Zeitschrift: Mitteilungen der Thurgauischen Naturforschenden Gesellschaft

Herausgeber: Thurgauische Naturforschende Gesellschaft

Band: 11 (1894)

Artikel: Ueber die Erzeugnisse projektiver linearer Kreisreihen

Autor: Stiner, G.

DOI: https://doi.org/10.5169/seals-594107

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber die Erzeugnisse projektiver linearer Kreisreihen.

Von

Dr. G. Stiner in Frauenfeld.

I.

1. Der französische Geometer E. de Jonquières führte im Jahr 1861 den Begriff Index einer Kurvenreihe ein.*) Er definierte als Index I einer einfach unendlichen Kurvenreihe die Anzahl derjenigen Kurven der Reihe, welche durch einen beliebigen Punkt gehen. Ferner stellte er den Satz auf, daß das Erzeugnis einer Kurvenreihe von der Ordnung n_1 und dem Index I_1 und einer dazu projektiven Reihe von der Ordnung n_2 und dem Index I_2 eine Kurve ist von der Ordnung n_1 $I_2 + n_2$ I_1 .

Sind die beiden projektiven Kurvenreihen Kreisreihen, so ist ihr Erzeugnis eine Kurve von der Ordnung $2(I_1+I_2)$. Im Folgenden soll das Erzeugnis von 2 projektiven linearen Kreisreihen untersucht werden.

Es sei ein fester Punkt S angenommen und durch diesen eine feste Gerade x. Ist M ein beliebiger Punkt von x und $SM = \mu$, so konstruiere man um M als Mittelpunkt einen Kreis, dessen Radius gleich ist k. μ , wo k für alle Punkte von x dieselbe positive Konstante bedeutet. Auf diese Weise entstehen einfach unendlich viele Kreise. Je 2 derselben liegen ähnlich bezüglich S als Aehnlichkeitszentrum. Die so definierte Reihe von Kreisen heißt eine Lineare. Ist k < 1, so haben alle Kreise der Reihe 2 reelle gemeinschaftliche Tangenten

1265/16

^{*)} Théorèmes généraux concernant les courbes géométriques planes d'un ordre quelconque. Journal de Liouville, Avril 1861.

durch S und k ist gleich dem sinus des halben von diesen Tangenten eingeschlossenen Winkels. Ist k=1, so berühren sich sämtliche Kreise der Reihe in S; die Reihe geht also dann über in ein Büschel von Kreisen. Ist endlich k>1, so haben alle Kreise der Reihe 2 imaginäre gemeinschaftliche Tangenten durch S; dieser Punkt ist also dann im Innern aller Kreise der Reihe.

Ist außer dieser ersten Reihe noch eine zweite gegeben durch die Bestimmungselemente S_1 , x' und k', so ist eine projektive Zuordnung der Kreise der einen Reihe zu denen der andern möglich, wenn man den Punkten M von x die Punkte M' von x' projektiv zuordnet. Die beiden so definierten Kreisreihen sind vom Index 2; das Erzeugnis obiger projektiver Zuordnung ist demnach eine Kurve achter Ordnung, deren Haupteigenschaften entwickelt werden sollen.

Man kann zu diesem Zweck mit Vorteil räumliche Anschauungen benützen.

2. Die Ebene der Kreisreihen sei die Bildebene einer orthogonalen Parallelprojektion. Die Kreise der einen Reihe, z. B. diejenigen der zweiten, können dann betrachtet werden als Projektionen der Querschnitte eines schiefen Kreiskegels K^2 mit den zur Bildebene parallelen Ebenen. Aus der ersten Kreisreihe läßt sich dann eine andere Fläche ableiten in folgender Weise: K und K^1 seien ein Paar korrespondierender Kreise beider Reihen. K' sei die Projektion des Querschnittes K'^* von K^2 mit einer Ebene E parallel der Bildebene. Man konstruiert nun in der Ebene E denjenigen Kreis E', dessen Projektion E' ist. Macht man diese Konstruktion für alle Paare korrespondierender Kreise E', so erfüllen die Kreise E' eine gewisse Fläche E'.

Die Projektion der Durchdringungskurve von F und K^2 auf die Bildebene ist das gesuchte Erzeugnis der beiden projektiven Kreisreihen.

Es ist also notwendig, die Fläche F näher zu untersuchen.

