 • (1 — Py) 4 • (1 - r») — 4
und 4 (p* — i-2) 4,

also r^ + (—)*
CJy

und ebenso 51)

PI r* +

Dieses Ergebnis besagt folgendes:
Ist das Abhängigkeitsgesetz kein lineares, dann wird das Kor-

relationsverhältnis p^ größer, als der quadrierte Korrelationskoeffi-
zient. Der Betrag, um den die Beziehung von einer linearen abweicht,
wird zahlenmäßig durch

ausgedrückt. Bei linearen Beziehungen zwischen y und x müssen die

Streuungsmittel Y; und X; auf den den Regressionsgleichungen ent-
sprechenden Geraden liegen, d. h. crx und ay werden 0 sein. In
diesem Fall erhält man nach 50)

die bedingten Streuungen sind also gleich dem Summenmittel aller
Fehlerquadrate.

Ist N, die Zahl der y-Werte, so klein, daß jedem Xi nur ein einziges
Yi yi) entspricht, dann wird die bedingte Streuung zu Null und
damit p^ 1 und r® 1 nach 49) und 52). Es wird in diesem Fall ein

A* (—)*, bzw. Ay (—)' 51a)

52)
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funktioneller Zusammenhang zwischen y und x vorgetäuscht. Wenn
man die bedingte Streuung und das Korrelationsverhältnis berechnen
will, wird man stets dafür zu sorgen haben, daß den Werten jeder
Veränderlichen mehrere Werte der andern entsprechen. Das wird
gegebenenfalls durch eine passende Klasseneinteilung erreicht.

Die nachstehende Figur stellt die Beziehung zwischen den Streu-
ungsmaßen, p und r und dem mittleren Fehlerquadrat, das der Ein-
fachheit halber mit W bezeichnet wird, in anschaulicher Weise dar.

Im nachfolgenden Beispiel soll die Anwendung der abgeleiteten
Formeln dargestellt werden. Das Zahlenmaterial ist H. Bautmann:
„Untersuchungen über die Norm" entnommen. Gegenstand der Unter-
suchung ist die Korrelation zwischen Körpergewicht und Körper-
große von Männern im Alter von 20 bis 25 Jahren. Die Tabelle enthält
in der Horizontalen die um 49 kg verminderten Körpergewichte ; in
der Vertikalen sind die Körpergrößen in den 151,5 cm übersteigenden
Beträgen aufgetragen. Intervallbreiten: Zeilen je 5 kg, Kolonnen je
4 cm.
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Körper- Köi•perg ewic lit kg
große 2,5 7,5 12,5 17,5 22,5 27,5 32,5 37,5

cm 7,5 12,5 17,5 22,5 27,5 32,5 37,5 42,5

32—36 3 1 2 2

28—32 3 11 12 3 2 1

24—28 1 9 37 18 5 1

20—24 1 7 44 55 21 8 3

16—20 4 40 72
~

42 10 1

12—16 13 51 51 17 4

8—12 23 31 12 3 2

4— 8 9 10 3

Summe 50 140 194 168 68 19 8 1

1 2 3 4 5 6 7 8

Summe

32

71

139

169

136

71

22

648

8

7

6

5

4

3

2

1

1. Bestimmung der Mittelwerte jeder Zeile und jeder Kolonne. —
Bei gleichbleibender Intervallbreite und von Eins verschiedenen

Häufigkeitswerten ist die Anwendung eines besonderen Summierungs-
Verfahrens von Vorteil: Wird

a n
a H- d IL
a + 2d n.
a + 3d n,

a + (n — 1) d nn

mit a der Mittelwert des ersten Intervalls und mit d die Intervall-
breite bezeichnet und ist iik der dem Mittelwert a + (k — 1) d zu-
gehörende Häufigkeitswert, dann ist

ciiij -f~ (3) -f- d)ng (& -{- 2d)ng -f- (et (n — 1) d)iin

aSn + d(Sn + Sn + + Sn) 53)
1 2 3 n—1

Die Anwendung dieser Formel ist einfach und bedarf keiner be-
sonderen Erläuterungen. Die Tabelle ergibt folgende Mittelwerte :

Xi: 8,6 10,1 13,1 15,5 19,5 21,4 23,9 26,9

Y ; : 11,2 14,2 17,7 21,6 23,2 25,4 27,5 30,0
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2. Die Berechnung des Korrelationskoeffizienten. — Man erhält
vorerst als Mittel aller x-, bzw. aller y-Werte:

nix =-*-(22.8,6 + 71.10,1 + 16,2
o48

my JL (50.11,2 + 140.14,2 + 18,4
o48

Durch diese Mittel ist in der Tabelle ein Achsenkreuz festgelegt, das

durch jene Kolonne und jene Zeile gebildet wird, welche nix und my
enthalten. Es sind dies die 3. Kolonne und die 4. Zeile. Deren Mitten:
Mx 15 und My 18 werden als angenäherte Mittel [vgl. 16) bis 18)]
verwendet. Man findet weiter:

