Zeitschrift: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft

Herausgeber: Thurgauische Naturforschende Gesellschaft

Band: 18 (1908)

Artikel: Über die Periodizität der Gewitter

Autor: Hess, Clemens

DOI: https://doi.org/10.5169/seals-593984

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Periodizität der Gewitter.

Von Dr. Clemens Heß.

(Vorläufige Mitteilung.)

Im Anschluß an meine Arbeit "Der Kanton Thurgau als Gewittergebiet" unternahm ich die Bearbeitung der Gewitterzüge und Hagelschläge der Schweiz, bei welchem Anlasse sich die Frage nach der Periodizität der Gewitter selbstverständlich in den Weg legte. Die Behandlung derselben führte zu einigen bemerkenswerten Resultaten, welche als vorläufige Mitteilung jetzt schon der Öffentlichkeit übergeben werden, weil mit der ausführlichen Publikation der Abhandlung der Umstände halber voraussichtlich noch längere Zeit zugewartet werden muß. Die Arbeit² umfaßt die Fragen:

- 1. Über den Gang der Gewitterhäufigkeit in der Schweiz:
- a. von Stunde zu Stunde (tägliche Periode);
- b. " Tag zu Tag;
- c. " Pentade zu Pentade;
- d. " Dekade zu Dekade;
- e. " Monat zu Monat (jährliche Periode);
- f., Jahreszeit zu Jahreszeit.
- 2. Über den Zusammenhang zwischen der Sonnenrotation, der Anzahl der Sonnenflecken und der Gewitterhäufigkeit.
- 3. Über den Einfluß des Mondes auf die Gewitterhäufigkeit:
 - a. während der synodischen Umlaufszeit (von Vollmond zu Vollmond);
 - b. während der anomalistischen Umlaufszeit;
 - c. während der tropischen Umlaufszeit.
- 4. Kurze Perioden der Gewitterhäufigkeit und meteorologischen Elemente.

10741

Mitteilungen der Thurgauischen Naturforsch. Gesellschaft, 17, Heft, 1906.
 Als Grundlage der Arbeit dienten die Annalen der Schweizerischen Meteorologischen Zentralanstalt, Jahrg. 1883—1905.

- 1. Über den Gang der Gewitterhäufigkeit in der Schweiz.
- a. Gang der Gewitterhäufigkeit¹ von Stunde zu Stunde (tägliche Periode).

Die Zeiten der Gewitterausbrüche sind in zweifacher Art zusammengestellt worden, nämlich das eine Mal von einer vollen Stunde zur andern und dann von Stundenmitte zu Stundenmitte. Nach der ersten Zusammenstellung fallen das Maximum und Minimum der Gewitterhäufigkeit auf die Zeiträume von 4-5 Uhr nachmittags und 7-8 Uhr vormittags, nach der andern auf $3^{1/2}-4^{1/2}$ Uhr, bezw. $7-7^{1/2}$ Uhr. Weitere sekundäre Extreme sind zwar vorhanden; die Beständigkeit derselben ist jedoch fraglich; als bleibend können konstatiert werden:

b. Gang der Gewitterhäufigkeit von Tag zu Tag.

Um den Gang der Gewitterhäufigkeit von Tag zu Tag zu erhalten, sind die Gewitterausbrüche, welche sich von Tag zu Tag ereignet haben, für die einzelnen Daten summiert worden. Die 8818 einschlägigen Gewitter zeigen den folgenden Verlauf:

Das sömmerliche Naturschauspiel zeigt am 3. April ein erstes Frequenzmaximum, ein Beweis, daß dasselbe jeweils ziemlich mit Wucht einsetzt, um gewissermaßen den Beginn der Saison zu konstatieren. In einem beständigen Aufwallen und Zurückgehen an Ausbrüchen erhebt sich die Gewitterhäufigkeit mit der steigenden Temperatur bis Mitte Juli zum eigentlichen Jahresmaximum, dem dann ein ziemlich rapider Abfall folgt;

¹ Ohne besondere Eemerkung beziehen sich die Resultate über die Gewitterhäufigkeit auf den Zeitraum vom 1. IV.—31. X., der auch unter der Bezeichnung "Gewittersaison" zu verstehen ist.

der 15. Oktober kann als Endpunkt der eigentlichen Gewittersaison bezeichnet werden.