3. Legt man durch den Punkt S_1 eine Gerade, so ist diese zu betrachten als Projektion der 2 Erzeugenden des Kegels K^2 , welche in der projicierenden Ebene jener Geraden liegen. Jede dieser Erzeugenden enthält die Originalpunkte

im Raume zu homolog liegenden Punkten der Reihe ähnlich liegender Kreise K'. Legt man ebenso eine Gerade s durch den Punkt S, so tritt die Frage auf: Welche Kurven werden nach Art. 2 erzeugt durch die Originalpunkte im Raum zu den 2 Reihen homolog liegender Bildpunkte, welche durch die Reihe der Kreise K ausgeschnitten werden auf s. (v. Fig. 1.) Oder: Sind K_1 K_2 K_3 ... die Kreise der Reihe, die s einerseits in der Punktreihe G_1 G_2 G_3 . . . und anderseits in der Punktreihe H_1 H_2 H_3 ... schneiden, welche Kurven werden dann erzeugt durch die nach Art. 2 konstruierten Originalpunkte $G_1*G_2*G_3*\dots$ und $H_1*H_2*H_3*\dots$ Es soll gezeigt werden, daß der Ort von $G_1*G_2*G_3*\dots$ eine gleichseitige Hyperbel ist, deren eine Asymptote senkrecht zur Bildebene ist, ebenso der Ort von $H_1 * H_2 * H_3 * \dots$ Um dies zu beweisen hat man sich nur die Konstruktion dieser Punkte zu vergegenwärtigen. Der Ort von G_i * wird gefunden, wenn man in G_i die Normale g_i zur Bildebene errichtet und diese schneidet mit der Ebene E_i . Die Ebene E_i trifft die projicierende Ebene von g nach einer Geraden e_i ; der Schnittpunkt von g_i und e_i ist G_i^* . Sind nun $M_1\,M_2\,M_3\ldots$ und ${M'}_1\,{M'}_2\,{M'}_3\ldots$ die Mittelpunkte der betreffenden Kreise und $M'_1 * \tilde{M'}_2 * \tilde{M'}_3 * \dots$ die Originalpunkte zu $M'_1 M'_2 M'_3 \ldots$, so bestehen folgende Projektivitäten:

Daraus folgt:

$$(g_1 g_2 g_3 \ldots) = (e_1 e_2 e_3 \ldots).$$

Ebenso erhält man

$$(h_1 h_2 h_3 \ldots) = (e_1 e_2 e_3 \ldots)$$

Die Punkte G_i^* und H_i^* beschreiben also je eine gleichseitige Hyperbel: \mathfrak{G}^* und \mathfrak{F}^* , deren eine Asymptote parallel zur Bildebene und deren andere Asymptote normal zur Bildebene ist. Die zur Bildebene parallele Asymptote von \mathfrak{G}^* wird erhalten, wenn man zu dem unendlich fernen Strahl g_{∞} die entsprechende Gerade e konstruiert, d. h. sie liegt in der Ebene E_0 desjenigen Kreises Q'^* , welcher dem unendlich fernen Kreis der ersten Reihe entspricht. Dieselbe Gerade e ist auch Asymptote der Hyperbel \mathfrak{F}^* . Die zur Bildebene senkrechte Asymptote von \mathfrak{G}^* ist derjenige Strahl g, welcher dem unendlich fernen Strahl e_{∞} in den beiden projektiven

Büscheln entspricht. Dieser Strahl g wird erhalten, wenn man zur Bildebene die Senkrechte errichtet im Schnittpunkt G von s mit demjenigen Kreis R der Reihe, welcher dem unendlich fernen Kreis der zweiten Reihe entspricht. Die zur Bildebene senkrechte Asymptote der Hyperbel 5* wird in derselben Weise erhalten, wenn man zur Bildebene die Senkrechte errichtet im Schnittpunkt H von s mit dem Kreis R.

Die beiden Kreise Q' und R, welche für die beiden projektiven Kreisreihen eine ebenso bedeutende Rolle spielen wie die Gegenpunkte von 2 projektiven geraden Punktreihen, sollen in Zukunft die Gegenkreise der 2 projektiven Kreisreihen

genannt werden.

Durch die analoge Betrachtung zeigt man, daß die Mittelpunkte $M_1 * M_2 * M_3 * \dots$ der Kreise $K_1 * K_2 * K_3 * \dots$ auf einer gleichseitigen Hyperbel liegen, für welche die Schnittlinie der Ebene E₀ mit der projicierenden Ebene über der Centrale x die eine Asymptote und die Normale zur Bildebene im Mittelpunkt des Gegenkreises R die andere Asymptote ist.