HA x2 27 600 — 963,12 26 636,88 ^ 41,097

S Ay2 23 312 — 104,32 23 207,68 er); 35,814

S A x A y 16 580 — 316,98 16 263,02

r 0,653 ± 0,022 a 6,410 oy 5,985

bji 0,610 bj2 0,699

Zwischen Körpergewicht und Körpergröße besteht somit eine deutlich
positive Korrelation. Nimmt das Körpergewicht um 1 kg zu, dann
wird der Körper durchschnittlich um 0,61 cm länger. Umgekehrt ent-
spricht einer Längenzunahme des Körpers um 1 cm eine Gewichts-
zunähme von 0,699 kg. Der Fehler des Korrelations- und der Regres-
sionskoeffizienten macht rund 3,4 % aus. — Wir haben nun zu unter-
suchen, ob und in welchem Maße die Beziehung von einer linearen
abweicht.

3. Berechnung der bedingten Streuung und des Korrelations-
Verhältnisses. — Wir benützen dazu ein erstes Mal die Formeln 48)
und 49), ein anderes Mal 50) und 51) und haben auf diese Weise die

Möglichkeit, zu prüfen, welche sich bei der praktischen Durchführung
der Rechnung als vorteilhafter erweisen.
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Tabelle a.

Xi Yj Uly A n n • A^

5 11,2 18,4 - 7,2 50 2592,00
10 14,2 do. - 4,2 140 2469,60
15 17,7 - 0,7 194 95,06
20 21,6 + 3,2 168 1720,32
25 23,2 + 4,8 68 1566,72
30 25,4 + 7,0 19 931,00
35 27,5 + 9,1 8 662,48
40 30,0 + 11,6 1 134,56

648 10171,74

<7{., 10 171,74 : 648 15,697

o+ +' — Gf. 35,814
> y *i -15,697 20,117

p* 15,697 : 35,814 0,4383

- r^ 0,0118

Benützt man zur Berechnung der bedingten Streuung und des Kor-
relationsverhältnisses die Formeln 50) und 51), dann hat man vorerst
mit Hilfe der Regressionsgleichung

Y — 18,4 0,610 (Xi —16,2),

oder Y 0,61 • Xi + 8,52

die Werte Y für Xi 5, 10, 15, zu bestimmen (Ber. von und
pi) siehe nachher). Hierauf werden die Differenzen A Y; — Y.er-
mittelt und dann gleich verfahren wie vorhin.

Tabelle b.

Xi Yi Y A n n • A^

5 11,2 11,6 - 0,4 50 8,00
10 14,2 14,6 - 0,4 140 22,40
15 17,7 17,7 0 194 0

20 21,6 20,7 + 0,9 168 136,08
25 23,2 23,8 — 0,6 68 24,48
30 25,4 26,8 - 1,2 19 27,36
35 27,5 29,9 - 2,3 8 42,32
40 30,0 32,9 — 2,9 1 8,41

648 269,05



108

4 269,05 : 648 0,415

er*- 35,814 • 0,5735 — 0,415 20,124

p3 r* + 0,0116 0,4381

Die Unterschiede, die sich bei der Berechnung von ^d p| nach

beiden Verfahren ergeben, sind auf die abgerundeten Werte von den
nicht vorgegebenen Xi und Y;, von nix und niy und endlich der Y aus
der Regressionsgleichung zurückzuführen. Sie sind so geringfügig, daß
sie unser Urteil über die Art der korrelativen Beziehung, das wir auf
Grund der erzielten Ergebnisse fällen können, nicht zu beeinflussen
oder zu beeinträchtigen in der Lage sind.

Da das zweite Verfahren eher weniger Rechenarbeit erfordert,
dürfte es dem ersten vorzuziehen sein.

Es soll nun der Vollständigkeit halber noch <4 und p^ berechnet
werden.

Tabelle c.