Die Hauptetappen des Auf- und Abstieges, deren Frequenzzahlen in der graphischen Darstellung sich als Bergrücken präsentieren, sind die folgenden: 3.—22. IV., 23. IV.—5. V., 6.—28. V., 29. V.—10. VI., 11.—21. VI., 22.—27. VI., 28. VI.—9. VII., 10.—25. VII., 26. VII.—14. VIII., 15.—30. VIII., 31. VIII.—16. IX., 17. IX.—5. X. und 6.—17. X.

c. Gang der Gewitterhäufigkeit von Pentade zu Pentade.

Die Pentaden (fünftägigen Zeiträume) zeigen schon einen erheblich ruhigern Verlauf, als die einfachen Tagessummen. Immerhin läßt sich das wellenartige Ansteigen und Abfallen der Gewitterhäufigkeit noch sehr gut erkennen. Die einzelnen Wellenrücken haben folgende Breiten und erstrecken sich von 1-12 wie folgt:

Häufigkeitsmaximum	11. IV 15. IV.
,,	26. IV 30. IV.
'n	16. V.—20. V.
'n	31. V.— 9. VI.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30. VI 4. VII.
,,	10. VII 14. VII.
"	20. VII.—24. VII.
"	30. VII 3. VIII.
n	19.VIII. — 23.VIII.
, n	8. IX.—12. IX.
n	23. IX. -27 . IX.
"	8. X.:—12. X.
	" " " " " " " " " " " " " " "

Hervorragend sind die Maxima

und besonders beachtenswert das plötzliche Ansteigen der Gewitterhäufigkeit am 16. V. (nach den Eisheiligen), 31. V., 30. VI. und 10. VII. und ebenso die Abstürze am 25. VII., 9. VIII. und 12. IX.

Die größte Zahl der Gewitterausbrüche fällt in die Pentade vom 20. VII. — 24. VII.

d. Gang der Gewitterhäufigkeit von Dekade zu Dekade.

Werden die Häufigkeitszahlen in Zeiträumen von 10 zu 10 Tagen (Dekaden) zusammengefaßt, so verschwinden die kleinen Schwankungen ganz und es bleiben nur noch 2 Wellenberge übrig. Die Maximaldekade des ersten Berges (sekundäres Maximum) liegt vom 31. V.—9. VI., diejenige des zweiten (Hauptmaximum) vom 10. VII.—19. VII.

e. Gang der Gewitterhäufigkeit von Monat zu Monat (jährliche Periode).

Den einzelnen Monaten des ganzen Jahres kommen für den Zeitraum 1891—1905 folgende Summen, Jahresmittel und Prozentzahlen der Gewitterausbrüche zu.

Monat	Summe	Jahresmittel	0/0
I.	13	0,87	0,1
II.	2.0	1,33	0,2
III.	54	3,60	0,6
IV.	464	30,93	5,1
V.	1123	74,87	12,3
VI.	2054	136,93	22,5
VII.	2803	186,87	30,6
VIII.	1677	111,80	18,3
IX.	803	53,53	8,8
X.	93	6,20	1,0
XI.	31	2,07	0,3
XII.	19	1,27	0,2

f. Auf die einzelnen Jahreszeiten fallen die Häufigkeitszahlen:

Winter (XII., I., II.)	3	$0,5^{0}/_{0}$
Frühling (III., IV., V.)	109	$17,80/_{0}$
Sommer (VI., VII., VIII.)	436	$71,5^{0}/_{0}$
Herbst (IX., X., XI.)	62	$12,2^{0}/_{0}$

Das Jahresmittel der Gewitterausbrüche für die ganze Schweiz beträgt 610.

II. Über den Zusammenhang zwischen der Sonnenrotation, der Anzahl der Sonnenflecken und der Gewitterhäufigkeit.

Um den schon durch zahlreiche Abhandlungen als sehr wahrscheinlich erwiesenen Einfluß der Sonnenflecken auf die Gewitterbildung auch aus den Gewitterausbrüchen über Schweizergebiet eventuell herauslesen zu können, habe ich für die Sonnenfleckenperiode 1895—1905 aus 148 Sonnenrotationen für jeden Tag der Sonnenrotation die Summen und Mittel der Sonnenflecken-Relativzahlen, sowie der Gewitterhäufigkeit berechnet, wodurch ich zu folgenden Tabellen gekommen bin.

Zusammenstellung der Sonnenflecken-Relativzahlen von 1895 – 1905.

(Für	die	ganzen	Ja	hre).
١	T III	aio	Summon	0 00	HI U	1.