Man erkennt aus dem Vorhergehenden, daß jede Ebene P durch S, normal zur Bildebene, die F in 2 gleichseitigen Hyperbeln schneidet. Die beiden Hyperbeln haben eine gemeinsame Asymptote, die Schnittlinie von P mit der Ebene E₀ des Kreises Q'^* ; die beiden andern Asymptoten sind die Schnittlinien von P mit dem Rotationscylinder über dem Gegenkreis R. Alle so entstehenden Hyperbeln gehen durch den Punkt S^* , den Originalpunkt zu S.

Es folgt somit:

Die Fläche F ist eine Fläche vierter Ordnung, F_4 , für welche der Punkt S^* und der unendlich ferne Punkt Do der Normalen zur Bildebene Doppelpunkte sind. Der Tangentialcylinder des letztern Punktes ist der Rotationscylinder über dem Kreis R. Die unendlich ferne Gerade der Bildebene ist eine Selbstberührungsgerade der Fläche; die zugehörige Asymptotenebene ist Ebene E_0 .

Die imaginären Kreispunkte der Bildebene sind dreifache Punkte der Fläche. Durch jeden dieser Punkte gehen außer der Selbstberührungsgeraden noch 2 einfache Gerade der F_4 . Von diesen 4 einfachen Geraden liegen 2 in der unendlich fernen Ebene; ihr Schnittpunkt ist der Punkt D_{∞} . Die beiden andern liegen in der Parallelebene durch S^* zur Bildebene; ihr Schnittpunkt ist S^* .

 F_4 hat außer den angegebenen Singularitäten noch 2 singuläre Tangentialebenen: die Normalebenen zur Bildebene über den 2 gemeinsamen Tangenten der Kreisreihe berühren die F_4 je längs einer gleichseitigen Hyperbel. Diese beiden Tangentialebenen sind reell für k < 1, sie sind konjugiert imaginär für k > 1 und sie fallen zusammen für k = 1. Im letzten Falle ist jedoch die Fläche F_4 nicht mehr allgemein; sie zerfällt in die Ebene E_0 und in eine Fläche dritter Ordnung.

Fig. 2 soll ein Bild der Fläche geben für k < 1. Außer der Projektion auf die Ebene der Kreisreihe ist noch gezeichnet der Schnitt der F_4 mit der Normalebene zur Bildebene durch die Centrale x der Kreisreihe, welche Ebene eine Symmetrie-Ebene der Fläche ist. Es sind dargestellt: die Hyperbel der Mittelpunkte M_i * der Kreise K_i *, die Hyperbel der Punkte G_i * und die Hyperbel der Punkte H_i *. Man erhält eine bequeme Vorstellung der Fläche, wenn man über jeder Strecke H_i * als Durchmesser einen Kreis H_i * konstruiert, dessen Ebene zur angenommenen Querschnittebene senkrecht steht.

4. Durch einen beliebigen Punkt P^* der F_A geht ein Kreis und eine gleichseitige Hyperbel, deren Ebenen zu einander senkrecht sind. Mit Hülfe dieser beiden Kurven kann man für einen beliebigen Punkt P* die Tangentialebene konstruieren. Dieselbe ist bestimmt durch die Kreistangente und die Hyperbeltangente in diesem Punkt. P* ist der Originalpunkt zu einem Punkt P der Bildebene; K sei der Bildkreis, dessen Originalkreis K^* durch P^* geht. Dann ist die Tangente in P an Kdie Projektion der Tangente in P^* an K^* . Die Verbindungslinie PS ist die Projektion der Hyperbeltangente. Nimmt man nun, was im Folgenden immer vorausgesetzt werden soll, die Ebene E_0 des Kreises Q'^* als Bildebene, so kann man in einfacher Weise den Durchsto \pm punkt T der Hyperbeltangente mit der Bildebene angeben. Berücksichtigt man nämlich den Satz, daß der Berührungspunkt einer Hyperbeltangente der Mittelpunkt des durch die Asymptoten auf der Tangente begrenzten Segmentes ist, so folgt für T die Konstruktion: wenn P_R der zu P homologe Punkt auf dem Gegenkreis R in der Aehnlichkeit der Kreise K und R bezüglich S ist, so ist der symmetrische Punkt zu P_R in Bezug auf P der gesuchte Durchstoßpunkt T. Die parallele Gerade durch T zur Tangente in P an K ist die Spur der Tangentialebene in P^* an F_4 auf der angenommenen Bildebene E_0 .