Yi Xi X A n n • A 2

6 8,6 7,5 _1_ 1,1 22 26,62
10 10,1 10,3 0,2 71 2,84
14 13,1 13,1 0 136 0

18 15,5 15,9 0,4 169 27,04
22 19,5 18,7 + 0,8 139 88,96
26 21,4 21,5 0,1 71 0,71
30 23,9 24,3 0,4 32 5,12
34 26,9 27,1 — 0,2 8 0,32

648 151,61
o

0,234 '13,337

Px 1-2 + 0,0057 0,4322

Wir stellten bereits fest, daß p® kaum von r^ abweicht. Daraus ist auf
eine lineare Beziehung zwischen Körpergewicht und Körpergröße zu
schließen, was wiederum notwendig macht, daß auch p^ nur wenig
von U sich unterscheidet. Die Rechnung bestätigt unsere Vermutung:
Die Abweichungen der p^ bleiben innerhalb der für den Korrelations-
koeffizienten angegebenen Fehlergrenzen. So ist

p; nur um 2,7 % ^
p; nur um 1,3 %
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Das Ergebnis ist darum auch wichtig, weil es zeigt, daß eine Überein-

Stimmung zwischen Korrelationsverhältnis und Korrelationskoeffi-
zient auch bei einer beliebig lockeren linearen Beziehung möglich ist.
Für jeden Wert von r wird also

(-i)», bzw.
CTy ö"x

die Abweichung der Beziehung von einer linearen zahlenmäßig aus-
drücken. Die vollständige Untersuchung eines korrelativen Zusam-
menhangs wird also neben der Berechnung des Korrelationskoeffizien-
ten und der b-Werte auch die Ermittlung des Korrelationsverhält-
nisses zu umfassen haben. Erst wenn wir die Gewißheit haben, daß
eine Beziehung linear ist, werden wir r als Maß für die Enge einer
Bindung gelten lassen können und diese Gewißheit verschafft uns
eben nur das Korrelationsverhältnis.

Der Umstand, daß bei linearen Beziehungen und r^ miteinander
übereinstimmen, hat dazu veranlaßt, ein dem Korrelationsverhältnis
entsprechendes Maß für lineare Zusammenhänge zwischen mehreren
Veränderlichen zu schaffen. So gibt

R2 1 _ 53)

(vgl. 49) an, wie stark eine Größe von andern Größen abhängig ist.
R wird als totaler Korrelationskoeffizient bezeichnet. Zwischen
der bedingten Streuung <r' und der allgemeinen besteht nun nach 52)
folgende Beziehung:

°*y (1 — Uy)

°x (1 — Uy)

ist also y mit x linear verbunden, dann findet die Bedingtheit der

Streuung in

l-4y
ihren zahlenmäßigen Ausdruck, er' ist bei völliger Beziehungslosigkeit
gleich ei und hat einen untern Grenzwert Null, wenn der Zusammen-
hang zwischen y und x ein streng linearer ist. Steht nun ein x^ mit
einer Reihe von Werten x^, X3 Xn in Verbindung, dann ist die

Streuung bedingt sowohl durch die Beziehung zwischen x^ und Xg, als

auch durch jene zwischen Xj und X3, wenn Xg konstans, als auch
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durch jene zwischen Xj und X4, wenn Xg und X4 konstant usw., so daß
wir bei n verbundenen Größen entsprechend 35) als bedingte Streuung
erhalten

ff' *1,8. .„ ffi ^(1 — 4) (1 — 4,) (1 — r'^g).

Für zwei verbundene Größen ist darum

R^ l-(l-4) 4
für drei verbundene Größen:

Kj,,3 1 - (1 — 4) (1 - rjg,)

1 — (1 — 4) (1 — G, 3)

KI,13 1 -(1-4) (l-4,i)
K342 — 1 (1 G3) (1 ^23,1)

und entsprechend für n verbundene Größen

Ki23..n — 1
T" ®l,23..n 53 a)

<*1

Wie für das Korrelationsverhältnis ergibt sich auch für den quadrier-
ten totalen Korrelationskoeffizienten einen von 0 bis + 1 reichenden
Variabilitätsbereich. Während die Möglichkeit IG 1 nicht auszu-
schließen ist, da eine einzige strenglineare Beziehung zwischen der

„abhängig Veränderlichen" und einem beliebigen x^ genügt, um die

Abweichung von 1 Null werden zu lassen, wird kaum je der Fall ein-

treten, daß gleichzeitig alle r-Werte und damit auch der totale Kor-
relationskoeffizient gleich Null sind. Es ist ja nicht Aufgabe der par-
tiellen Korrelationsrechnung, Beziehungen zu suchen oder nachzu-
weisen, sondern lediglich auf dem Wege der Erfahrung festgestellte
Zusammenhänge zu messen bzw. den auf jede einzelne von n Größen
entfallenden Anteil am Gesamteinfluß zu ermitteln, den alle an einer
als „abhängig veränderlich" ausgesonderten Größe nehmen. Wie der
totale Korrelationskoeffizient zeigt, ist dieser Gesamteinfluß, absolut

genommen, höchstens gleich 1 zu setzen. Es sei in diesem Zusammen-
hang an die Ausführungen über die Eigenschaften der partiellen Kor-
relationskoeffizienten erinnert.
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Die Normalkorrelation