Tag der Rot.	Summen für 148 Rot.	Tagesmittel einer Rot.	Tag der Rot.	Summen für 148 Rot.	Tagesmittel einer Rot.
1.	5031	33,99	15.	3537	23,90
2.	5103	34,49	16.	3637	24,57
3.	5051	34,13	17.	3639	24,59
4.	4846	32,74	18.	3985	26,32
5.	4839	32,70	19.	3997	27,01
6.	4717	31,87	20.	4107	27,76
7.	4365	29,49	21.	4219	28,53
8.	4269	28,89	22.	4174	28,20
9.	3979	26,89	23.	4313	29,14
10.	3860	26,08	24.	4405	31,12
11.	3803	25,70	25.	4511	30,48
12.	3854	26,04	26.	4659	31,48
13.	3814	25,77	27.	4780	32,30
14.	3580	24,19			Y

Gesamtmittel: 28,06.

Wenn man die Mittelwerte der Sonnenflecken-Relativzahlen nur für die Winter-Saison (1. XI. – 31. III.) berechnet, so ergeben sich folgende Zahlen:

¹ Nach den "Astronomischen Mitteilungen", gegründet von *Dr. Rudolf Wolf;* herausgegeben von *A. Wolfer*.

```
Tag der Rotation:
                      1.
                               2.
                                       3.
                                               4.
                                                     5.
                                                              6.
                                                                      7.
                      33,0
                              35,4
                                     35,7
                                             33,6
                                                     36,7
                                                             34,2
                                                                     31,4
                        8.
                               9.
                                      10.
                                              11.
                                                      12.
                                                               13.
                                                                      14.
                      32,7
                              29,2
                                      28,3
                                             27,1
                                                     27,5
                                                             31,3
                                                                     26,3
                                                      19.
                                                                      21.
                        15.
                               16.
                                       17.
                                               18.
                                                              20.
                      22,9
                              22,8
                                      22,4
                                             24,4
                                                     26,8
                                                             28,0
                                                                     29,3
                        22.
                               23.
                                       24.
                                                      26.
                                                              27.
                                               25.
                      28,4
                              29,3
                                     27,3
                                             29,3
                                                     30,4
                                                             32,1
```

Der Mittelwert aus 62 Winterrotationen ist 29,44.

Die Mittelwerte der Relativzahlen für die Gewittersaison sind:

Tag der Rotation: 1. 2. 3. 4. 5. 6. 7.
$$34,7$$
 $33,8$ $33,0$ $32,1$ $29,8$ $30,2$ $28,1$..., ..., ..., ..., ..., 8. 9. 10. 11. 12. 13. 14. $26,0$ $24,9$ $24,5$ $24,7$ $25,0$ $25,3$ $25,0$..., ..., ..., ..., ..., ..., 15. 16. 17. 18. 19. 20. 21. $24,9$ $25,8$ $26,2$ $28,8$ $27,2$ $27,6$ $28,0$..., ..., ..., ..., ..., 22. 23. 24. 25. 26. 27. $28,0$ $29,0$ $33,4$ $31,3$ $32,1$ $32,4$

Der Mittelwert aus den 86 Sommerrotationen beträgt 28,56.

Der Mittelwert der Winterrotationen überragt denjenigen der Sommerrotationen um 0,88; d. h. eine Sommerrotation weist durchschnittlich 3% weniger Sonnenflecken auf als eine Winterrotation; oder die mittlere Relativzahl des Sommers ist 97% derjenigen des Winters.

Die Mittelwerte der ganzen 11 jährigen Periode zeigen im ganzen den gleichen periodischen Verlauf wie diejenigen der Gewittersaison; nur treten einige kleinere Verschiebungen auf. Das Hauptmaximum liegt auf dem 2., das Hauptminimum auf dem 15. Tag; die ausgeprägtesten Sekundärmaxima und Minima liegen auf dem 12. und 21. Tage. Der Abfall vollzieht sich in 13, der darauf folgende Anstieg der Sonnenfleckenhäufigkeit in 14 Tagen. Kleinere Ausbuchtungen in der Sonnenfleckenkurve liegen in den Abständen von 3, 4, 4, 2, 5, 3 Tagen. Der durchschnittliche Verlauf der Sonnenfleckenhäufigkeit der Periode 1895—1905 präsentiert sich als eine

periodische Erscheinung mit wellenartigem Grundton. Das Wellental ist 15 Tage, der Wellenberg 12 Tage breit. Die Länge der Welle stimmt überein mit der Dauer der Sonnenrotation. Die Hauptwelle scheint von Sekundärwellen überlagert zu sein, deren Längen sich über 2—3 und 4—5 Tage erstrecken. Dieses Resultat bestätigt neuerdings die Ergebnisse der Sonnenfleckenstatistik, auf welche A. Wolfer, Direktor der Sternwarte Zürich, in den astronomischen Mitteilungen No. 97 hinweist, wonach nämlich oft langdauernde Ansammlungen der Fleckenbildungen in der Umgebung bestimmter Meridiane vorkommen.