5. Zwei einfache Konstruktionen der F_4 mögen noch entwickelt werden. Es wurde gezeigt, daß der Schnitt der $F_{\scriptscriptstyle 4}$ mit einer Ebene P durch S, normal zur Bildebene, aus 2 gleichseitigen Hyperbeln besteht, für welche die Schnittlinie PE_0 eine gemeinsame Asymptote ist; die beiden andern Asymptoten sind die Schnittlinien von P mit dem Rotationscylinder über dem Gegenkreis R. Nun sind bei einer Hyperbel die Segmente zwischen den Asymptoten und der Kurve einander gleich. Da beide Hyperbeln durch den Punkt S* gehen, so ergibt sich unter Anwendung des obigen Satzes folgende Konstruktion der F_4 : s sei ein beliebiger Strahl des Bündels vom Scheitel S*; er treffe den Rotationscylinder über dem Kreis R in den Punkten C, und C_2 , die Ebene E_0 in dem Punkte Z. Konstruiert man auf s 2 Punkte P_1 und P_2 , so daß S^*C_1 gleich und gleich gerichtet ist mit ZP_1 , ebenso S^*C_2 gleich und gleich gerichtet mit ZP_2 , so liegen P_1 und P_2 auf F_4 .

Dadurch erscheint ${\cal F}_4$ als Spezialfall einer interessanten Gruppe von Flächen vierter Ordnung.

Durchläuft der Punkt C_i (i=1,2) auf dem Cylinder einen Kreis, dessen Ebene Σ also parallel E_0 ist, so durchläuft P_i einen Kreis auf F_4 , dessen Ebene Σ^* zu Σ parallel ist und von ihr einen Abstand a hat, der gleich und gleich gerichtet ist mit der Entfernung des Punktes S^* von der Ebene E_0 . Es ergibt sich daraus folgende neue Konstruktion der F_4 :

Es seien angenommen ein fester Rotationscylinder und ein fester Punkt S^* . Eine Ebene Σ senkrecht zu den Erzeugenden des Cylinders schneidet aus dem Cylinder einen Kreis, welchen man aus S^* auf eine Ebene Σ^* projiciert, die zu Σ parallel ist und von ihr einen nach Größe und Richtung gegebenen Abstand a hat. Wenn man diese Konstruktion für alle Ebenen Σ macht, so erfüllen die projicierten Kreise die Fläche F_A .

Durch diese Konstruktion ergibt sich auch der Tangentialkegel des Doppelpunktes S^* . Die Ebene Σ , welche von S^* die Entfernung — a hat, schneidet den Cylinder in einem Kreis, welcher die Leitkurve des gesuchten Tangentialkegels ist.

Aus der ersten in diesem Artikel entwickelten Konstruktion ergeben sich auch in einfacher Weise die 4 Schnittpunkte der F_4 mit einer beliebigen Geraden durch die Schnittpunkte eines Kreises mit einer Hyperbel.

6. Es soll in diesem Artikel noch kurz gezeigt werden, wie die F_4 analytisch zu behandeln ist. Zu dem Zweck soll ein rechtwinkliges Koordinatensystem folgendermaßen festgesetzt werden: Die Ebene xy soll zusammenfallen mit der Ebene E_0 der Kreisreihe; die Centrale x der Kreisreihe sei die x-Axe und der Ursprung des Koordinatensystems soll zusammenfallen mit dem Punkt S. Zur Ableitung der Gleichung der Fläche kann man dann direkt ausgehen von der in Artikel 2 gegebenen Definition der F_4 : Man konstruiert über jedem Kreis der Reihe einen senkrechten Cylinder und schneidet diesen Cylinder mit einer ihm projektiv zugeordneten Parallelebene zur Koordinatenebene xy. Der Ort der so entstehenden Quersehnittkurven ist die F_4 .

Die Gleichung eines Kreises in der Ebene xy, welcher der Reihe angehört, lautet

$$(x-\mu)^2 + y^2 = k^2\mu^2$$
 (1)

wo μ die Abscisse des Mittelpunktes und k die charakteristische Konstante der Kreisreihe ist. Im räumlichen Koordinatensystem stellt (1) die Gleichung des senkrechten Cylinders über dem Kreis der Reihe dar. Bei variablem μ stellt die Gleichung die Gesamtheit der Cylinder über den Kreisen der Reihe dar. Zu jedem Wert des Parameters μ gehört ein und nur ein Cylinder der Reihe und umgekehrt.