Es wurde seinerzeit die korrelative Beziehung in Parallele zum
funktionellen Zusammenhang gesetzt. Während bei letzterem — er

möge durch y f (x) ausgedrückt sein — zu jedem Wert von x ein
bestimmter Wert von y gehört, ist bei einer Korrelation jedem x eine

Gruppe von y-Werten zuzuordnen und umgekehrt. Das Auftreten
dieser y- (x-) Werte unterliegt dabei einer Bindung derart, daß zu
einem bestimmten x Xi (y Yi) ein bestimmtes Streuungsmittel
niy (m^) zugehört, um das sich die yi (x;) gemäß dem Gaußschen

Verteilungsgesetz anordnen. Eine Normalkorrelation ist nun dadurch
gekennzeichnet, daß die x- und die y-Werte in ihrer Gesamtheit dem
Gaußschen Verteilungsgesetz unterliegen. Die Werte eines x-Kollektivs
sind also zwischen den Grenzen a und b nicht gleichmäßig verteilt,
sondern sie drängen sich so um einen Mittelwert nix zusammen, daß
zwei Drittel aller x-Werte zwischen nix + c?x und nix — ox liegen.
Genau dasselbe ist vom Kollektiv der y-Werte zu sagen. Es ist nun
ohne weiteres klar, daß diese Normalkorrelation nie dann vorliegt,
wenn man eine Größe als bedingt durch eine andere aufzufassen hat;
eine „unabhängig" Veränderliche gibt es bei einem vorgeschriebenen
Verteilungsgesetz nicht. Dieses läßt auf ein übergeordnetes Prinzip
schließen, dem auch die Anordnung der y-Werte untersteht. Die Nor-
malkorrelation gehört in die Gruppe der symptomatischen Zusam-

menhänge. Als einigermaßen normalkorrelative Beziehungen seien

Beispiele aus Weber: Variation- und Erblichkeits-Statistik angeführt:
Korrelation zwischen Körpergröße und Körpergewicht (vgl. das zu-
letzt durchgerechnete Beispiel), zwischen proportionellem Brust-
umfang und Körpergröße, Körpergröße und Beckenbreite, Blutdruck
und Körpergröße usw. Um nur eines herauszugreifen: Es ist weder
die Körpergröße durch die Beckenbreite, noch die Beckenbreite durch
die Körpergröße bedingt; es geht nicht an, die eine oder die andere
der beiden Veränderlichen als „abhängig" bzw. „unabhängig" zu
kennzeichnen; die Relation zwischen beiden ist vielmehr Ausdruck
eines übergeordneten Formgesetzes. — Ähnlich wie bei zweiseitigen
Beziehungen, so wird man auch bei mehrseitigen dann von Normal-
korrelationen zu sprechen haben, wenn alle einander zugeordneten
Kollektive dem Gaußschen Verteilungsgesetz unterstehen.

Nun ist zu sagen, daß mit der Kennzeichnung durch „normal"
weder ein Werturteil über die eine oder andere Art von Beziehung
gefällt werden soll, noch drückt man damit aus, daß die Anwendung
der Korrelationsrechnung nicht bei allen Arten nicht-funktioneller
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Zusammenhänge zulässig sei. Sie erscheint aber insofern als gerecht-
fertigt, als in den Normalkorrelationen für die einander zugeordneten
Kollektive wahre Mittelwerte zu definieren sind und es darum gegeben
erscheint, die Abweichungen von diesen Mittelwerten miteinander in
Beziehung zu setzen. Wie aber leicht gezeigt werden kann, hat diese

„Verlegung des Koordinatensystems" keinen Einfluß auf die Form
der maßgebenden Koeffizienten.