Der Verlauf der Sonnenflecken-Relativzahlen gibt durch die Haupt- und Sekundärmaxima folgendes Perioden-Tableau:

Tage der Maxima . . . 2, 5, 12, 16, 21, 24, 2 Kürzeste Abstände der Maxima 3, 7, 4, 5, 3, 5, Mittel: 4,5 Tage Zweitkürzeste " 10, 11, 9, 8, 8, 8, 9,0 22 Dritt 14, 16, 12, 13, 11, 15, 13,5 Viert 18,0 19, 19, 17, 16, 18, 19, Fünft 22, 24, 20, 23, 22, 24, 22,5 Weitester Abstand " 27 27,0

Zusammenstellung der Gewitterhäufigkeiten von 1895—1905 für die Sonnenrotationen der Monate April bis Oktober.

THE OWNER OF TAXABLE PARTY.	-	-		-	-	and the same	-	-	A STATE OF THE PARTY OF	-	-	-	and the construction	-
27.	10	13	44	17	22	12	99	37	20	13	35	279	25,4	+0,1
26.	20	51	13	22	26	15	10	71	21	26	14	319	29,0	+3,7
25.	45	63	26	39	46	30	20	9	1	28	29	315	28,6	+3,3
24.	34	21	6	00	27	29	18	Т	46	12	25	233	21,2	4,1
23.	15	10	20	11	30	43	20	38	18	38	27	300	27,3	+2.0
22.	17	12	11	48	26	47	38	6	0	41	18	267	24,3	-1,0
21.	13	32	က	80	23	24	4	4	6	27	30	249	22,6	2,2
.70.	26	22	27	20	36	25	10	31	12	62	20	308	28,0	+2,7
19.	33	31	48	00	22	0	43	30	10	45	36	301	27,4	+2,1
io io	42	24	40	16	25	41	42	36	70	18	∞	297	27,0	+1,7
17.	25	32	40	4	17	17	19	23	12	1-	18	214	19,5	5,8
10.	41	4	24	9	13	19	19	23	38	59	30	246	22,4	-2.9
.61	∞	17	14	10	∞	38	31	41	15	24	40	246	22,4	-2,9
14.	ಣ	52	13	24	39	70	51	45	35	18	25	375	34,1	+ 8,8 -
13.	24	16	32	33	9	17	30	18	13	48	24	261	23,7	1,6
12.	6	15	6	29	26	14	17	42	5	34	36	296	26,9	+1,6
11.	00	35	18	21	31	12	22	43	45	19	37	291	26,5	+
10.	30	9	42	17	18	22	17	20	21	19	37	249	22,6	-2.7
9.	22	19	26	12	59	20	36	09	35	37	13	309	28,1	+2,8
ó	51	က	15	15	20	10	33	14	29	27	12	232	21,1	4,5
\cdot	12	9	17	22	23	70	23	20	30	22	26	191	17,4	-7.9
0.	13	12	7	15	31	1	41	18	12	15	28	193	17,2	-7,6
о.	43	20	9	4	51	19	35	28	7	8	27	243	22,1	3,2
4.	6	22	20	20	852	122	54	27	12	22	13	406	36.9	+ H,6
9.	20	37	41	36	42	64	9	35	31	49	17	363	33,0	
i.	11	8	40	43	14	21	13	10	20	33	11	214	19,5	-5,s +7,7
-	13	12	53	32	38	31	47	32	34	20	18	330 2	30,0	+4,7
1 age	1895	96			66	1900	01	0.11	03	04	05	Summen	Mittel	Abweichung vom Mittel

Jahr (Summa der Gewitterausbrüche für 1 Rotation	Mittel für 1 Tag	Abweichung vom Gesamtmittel	Zahl der Rotationen	Anzahl der Gewitterausbrüche per Rotation
1895	612	22,6	-2,7	8	76,5
1896	595	22,0	-3,3	8	73,1
1897	688	25,5	+0,2	8	86,0
1898	612	22,6	-2,7	8	75,5
1899	774	28,6	+3,3	8	96,8
1900	768	28,4	+3,1	7	109,7
1901	790	29,3	+4,0	8	98,8
1902	744	27,5	+2,2	7	106,3
1903	526	19,6	-5,7	8	65,8
1904	751	27,8	+2,5	8	93,9
1905	657	24,3	-1,0	8	82,1
Summa	7517	25,3		86	

Verlauf der Sonnenflecken-Relativzahlen und Gewitterhäufigkeit von 1895—1905.