Die Gleichung einer Ebene parallel xy lautet

$$z = \lambda$$
 (2)

Auch hier sind die Ebenen parallel xy in eindeutiger Weise mit dem Parameter λ verbunden.

Sollen nun die Cylinder der Reihe diesen Ebenen projektiv zugeordnet sein, so muß zwischen den Parametern λ und μ eine bilineare Gleichung bestehen

$$\alpha \lambda \mu + \beta \lambda + \gamma \mu + \delta = 0$$

Setzt man fest, daß die 3 folgenden Parameterpaare korrespondierende sein sollen

$$\mu = 0 , \lambda = a$$

$$\mu = \infty , \lambda = 0$$

$$\mu = b , \lambda = \infty,$$

so geht die Projektivitätsgleichung über in

$$\lambda(\mu - b) + ab = 0 \tag{3}$$

Diese Projektivitätsgleichung hat folgende geometrische Bedeutung: $x=\mu,\ y=0,\ z=\lambda$ sind die Koordinaten des Mittelpunktes desjenigen Kreises, welcher durch die Ebene $z=\lambda$ aus dem korrespondierenden Cylinder der Reihe geschnitten wird. Die Gleichung (3) sagt aus, daß der Ort dieses Mittelpunktes eine gleichseitige Hyperbel ist, welche die Gerade z=0 und die Gerade x=b zu Asymptoten hat und die z-Axe in einem Punkt schneidet, welcher die Entfernung a vom Ursprung des Koordinatensystems hat.

Durch Elimination von λ und μ aus den Gleichungen (1), (2) und (3) ergibt sich die Gleichung der F_4 :

$$(xz - bz + ab)^2 + y^2z^2 - k^2b^2(z - a)^2 = 0$$
 (4)

Die Gleichung kann auf die Form gebracht werden

$$C_y^2 - C_x \cdot C'_x = 0$$
 (5)

wobei

$$C_y \equiv z \quad (x-b) + ab$$

$$C_x \equiv kb (z-a) + yz = z(kb+y) - kab$$

$$C_x \equiv kb (z-a) - yz = z(kb-y) - kab$$

Die Polynome C_y , C_x und C'_x gleich Null gesetzt stellen demnach gleichseitig-hyperbolische Cylinder dar; die Erzeugenden des ersten sind parallel zur y-Axe, diejenigen der beiden andern sind parallel zur x-Axe. Alle 3 Cylinder haben die Ebene xy zur einen Asymptotenebene.

Aus Gleichung (5) folgt, daß F_4 betrachtet werden kann als Enveloppe der folgenden Reihe von Flächen zweiten Grades:

$$C_x + 2tC_y + t^2C_x' = 0 (6)$$

wobei t einen Parameter bedeutet. Jede Fläche dieser Reihe ist ein gleichseitig-hyperbolischer Cylinder, dessen eine Asymptotenebene die Ebene z=0 ist.

Bedeutet t einen beliebigen festen Parameterwert, so bestehen für die Punkte der Durchdringungskurve der dem Wert t entsprechenden Fläche C der Reihe mit ihrer unendlich benachbarten Fläche die 2 Gleichungen

$$C_y + t \cdot C_x = 0$$

$$C_x + t \cdot C_y = 0$$

Durch die Durchdringungskurve dieser beiden Flächen geht auch die Fläche

 $z \left\{ y(1-2kt+t^2) + x(k-kt^2) \right\} = 0,$

welche sich zusammensetzt aus der Ebene z=0 und aus der Ebene

$$P \equiv y(1 - 2kt + t^2) + x(k - kt^2) = 0$$
Man hat also den Satz: Die Fläche
$$C \equiv C_x + 2t C_y + t^2 C'_x = 0$$
(7)

berührt die F_4 längs der doppelt gelegten unendlich fernen Geraden der Ebene xy und nach einer gleichseitigen Hyperbel, deren Ebene gegeben ist durch die Gleichung (7). Diese Gleichung ist in t quadratisch; daher gehören zu jeder Ebene durch die z-Axe 2 Flächen der Reihe, d. h. jede Ebene durch die z-Axe schneidet F_4 nach 2 gleichseitigen Hyperbeln.