Hat man festgestellt, daß zwischen den zwei Größen y und x eine
lineare Beziehung wahrscheinlich ist, dann wird man für die Reihe

von n empirisch ermittelten Wertepaaren yj, x; die Koeffizienten der

Gleichung

so bestimmen, daß die Summe aller Fehlerquadrate ein Minimum
wird. Quadriert man diese Gleichung und summiert über alle i von
1 bis n, dann erhält man

a^ [xx] + 2ab [xy] + b^ [yy] + 2ac [x] + 2bc [y] + nc^ [vv]

Differenziert man diese Gleichung partiell nach a, b und c, dann

ergibt sich:

Die letzte Gleichung gesagt, daß die Konstante c so zu bestimmen ist,
daß [v] 0 wird. Setzt man den Wert für c in den ersten beiden
Gleichungen ein, dann erhält man weiter:

a • xi + b • y; + c Vi

a [xx] + b [xy] + c [x] 0

a [xy] + b [yy] + c [y] 0

a [x] + b [y] + nc 0

a [xx] — a Ä + b [xy] — b .MM. 0

a[xy] — a-MM + b[yy] — b^!= 0
n n

Nach 17) und 18) gehen aber diese Gleichungen über in

a [A x A x] + b [A x A y] 0,

also

a [AxAy] + b [Ay Ay] 0, - _— r
a
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Man erkennt, daß sieh für die Regressionskoeffizienten die schon be-
kannten Werte ergeben, da man nach Einsetzung des Wertes für c
wieder das homogene Gleichungssystem erhält. Wie eng die Bindung
zwischen y und x ist, zeigt ebenfalls derselbe Korrelationskoeffizient r;
als mittleres Fehlerquadrat erhält man

1 [vv] a; (1 - r*),

*
[w] ^ (1 — r»),

(vgl. pag. 102), je nachdem man y oder x als abhängige Veränderliche
auffaßt. Endlich ergibt sich als Beziehungsgleichung:

a • xi — a • nix + b • y; — b • my v;

und hieraus

y — niy r (x — nix), bzw.
<Tx

x — nix r — (y — m)y
CTy

Wir stellen also fest, daß die Verlegung des Koordinatensystems durch
den Punkt (mx, my) die zwangsläufige Folge der Bedingung

[vv] Min.

ist und nichts mit der für die Normalkorrelation geforderten Werte-
Verteilung in den einander zugeordneten Kollektiven zu tun hat. Vom
Standpunkt der Korrelationsrechnung aus hat man nicht zu fordern,
daß die x-Werte einem bestimmten Verteilungsgesetz unterliegen und
die Häufigkeit der y-Werte kann ebenfalls für jedes x beliebig sein.

Dagegen ist, wie bereits erwähnt wurde, anzunehmen, daß die zu
einem bestimmten x Xj gehörenden yj-Werte um deren Mittelwert
sich gemäß dem Gaußschen Verteilungsgesetz anordnen werden und
umgekehrt. Man wird darum auch die Beziehungen zwischen diesen

Mittelwerten m(. und m), die der Einfachheit halber mit X; und Yj
bezeichnet seien, untersuchen, so daß die Beziehungsgleichung über-
geht in

Y — my r(X — nix)

X — mx r — (Y — my)
OTy

8
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Über die Gewichte der Xi und der Y; ist das Notwendige bereits

pag. 57—60 gesagt worden.
Alle Ausführungen, die hier über zwei verbundene Größen gemacht

wurden, gelten nun ohne Einschränkung auch im Falle einer mehr-
seitigen Verbundenheit. Besteht zum Beispiel zwischen drei Größen

folgende lineare Beziehung:

a • Xii + bai • c • Xgi + d Vi

und ermittelt man die Koeffizienten a, b, c und d so, daß wiederum
[vv] Min. wird, dann ergibt sich durch partielle Differentiation von
[vv] nach allen 4 Konstanten vorerst:

a [xi xJ + b [xi Xg] + c [xi Xg] + d [xj 0

a [xi Xg] + b [xg Xg] + c [Xg Xg] + d [xg] 0

a [xi xg] + b [xg Xg] + c [xg Xg] + d [xg] 0

a [xj + b [xg] + c [xg] + n • d 0

Aus der letzten Gleichung entnehmen wir

d — - (a [xj + b [xa] + c [xg])
n

Setzen wir diesen Wert von d in den drei ersten Gleichungen ein, dann
erhalten wir in

a [ÀXj Axi] + b [Axj Axa] + c [Ax^ Axg] 0

a [Axj Axa] + b [Axg Axg] + c [Axa Axg] 0

a [Axj AX3] + b [Axa AX3] + c [AX3 AX3] 0

wieder das bekannte homogene Gleichungssystem, das uns die par-
tiellen b-, r- und cr-Werte liefert. Es erübrigt sich daher, das Verfahren
bei 4 (n) Größen zu wiederholen. Auch in der partiellen Korrelations-
rechnung ist die besondere Verteilung der Werte in den einander zu-
geordneten Kollektiven ohne Bedeutung und damit eine Vorzugs-
Stellung der Normalkorrelation abzulehnen.