Berechnet man die Sonnenflecken-Relativzahlen und die Gewitterhäufigkeit *per Sonnenrotation* für die Gewittersaison (IV.—X.) jedes Jahres, so können aus den Zahlen folgende Schlüsse gezogen werden:

- 1. Der Abnahme der Sonnenfleckenhäufigkeit entspricht im allgemeinen eine Zunahme der Gewitterhäufigkeit nach Tagen und Anzahl der Ausbrüche und umgekehrt.
- 2. Das Maximum der Gewitterhäufigkeit nach Tagen und Ausbrüchen fällt zusammen mit dem Minimum der Sonnenfleckenhäufigkeit der Sonnenfleckenperiode.
- 3. In den Zeiträumen der Sonnenflecken-Abnahme und Zunahme liegen sekundäre Maxima und Minima der Gewitterhäufigkeit (1896, 1897, 1898, 1904).
- 4. Dem sekundären Sonnenfleckenmaximum im Jahre 1898 entspricht ein sekundäres Minimum der Gewitterhäufigkeit.
- 5. Das Minimum der Gewittertätigkeit fällt in die Zeit der Zunahme der Fleckenhäufigkeit (1903).

Zur Vervollständigung der Kenntnisse über die Natur und den Wandel im Gewitterleben seien nachfolgend noch die mittleren Weglängen der Gewitterzüge und die Verhältnisse der Anzahl der Züge zur Gesamtzahl der Gewitterausbrüche angegeben.

	Sonnenflecken- Relativzahlen	Mittlere Weg- länge der Ge- witterzüge in km		Sonnenflecken- Relativzahlen	Mittlere Weg- länge der Ge- witterzüge in km
1895	63,6	49	1901	3,1	72
1896	38,3	64	1902	3,6	73
1897	25,4	54	1903	23,5	76
1898	26,5	54	1904	44,9	81
1899	11,3	53	1905	57,6	86
1900	10,4	62			

Mittelwerte: 28, 66.

Ergebnisse: 1. Während der ganzen ersten Hälfte der Sonnenfleckenperiode ist die mittlere Weglänge der Gewitterzüge unter der durchschnittlichen Weglänge, in der zweiten Hälfte über derselben.

- 2. Einer Abnahme der Relativzahlen entspricht eine Abnahme der Weglänge der Gewitterzüge (bis in die Nähe des Sonnenfleckenminimums); einer Zunahme der Sonnenfleckenhäufigkeit entspricht auch eine Zunahme der Weglänge der Gewitterzüge.
- 3. Während der Zunahme der Sonnenfleckenhäufigkeit ist das Verhältnis der Anzahl der Gewitterzüge zur Gesamtzahl der Gewitterausbrüche größer als während der Abnahme.
- 4. Vorstehende Ergebnisse sprechen für die Annahme, daß das Gewitterphänomen während der Zunahme der Sonnenfleckenhäufigkeit vorherrschend einer höhern Atmosphärenschicht angehört, als in der Zeit der Abnahme der Sonnenflecken. Die erhöhte Sonnentätigkeit scheint die Gewitterlage in der Atmosphäre in die Höhe zu ziehen.

Mir scheint, daß diese Ergebnisse gestützt werden durch die von Bezold gemachte Erfahrung, dahingehend, daß die Maxima der Sonnenflecken zusammenfallen mit geringerer Häufigkeit verheerender Blitze (Bayern) und Hagelschläge (Württemberg)¹; denn wenn die Höhenlage der Erscheinung eine größere ist, so ist die Wahrscheinlichkeit der elektrischen Entladung nach der Erde eine geringere.

¹ Hann, Meteorologie, 1901. p. 664,3.

III. Ueber den Einfluß des Mondes auf die Gewitterhäufigkeit in der Schweiz.

a. Die synodische Umlaufszeit und die Gewitterhäufigkeit.