Die Untersuchung der letztern Querschnitte wird wohl am einfachsten, wenn man mit der ursprünglichen Gleichung (4) eine Umformung vornimmt. Setzt man $1-k^2=k_1^2$, so läßt sich die Gleichung (4) auf die Form bringen

$$z^{2}(x^{2}+y^{2}-2bx+k_{1}^{2}b^{2})+2k_{1}abz\left(\frac{x}{k_{1}}-k_{1}b\right)+(k_{1}ab)^{2}=0$$
oder
$$z^{2}\left\{x^{2}+y^{2}-2bx+k_{1}^{2}b^{2}-\left(\frac{x}{k_{1}}-k_{1}b\right)^{2}\right\}+\left(\frac{xz}{k_{1}}-k_{1}bz+k_{1}ab\right)^{2}=0$$

oder endlich

$$(xz-k_1^2bz+k_1^2ab)^2-z^2(k^2x^2-k_1^2y^2)=0 \qquad (8)$$
 Die Gleichung der F_4 läßt sich also auf die Form bringen $G^2-z^2H=0 \qquad (9)$

wo G=0 und H=0 Flächen zweiten Grades darstellen.

Dies ist zugleich die charakteristische Form der Gleichung einer Fläche vierter Ordnung, für welche der Querschnitt von z=0 und G=0 ein Doppelkegelschnitt ist. Im vorliegenden Fall stellt G=0 einen gleichseitig-hyperbolischen Cylinder dar, welcher z=0 zur einen Asymptotenebene hat. Es folgt hieraus, daß der Doppelkegelschnitt der F_4 aus 2 unendlich benachbarten unendlich fernen Geraden besteht. Die Fläche H=0 zerfällt im vorliegenden Fall in die beiden Ebenen

$$y = \pm \frac{k}{\sqrt{1 - k^2}} \cdot x$$

Aus Gleichung (8) folgt, daß diese beiden Ebenen singuläre Tangentialebenen der Fläche sind; sie berühren die F_4 längs den beiden gleichseitigen Hyperbeln, welche sie aus dem Cylinder G=0 schneiden.

Um nun den Schnitt der F_4 mit einer durch die z-Axe gehenden Ebene zu untersuchen, setze man in Gleichung (8)

$$y = \alpha x$$
,

dann geht die Gleichung über in

 $(zx-k_1^2bz+k_1^2ab)^2-(A\cdot xz)^2=0$ $A=V\overline{k^2-\alpha^2k_1^2}$

wobei

Der Querschnitt der F_4 mit der Ebene $y = \alpha x$ besteht also aus den 2 Kegelschnitten, welche die Ebene aus den folgenden Flächen zweiten Grades schneidet:

$$z \left\{ (1+A) \cdot x - k_1^2 b \right\} + k_1^2 ab = 0$$

$$z \left\{ (1-A) \cdot x - k_1^2 b \right\} + k_1^2 ab = 0$$

Die beiden Gleichungen stellen 2 gleichseitig-hyperbolische Cylinder dar, für welche z=0 eine gemeinschaftliche Asymptotenebene ist. Die Gleichungen der 2 andern Asymptotenebenen werden erhalten, wenn man die Linearfaktoren des Ausdrucks

$$(1+\alpha^2)x^2-2bx+k_1^2b^2$$

gleich Null setzt. Hieraus ergibt sich eine andere Konstruktion der beiden zur z-Axe parallelen Asymptoten des Querschnittes: der Cylinder der am Anfang dieses Artikels betrachteten Reihe, welcher dem Parameter $\mu = b$ entspricht, hat die Gleichung

$$(x-b)^2 + y^2 = k^2b^2$$

Zur Bestimmung der Mantellinien, in welchen dieser Cylinder von der Ebene $y = \alpha x$ geschnitten wird, bekommt man dann die Gleichung

$$(1+\alpha^2)x^2-2bx+k_1^2b^2=0$$

D. h. die zur z-Axe parallelen Asymptoten der beiden gleichseitigen Hyperbeln in der Ebene $y=\alpha x$ sind die in dieser Ebene liegenden Erzeugenden des obigen Cylinders. Da die beiden andern Asymptoten der 2 gleichseitigen Hyperbeln zusammenfallen in die Schnittlinie von $y=\alpha x$ mit z=0 und beide Kurven die z-Axe schneiden in dem Punkt, welcher vom Ursprung die Entfernung a hat, so ist durch diese Angaben der Querschnitt der F_4 mit der Ebene $y=\alpha x$ völlig bestimmt.

Die Konstruktion der F_4 , welche aus der Betrachtung dieser Querschnitte folgt (Artikel 5), führt ohne Schwierigkeiten zur Darstellung der Koordinaten eines Punktes der Fläche als Funktionen von 2 Parametern.