Abschließend können wir sagen, daß es im weiten Bereich mög-
licher korrelativer Beziehungen eine spezielle Gruppe gibt, die das

Ergebnis bzw. der sinnenfällige Ausdruck eines übergeordneten
Formungsprinzip es ist. Es ist eine Gruppe von symptomatischen
Korrelationen, die wegen der Anordnung der Werte nach dem Gauß-
sehen Verteilungsgesetz in den Kollektiven als Normalkorrelationen
bezeichnet werden.
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Die praktische Durchführung
der partiellen Korrelationsrechnung

Gegenstand der Untersuchung sind die Beziehungen zwischen

a. dem schweizerischen Großhandelsindex,
b. der Kurs-Diskrepanz, bezogen auf das englische Pfund,
c. der schweizerischen Ausfuhr nach Großbritannien.

Über den Begriff der Kurs-Diskrepanz sei noch folgendes voraus-
geschickt:

Wird der Wechselkurs zwischen zwei Staaten mit verschiedenen
Währungseinheiten durch k ausgedrückt so, daß eine Geldeinheit des

einen gleich k Geldeinheiten des andern Staates ist, dann stellen
sich die Preise einer bestimmten Ware pi und p( in beiden Währungs-
gebieten in einer Währungseinheit ausgedrückt folgendermaßen dar:

pi ./. kp;, oder ./. p;

Für den Käufer dieser Ware ist es nun gleichgültig, woher er sie be-

zieht, sobald

Pi kp:

gesetzt werden kann. Man spricht in diesem Fall von Kaufkraft-
Parität der beiden Währungen in bezug auf pi. Nun ist aber für die
Wirtschaft eines Landes nicht die Preisbeziehung für eine Ware
wichtig, sondern jene für den Preisdurchschnitt aller Waren. Bei
allgemeiner Kaufkraft-Parität müßte also entsprechend die Beziehung
gelten:

[mipi] ^ k foi Pj
[mi] [mi]

Ersetzen wir endlich die Durchschnittswerte durch auf ein bestimm-
tes Basisjahr bezogene Relativwerte (Indizes), dann erhalten wir
endlich:

I ck • I' bei Kaufkraft-Parität.

c ist dabei eine von der Wahl des Basisjahres abhängige Konstante. —
Es braucht wohl nicht besonders betont zu werden, daß eine solche
Parität einen idealen Gleichgewichtszustand darstellt, der nur bei

vollständiger Freizügigkeit im Handelsverkehr über die Grenzen an-
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nähernd erreicht werden kann. Da aber der Index über die Änderung
der allgemeinen Preislage zu orientieren hat, kann der in der oben

angeführten Beziehung auftretende Proportionalitätsfaktor c auch die

Veränderung einer allfälligen Inkongruenz zwischen Parität und den
tatsächlichen Preisverhältnissen zugunsten der einen oder der andern
Währung aufzeigen: Ein zunehmender c-Wert deutet eine Verbillig'ung
der Fremdpreise und damit eine Erschwerung der eigenen Ausfuhr
an usw. Lassen wir c unverändert, dann können wir leicht den Soll-
Kurs oder den Soll-Index berechnen, der die Handelsbeziehungen
zwischen zwei Staaten den gleichen Bedingungen unterstellen würde,
wie im Basisjahr. Man vergleiche in diesem Zusammenhang die Aus-
führungen im Mémorandum sur les Monnaies (Société des Nations)
1924 Genf, pag. 40/41, und die instruktiven Tableaux 0 unci VIII.

Im vorliegenden Beispiel wurde der Kurs für das Bezugsjahr 1929

gleich 100 gesetzt; in diesem Fall ist der Quotient F direkt ein Maß

des Sollkurses. Dieser ist für 1929 ebenfalls auf 100 gebracht und da-
mit dem wirklichen Kurs vergleichbar gemacht worden. Als Kurs-
diskrepanz Du k' — k wird die Differenz zwischen Sollkurs und
wirklichem Kurs bezeichnet. Endlich ist in der nachfolgenden Tabelle
die schweizerische Ausfuhr nach Großbritannien (A) für 1929 100

gesetzt. Is schweizerischer Großhandelsindex; I Index für Groß-
britannien (1929 100). Das Zahlenmaterial wurde dem Statistischen
Jahrbuch der Schweiz entnommen.

Tabelle a.

Jahr Is I k' k A 1\
1929 100 100 100 100 100 0

30 89 87 102 99,5 91,5 2,5

31 78 77 101 93 82 8

32 68 74,5 91 72 30 19

33 64,5 74,5 87 68 31 19

34 64 77 83 62 29 21

35 64 77,5 83 60 27 23

36 68 82,5 83 66* 34 17

* interpol.