Um den Einfluß des Mondes auf die Gewitterausbrüche zu eruieren, habe ich die Gewittertage und Gewitterzahlen nach den Mondphasen geordnet, und zwar von den Hauptkonstellationen ausgehend je 3 Tage vor- und 3 Tage rückwärts.

a. Einfluß auf die Zahl der Gewittertage. Von 904 Gewittertagen der ganzen Periode 1895—1905 kommen den einzelnen Positionen des Mondes folgende Zahlen zu:

32 39 32 32 34 36 32	② 29 41 32 39 33 28 36
237 262 º/oo	$\frac{238}{263^{0}/_{00}}$
③ 37 33 28 34 33 30 27	© 22 34 31 31 28 30 31
$\frac{222}{246{}^{0}/{}_{00}}$	$207 \\ 229 \%_{00}$

Aus den vorstehenden Zahlen können folgende Schlüsse gezogen werden:

- 1. Der Mond hat auf die Häufigkeit der Gewittertage einen in einem synodischen Monat periodisch wiederkehrenden Einfluß. Die Dauer der Periode ist somit 29^d 12^h 41^m 2,9^{sec} = 29^d,5306.
- 2. Die Periode hat ihr Maximum 2 Tage vor dem ersten und ihr Minimum 3 Tage vor dem letzten Viertel.
- 3. Im Neumond und in der Zeit des ersten Viertels ist die Zahl der Gewittertage größer als im Vollmond und in der Zeit des letzten Viertels.
- 4. Die größte Anzahl der Gewittertage (2 Tage vor dem ersten Viertel) ist $45^{0}/_{00}$, die kleinste (3 Tage vor dem letzten Viertel) $24^{0}/_{00}$.
- 5. Die Durchschnittszahl der Gewittertage für jeden Tag des synodischen Monats beträgt $35^{0}/_{00}$.
- 6. Die Zahlen der Gewittertage in der Neumonds- und der Zeit des ersten Viertels zusammengenommen geben $525^{0}/_{00}$, diejenigen der Vollmonds- und der Zeit des letzten Viertels $475^{0}/_{00}$; die erstere übertrifft die letztere also nur um $50^{0}/_{00}$.

- 7. Vom ersten Viertel durch den Vollmond hindurch findet eine Abnahme, vom letzten Viertel durch den Neumond hindurch eine Zunahme der Gewittertage statt.
- 8. Auf die Zeit des ersten Viertels fallen $263^{0}/_{00}$, auf diejenige des letzten nur $229^{0}/_{00}$; der Unterschied beträgt also $34^{0}/_{00}$.
- 9. In den Zeiträumen des ersten Viertels und Vollmondes sind die Schwankungen in der Anzahl der Gewittertage größer als in den Zeiten vom letzten Viertel und Neumond.
- 10¹. Der wahrscheinlichste Termin für den Eintritt des Maximums der Anzahl der Gewittertage fällt auf den 6,6., für den Eintritt des Minimums auf den 18,0. Tag nach dem Neumond.
- 11¹. Die Abnahme der Anzahl der Gewittertage dauert 11,39, die Zunahme 18,14 Tage.
- 12. Für die 11 jährigen Summen beträgt die durchschnittliche und wahrscheinliche Abnahme 0,8, die Zunahme dagegen nur 0,5 Gewittertage.
- 13. Für einen einzigen Mondumlauf beträgt die totale Schwankung in der Anzahl der Gewittertage 0,106 oder \pm 0,053.

Da die Anzahl der Gewittertage aus 82 Mondumläufen berechnet und als mittlere Zahl 32,3 gefunden worden ist, so ergeben sich noch weitere Wahrscheinlichkeitswerte.

- 14. Die mittlere wahrscheinliche Anzahl der Gewittertage per Mondtag ist 0,394.
- 15. Die maximale wahrscheinliche Anzahl der Gewittertage per Mondtag ist 0,447.
- 16. Die minimale wahrscheinliche Anzahl der Gewittertage per Mondtag ist 0,341.
- 17. Der wahrscheinlichste Eintritt des Maximums der Gewittertage ist ein Tag vor dem ersten Viertel.
- 18. Der wahrscheinlichste Eintritt des Minimums der Gewittertage ist im 3. Tag vor dem letzten Viertel.
- 19. Unter dem Einfluß des Mondes ist die Anzahl der Gewittertage während des halben synodischen Monats über, während des andern halben Monats unter normal.

¹ Da die Wahrscheinlichkeitsrechnung auf der Annahme eines 28 tägigen Mondumlaufes beruht, sind die Resultate nachträglich für die wahre Umlaufszeit korrigiert worden.