Zu bemerken ist noch, daß die Umformung, welche zu Gleichung (8) geführt hat, nicht möglich ist für $k_1=0$, d. h. k=1. In diesem Fall hat man eine Reihe von sich berührenden Kreisen und die F_4 zerfällt in die Ebene z=0 und in die Fläche dritter Ordnung

$$z(x^2+y^2)-2bx(z-a)=0$$

7. In der nachfolgenden Untersuchung braucht man die erste Polarfläche der F_4 für den unendlich fernen Punkt der z-Axe, d. h. für den Doppelpunkt D_{∞} der F_4 . Diese Fläche P_3 kann analytisch oder geometrisch untersucht werden. Die bequemste Gleichungsform ergibt sich aus Gleichung (8) des vorigen Artikels, nämlich

$$P_3 \equiv (zx - k_1^2 bz + k_1^2 ab)(x - k_1^2 b) - z(k^2 x^2 - k_1^2 y^2) = 0$$
 Diese Gleichung ist erfüllt für:

1)
$$zx - k_1^2 bz + k_1^2 ab = 0$$
 und $z = 0$

D. h. P_3 enthält 2 unendlich ferne unendlich benachbarte Gerade in der Ebene z=0 oder E_0 . Die Ebene E_j ist also eine singuläre Tangentialebene der gesuchten Fläche.

2)
$$x - k_1^2 b = 0$$
 und $z = 0$

D. h. P_3 enthält die Gerade der Ebene xy von der Gleichung $x-k_1{}^2b=0$. Diese ist die Polare des Ursprungs S in Bezug auf den Gegenkreis R.

3)
$$zx - k_1^2 bz + k_1^2 ab = 0$$
 und $k^2 x^2 - k_1^2 y^2 = 0$

D. h. P_3 enthält die beiden Hyperbeln, nach denen F_4 von den 2 singulären Tangentialebenen berührt wird.

4)
$$x - k_1^2 b = 0$$
 und $k^2 x^2 - k_1^2 y^2 = 0$

D. h. P_3 enthält auch die zur Ebene xy senkrechten Asymptoten der unter 3) erwähnten Hyperbeln.

Außerdem hat P_3 die imaginären Kreispunkte der Ebene xy zu Doppelpunkten und die Verbindungslinien dieser beiden Punkte mit dem Doppelpunkte D_{∞} sind 2 der Fläche angehörige Gerade.

Diese Eigenschaften ergeben sich auch geometrisch einfach. Eine Gerade senkrecht zur Ebene xy schneidet F_4 außer im Doppelpunkt D_{∞} noch in 2 weitern, im allgemeinen im

Endlichen liegenden Punkten. Der Ort der Mitten der durch diese Punktpaare begrenzten Strecken ist die Fläche P_3 . Aus dieser Definition ergeben sich auch die oben gefundenen Geraden und Kurven. Für die Darstellung der Fläche ist von Wichtigkeit, daß sie von jeder Parallelebene zu E_0 geschnitten wird in einem Kreis und in der allen diesen Ebenen gemeinsamen unendlich fernen Geraden. Die Mittelpunkte dieser Kreise liegen auf einer gleichseitigen Hyperbel, welche mit der Hyperbel der Mittelpunkte M_i^* der F_4 die Asymptoten gemein hat. Ueberdies halbiert die neue Hyperbel die zur Ebene E_0 parallelen Segmente der ersten Hyperbel zwischen der Kurve und der zu E_0 senkrechten Asymptote.

Sämtliche Kreise der P_3 stützen sich auf die unter 4) konstruierten beiden Geraden. Die Projektionen dieser Kreise auf die Ebene E_0 bilden daher ein Kreisbüschel, dessen Basispunkte die Berührungspunkte der aus S an den Gegenkreis R gelegten Tangenten sind.

Fig. 2 gibt eine Anschauung der Fläche P_3 . Die Kurve (C_3) ist ihr Schnitt mit der Normalebene zu E_0 durch x. Konstruiert man über jeder Sehne UV als Durchmesser einen Kreis, dessen Ebene parallel E_0 ist, so erfüllen diese Kreise die P_3 .

II.

8. Nach den im vorigen Abschnitt gemachten vorbereitenden Untersuchungen bietet nun die eigentliche Aufgabe keine wesentlichen Schwierigkeiten mehr. Das Erzeugnis der beiden projektiven Kreisreihen K und K' ist nach Artikel 2 die Orthogonalprojektion der Durchdringungskurve achter Ordnung $R_{\rm s}$ des Kegels zweiten Grades K^2 mit der Fläche vierter Ordnung F_4 auf die Ebene E_0 , also eine Kurve achter Ordnung $C_{\rm s}$.