Dieser Tabelle entnehmen wir, wie bereits erwähnt, die Werte Is, Dk
und A (xj, Xg, X3) zur Durchführung der Korrelationsrechnung.
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Tabelle b.

n
Axg

+ —
AX3

+ —
Ax* Ax* Axjj

1 20 10 30 400 100 900

•2 9 7,5 21,5 81 56 462

3 2 2 12 4 4 144

4 12 9 40 144 81 1600

5 löjD 9 39 240 81 1521

6 16 11 41 256 121 1681

7 16 13 43 256 169 1849

8 12 7 36 144 49 1296

29 73,5 49 19,5 63,5 199 1525 661 9453

—44,5 +29,5 —135,5

rrix 80
1

mx, 10 +

44,5

29,5

8

74,44 [Axj] 1525

13,69 [Ax,] 661

1980

871

1277,5

552,1

mx 70 — 53,06 [Axil 9453 — —— 7157
3 Q s

n Axj Ax2 Axj AX3 Axa AX3

+

1

2

3

4

5

6

7

8

200

67,5

4

108

139,5

176

208

84

600

193,5

24

480

605

656

688

432

300

161,3

24

360

351

451

559

252

4 983,0 3654,5 24 — 2458,3

—979,0 +3630,5 —2458,3
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181S
[Axi Axg] — 979 + — — 815

[Axi Axg] + 3631 — —— + 2877
8

3997
[Axg AX3] — 2458 + — 1958

8

r„ — 0,968 ± 0,022

r + 0,952 + 0,033

r„ —0,984 + 0,011

ctj + 12,64 CTJ2 + 3,17 CTJ3 + 3,87

or2 i 8,32 ctji + 2,09 0-33 i 1,48

<3-3=+ 29,91 <3-31 + 9,16 CT32 + 5,33

Aus den Rechnungsergebnissen ist zu schließen, daß zwischen Durch-
schnittspreisstand, Kursdiskrepanz und Ausfuhr enge zweiseitige Zu-
sammenhänge bestehen. Sinkt der Durchschnittspreisstand, dann
nimmt die Kursdiskrepanz zu, während die Ausfuhr ebenfalls eine
Abnahme zeigt. Am linearen Charakter der Beziehungen ist kaum zu
zweifeln, da es fast unmöglich ist, daß die entsprechenden Korrela-
tionsverhältnisse außerhalb der Fehlergrenzen der r-Werte bleiben.
Da einem Wert einer Größe nur je ein Wert der andern beiden Größen

entspricht, können die p^ nicht berechnet werden.

Wir finden weiter:

_
—0,968 + 0,952 -0,984

ii2,3
0,306 • 0,178

— 0,569 + 0,240

_ + 0,952 — 0,968 • 0,984 _ ^
0,251 • 0,178

r ^ -0,984 + 0,968 -0,952
_ _0,251-0,306

Dem Bild, das wir uns von dem Zusammenwirken der drei Größen

Is, Dk und A auf Grund der angestellten Überlegungen zu machen
haben, werden die partiellen Korrelationskoeffizienten viel eher ge-
recht, als die zweiseitigen. Es durfte bei den hohen Werten dieser
letzteren erwartet werden, daß die Koeffizienten r dritter Ordnung
kleiner ausfallen würden. Nicht anzunehmen war dagegen, daß die
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enge positive Bindung zwischen Preisstand und Ausfuhr zum Beispiel
vollständig verschwinden könnte bei Konstanthaltung der Kurs-
diskrepanz. Wir sehen, daß die partielle Korrelationsrechnung die

Möglichkeit bietet, den Sondereinfluß jeder einzelnen Größe auf jede
einzelne von vielen zu bestimmen. Die obigen Ergebnisse lassen fol-
gende Schlüsse zu:

Der Warenverkehr über die Grenze erfährt keine Hemmungen
oder wenigstens keine Veränderung, wenn die Kursdiskrepanz 0 ist,
bzw. konstant bleibt; wenn also die Preisspiegel diesseits und jenseits
der Grenze gleichsinnige proportionale Bewegungen aufwärts oder
abwärts ausführen ;

wenn bei festem Inlandspreisstand einem sinkenden (steigenden)
Kurs ein steigender (sinkender) Auslandspreisstand parallel geht;

wenn bei festem Auslandspreisstand Kurs und Inlandspreisstand
gleichsinnige Bewegungen zeigen.

Wenn die Warenausfuhr konstant ist, dann zeigen Inlandspreis-
stand und Kursdiskrepanz eine schwache negative Korrelation; jede
Preissenkung muß sich also in einem Druck auf den Kurs auswirken;
jede Preiserhöhung hebt auch den Kurs.