β. Einfluß auf die Anzahl der Gewitterausbrüche. Auf die einzelnen Mondstellungen fallen folgende Zahlen von Gewitterausbrüchen:

② 291 271 221 207 222 264 272	280 330 281 302 262 256 274
$\begin{array}{c} 1748 \\ 249^{\circ}/_{00} \end{array}$	$\begin{array}{c} 1985 \\ 283^{0}/_{00} \end{array}$
② 282 244 189 222 262 232 192	C 178 235 308 226 193 272 256
$\begin{array}{c} 1623 \\ 231^{\circ}/_{00} \end{array}$	$1668 \ 237^{\circ}/_{\circ \circ}$

Hieraus ergeben sich die Schlüsse:

- 1. Maximum und Minimum der Gewitterhäufigkeit fallen auf die gleichen Mondphasen wie bei den Zahlen der Gewittertage, ersteres auf den 2. Tag vor dem ersten, letzteres auf den 3. Tag vor dem letzten Viertel.
- 2. Die Gewitter begünstigende Wirkung ist vom 3. Tage nach dem Neumond an bis zum ersten Viertel durch einen durchschnittlichen Ueberschuß und der rückhaltende Einfluß vom 2. Tage vor dem Vollmond bis zum 2. Tage vor dem letzten Viertel-durch einen Fehlbetrag von durchschnittlich $5^{0}|_{00}$ zum Ausdruck gekommen.
- 3. Die Häufigkeit der Gewitterausbrüche des ersten Viertels (3 Tage *vor* bis 3 Tage *nach*) übertrifft diejenige des Vollmondes um $52^{0}/_{00}$.
- 4. Neumond und erstes Viertel übertreffen Vollmond und letztes Viertel mit ihren Häufigkeitszahlen um $64^{0}/_{00}$.
- 5. Die Häufigkeit der Gewitterausbrüche von Neumond bis Vollmond überwiegt diejenige von Vollmond bis Neumond um $46^{0}/_{00}$.

b. Die anomalistische Umlaufszeit und die Gewitterzüge.

Der anomalistische Monat zeigt 7 Maxima und ebensoviel Minima. Bemerkenswert ist, daß sich das Hauptmaximum in der Mondnähe und das Hauptminimum in der Mondferne befinden (letzteres mit zwei Tagen Verspätung). Auf die Zeit vom Uebergang von der Mondnähe zur Mondferne fallen $570^{9}/_{00}$, auf den Uebergang von der Mondferne zur Mond-

nähe $430^{\circ}/_{00}$. Die Haupt- und Sekundärmaxima wiederholen sich vorherrschend in den Abständen von 14, 13, 7, 4 und 3 Tagen.

c. Die tropische Umlaufszeit und die Gewitterhäufigkeit.

Die Zahl der Gewitterausbrüche verteilt sich ungleich auf die Zeiträume der positiven und negativen Deklinationen des Mondes; auf die erste Zeit fallen nur $460^{\circ}/_{00}$, auf die zweite dagegen $540^{\circ}/_{00}$. Der Grundzug des ganzen Verlaufes zeigt eine Abnahme der Gewitterhäufigkeit vom 4. Tage des Uebertrittes auf die negative Seite an bis zum 2. Tage nach dem Uebertritt auf die positive Seite und der nachfolgenden Zunahme zum ursprünglichen Hauptmaximum. Diese Hauptwelle ist noch von kleineren Sekundärwellen überlagert. Die Abstände der Maxima sind 3, 2, 2, 3, 4, 3, 4, 6 Tage.

IV. Kurze Perioden der Gewitter.

Wenn man für die Gewitterhäufigkeit, geordnet nach Sonnenrotationen, die Jahresdiagramme aufzeichnet und mit einander vergleicht, so ist der periodische und wellenartige Charakter des Verlaufs auffallend, und man kann unschwer neben einem Hauptmaximum Sekundärmaxima mit absteigender Größe herauslesen. Die nachfolgende Tabelle enthält für die einzelnen Jahre die Abstände der Maxima verschiedener Ordnung; die eingetragenen Zahlen sind die Abstände der Maxima 1.—5. Ordnung in Tagen.

Mittel:	27	18.17	9,50	4,56	2,67
1905			8, 10	5, 4, 4	3, 2, 2, 2, 2, 3
1904	27	17	10, 7, 10	6, 4	3, 4, 2, 3, 5
1903	-		13, 14, 8	5, 4	2, 4, 2, 2, 3, 2, 4, 4, 2, 2
1902	27	17	10, 9	4, 6, 5, 3	2, 2, 3, 4, 2, 3, 3
1901	27		8, 7, 8	2, 5, 3, 5	2, 3
1900	27	17	10, 8, 9	6, 4, 4, 4	3, 3, 3
1899	27	21	12, 11	4, 6, 6, 5, 6	3, 3, 4, 2, 3, 2, 3, 3
1898	27	19	11, 8, 8	5, 6, 5, 3, 4, 4	
1897			9, 9, 9	3, 6, 4, 5	2, 3, 2, 3
1896	27	-	11, 11	5	2, 3, 3, 2, 2
1895	27	18	10, 8	5, 5, 4, 4,	2, 3, 3, 2
Max	. 1. Ordg.	2. Ordg.	3. Ordg.	4. Ordg.	5. Ordg.