Endlich zeigt der hohe Wert von ^3,1, daß die Abnahme der
Warenausfuhr zur Hauptsache auf die steigende Kursdiskrepanz
zurückzuführen ist. Dabei ist gleichgültig, auf welche Weise die Ver-
änderungen von Dk zustande kommen. Bleibt K nicht fest, dann ist
die Beziehung zwischen Dk und A nahezu eine streng lineare (^3
— 0,984). Bleibt der Inlandspreisstand unverändert, dann muß
zwangsläufig die Bindung zwischen Kursdiskrepanz und Ausfuhr,
lockerer werden, weil ja auch 1$ mit Dk in Beziehung steht. Im vor-
liegenden Fall wird also der Zusammenhang wohl der sein, daß primär
der sinkende Inlandspreisstand die Ausbildung einer Kursdiskrepanz
zur Folge hatte und diese hierauf eine Schrumpfung der Ausfuhr
veranlaßte.

Aus den partiellen Korrelationskoefhzienten ergeben sich nun
folgende b-Werte:

b,.„ — 0,569^ — 1,49 ± 0,6312,3

b„,, —0,218 + 0,092

^13,2 t)3i,2 0

b„,i — 0,184 ± 0,028

t>32>i — 3,54 ± 0,54
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Die Beziehungsgleichungen lauten somit:

Xj — nix^ — 1,49 (xjj — nixj

Xj — nix., — 0,218 (xj —-mxj) — 0,184 (xg — rr^)

Xg — nix^ — 3,54 (Xjj — nix.,)

oder kürzer

Axi — 1,49 Axa

Axg — 0,218 Axj — 0,184 AX3

Ax3 — 3,54 Axg

Diese Beziehungsgleichungen zeigen mit aller Deutlichkeit, daß eine

Verbindung zwischen Inlandspreisstand und Ausfuhr nur über die

Kursdiskrepanz herzustellen ist. Direkte Zusammenhänge bestehen
zwischen Is und Dk; ferner zwischen A und Dk. Diese müssen sich
auch aus den zweiseitigen r-Werten ergeben. Man findet:

Axi — 0,968—^ Ax, — 1,47 Ax^
8,32

oq qi
Axg —0,984— Axa — 3,54 Axa3

8,32
' *

Die zweiseitigen Regressionskoeffizienten unterscheiden sich kaum
von den partiellen.

Da nach der 3. Gleichung A durch D^ bedingt ist, eliminieren wir
in der 2. Gleichung AX3. Wir erhalten auf diese Weise:

Axa — 0,626 Axj

Mit Hilfe von r^ erhielte man

Axg — 0,637 Axj

Der Unterschied der beiden Regressionskoeffizienten beträgt 0,011;
er ist also kleiner als der Fehler von bg^, so daß man die partielle
Beziehungsgleichung, welche angibt, wie D,< durch Ig und A bedingt
ist, durch die sachlich richtigere zweiseitige, die Dk nur durch Ig aus-
drückt, ersetzen kann. Das Ergebnis wäre also folgendes:
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Es ist die Kursdiskrepanz durch den Inlandspreisstand und die
Warenausfuhr durch die Kursdiskrepanz bedingt und es entspricht

einer Zunahme der Diskrepanz um eine Einheit eine Abnahme
des Durchschnittspreisstandes um 1,49 Einheiten;

einer Zunahme des Durchschnittspreisstandes um eine Einheit
eine Abnahme der Diskrepanz um 0,626 Einheiten;

einer Zunahme der Diskrepanz um eine Einheit eine Abnahme
der Ausfuhr um 3,54 Einheiten.

Es bleibt noch übrig, die partiellen Streuungen 3. Ordnung und
daraus die totalen Korrelationskoeffizienten abzuleiten. Man erhält:

CTI,23 + 12,64 • 0,251 ± 3,17

c?2,i3 ± 8,32 • 0,146 ± 1,215

+ 29,91 -0,178 ±5,33

und hieraus

Ri,„ El — 0,2512 o,968

Ra.ia El— 0,1462 o,9893

El — 0,1782 0,984

Da Is nur an D^ und A nur an IE gebunden ist, entsprechen die
totalen Korrelationskoeffizienten Rj,23 und R3,i2 den Werten r^ und
r23- Der hohe Wert des Koeffizienten R2,i3 zeigt an, daß die Kurs-
diskrepanz praktisch fast völlig durch Preisbewegung und Ausfuhr,
und zwar, wie sich aus den Beziehungsgleichungen ergibt, haupt-
sächlich durch erstere bedingt ist.
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