Diese Zusammenstellung zeigt in erster Linie das Auftreten bestimmter Zahlengruppen, welche die Beschaffenheit der Haupt- und Sekundärwellen kennzeichnen.

1. Die erste Kolonne erteilt der Hauptperiode eine Dauer von 27 Tagen, welche jedoch nur als erster, roher Näherungswert zu betrachten ist. Ein zweiter, besserer Näherungswert ergibt sich aus der Verschiebung der Maxima in der Periode der synodischen Sonnenrotation, welche in 10 Jahren 26 Tage, in 1 Jahr 2,6 Tage, in 1 Sonnenrotation 0,19 Tage ausmacht und zu dem Werte 27,15 Tage + 0,19 Tage = 27,34 Tage führt.

Wenn wir nun beachten, daß

die synodische Umlaufszeit des Mondes 29,53 Tage
"tropische """27,32 "
"anomalistische """27,55 "
"synodische "der Sonne 27,15 "
"wirkliche """"25,23 "

sind, deren Einfluß auf die Gewitterhäufigkeit auch früher schon erwiesen worden ist¹, und deren Mittelwert 27,356 Tage ausmacht, so dürfte darin eine Ermutigung erblickt werden, die Zeit von 27,34 Tagen als guten Mittelwert der Dauer der Hauptperiode der Gewitterhäufigkeit zu erklären.

2. Die Maxima 2.—5. Ordnung markieren die Dauer der Sekundärperioden, deren Komponenten als die Abstände der Maxima in den oben angegebenen Umlaufszeiten konstatiert werden können.

Desgleichen treten auch die Abstände 4-6 und 2-3 in den einzelnen Hauptperioden mehr oder weniger auffallend zu Tage. Hieraus folgt, daß außer der Hauptperiode vier Sekundärperioden bestehen, deren Dauer im Mittel näherungsweise 18,17 Tage, 9,50 Tage, 4,56 Tage und 2,67 Tage sind.

3. Da das Verhältnis der Perioden fast genau 1:2:4:6 ist, so folgt, daß auch $3 \times 4,56$ Tage = 13,68 Tage und $5 \times 4,56$ Tage = 22,80 Tage, kurz alle ganzzahligen Vielfach von 4,56 Tagen Perioden sind und somit die Periode von 4,56 Tagen wohl mit einigem Recht als das Perioden-Element

¹ Fritz, W. v. Bezold, Luedicke, Köppen, Richter, Hazen, Mayer, Polis, Wagner Bebber, Nils Ekholm, Svante Arrhenius, Guido Lamprecht u. a.

bezeichnet werden dürfte. Aus $T=n\times 4,56~\mathrm{Tage^{1}}$ ergeben sich (außer 2,7) als Mittelwerte der Perioden für

$$n = 1$$
 2 3 4 5 6 7 8
 $T = 4,56$ 9,12 13,68 18,24 22,80 27,36 31,92 36,48
9 10 11 12 . . .
41,04 45,60 50,16 54,72 . . . Tage

4. Die Perioden von (abgerundet) 9, 18 und 27 Tagen habe ich auch in den Hagelschlägen der Schweiz, in der Häufigkeit und Intensität der Niederschläge in Zürich in ausgeprägter Weise, in den Abweichungen der Temperaturen in Sils Maria, der Dauer des Sonnenscheins auf dem Säntis und dem Grade der Bewölkung in Lugano mehr oder weniger deutlich hervortretend wiedergefunden. Die oben angegebenen Perioden präsentieren sich also zunächst für die Schweiz auch als Perioden für alle meteorologischen Elemente. Da nun die Ursachen der Perioden außerhalb unserer Atmosphäre liegen, so ist zu erwarten, daß sie sich auch als Perioden der meteorologischen Elemente² anderer Breiten erweisen werden.

Frauenfeld, 16. Juli 1907.

¹ Einzelperioden der ganzen Reihe sind auch schon von H. Fritz, W. v. Bezold, Guido Lamprecht, Dr. van Rijckevorsel u. a. angegeben worden.

² Da die oben angegebenen Perioden für die Sonnenflecken, Gewitter, Niederschläge und Bewölkung gelten, so scheint es mir außer Zweifel zu sein, daß sie auch bei den *elektrischen* Konstanten der Atmosphäre auftreten. Zum zahlenmäßigen Beweise fehlt mir das Material.