Die imaginären Kreispunkte der Ebene E_0 sind dreifache Punkte der Kurve R_8 , weil F_4 dreifach und K^2 einfach durch diese Punkte gehen. Die unendlich ferne Ebene trifft R_8 in 2 weitern, einfachen Punkten; es sind die 2 weitern Schnittpunkte der Linien aus D_∞ nach den imaginären Kreispunkten der Ebene E_0 mit dem Kegel K^2 . Da die Projektionen dieser beiden Punkte aus D_∞ auf E_0 ebenfalls in die imaginären

Kreispunkte fallen, so ergibt sich, daß diese Punkte vierfache Punkte der $C_{\rm s}$ sind.

Die 8 Schnittpunkte der C_s mit einer beliebigen Geraden gder Ebene E_0 ergeben sich so: Die Normalebene durch g zu E_0 trifft F_4 in einer Kurve C_4 von der vierten Ordnung und den Kegel K^2 in einem Kegelschnitt. Die Projektionen der Schnittpunkte der C, mit diesem Kegelschnitt sind die gesuchten Punkte. C4 ist eine rationale Kurve, denn sie hat einen Berührungsknoten im unendlich fernen Punkt von g und einen gewöhnlichen Doppelpunkt in der Richtung senkrecht zu g. Die Asymptote des Berührungsknotens ist die Linie g, die Asymptoten des Doppelpunktes sind die Senkrechten zur Ebene E_0 in den Schnittpunkten von g mit dem Gegenkreis R. Geht g durch S oder S_1 , so reduziert sich die Aufgabe achten Grades auf 2 Aufgaben vierten Grades. Wenn nämlich gdurch S geht, so zerfällt C_4 in 2 gleichseitige Hyperbeln. Man hat also dann die Schnittpunkte eines beliebigen Kegelschnittes mit 2 gleichseitigen Hyperbeln zu bestimmen. Geht g durch S_1 , so zerfällt der Kegelschnitt in ein Linienpaar. Man hat also dann die Schnittpunkte von 2 geraden Linien mit einer C_4 zu suchen.

Interessant ist die Bestimmung der Schnittpunkte der Verbindungslinie SS_1 mit C_8 . Diese Aufgabe achten Grades reduziert sich auf 4 quadratische Aufgaben: man hat 2 gleichseitige Hyperbeln mit 2 Geraden zu schneiden. Es sind also 4 mal die Doppelpunkte von 2 vereinigten projektiven Punktreihen zu bestimmen. Die Bestimmungselemente dieser 4 Paare von vereinigten projektiven Reihen auf $SS_1 = s$ lassen sich durch folgende Ueberlegung finden: Der Gegenkreis Q' ist die Schnittkurve des Kegels K^2 mit der Ebene E_0 ; er werde von s geschnitten in den Punkten Q'_1 und Q'_2 . Σ' sei der entsprechende Kreis der zweiten Reihe zum Nullkreis S der ersten Reihe, σ'_1 und σ'_2 dessen Schnittpunkte mit s, wobei σ_1' der homologe Punkt zu Q_1' und σ_2 der homologe Punkt zu Q'2 sein soll. Dann sind die 4 vereinigten projektiven Reihen folgendermaßen bestimmt:

- 1) R_1 und Q'_1 sind Gegenpunkte, S und σ'_1 ein Paar, 2) R_2 , Q'_1 , , , S , σ'_1 , , , , 3) R_1 , Q'_2 , , , , S , , σ'_2 , , , , 4) R_2 , Q'_2 , , , , , , , S , , σ'_2 , , , , ,

Sind $I_1I_1^*$, $I_2I_2^*$, $I_3I_3^*$, $I_4I_4^*$ die 4 Paare von Doppelpunkten, so bestehen also die Beziehungen: $I_1R_1=Q'_1I'_1^*$;

 $I_2 R_2 = Q'_1 I_2^*; I_3 R_1 = Q'_2 I_3^*; I_4 R_2 = Q'_2 I_4^*.$

9. Konstruktion der Tangente t in einem Punkte P der C_s. Die Tangente t in einem Punkt P der C, ist die Projektion der Tangente t^* im Punkt P^* an die R_s . Sie ist also die Projektion der Schnittlinie der Tangentialebene in P^* an den Kegel K^2 und der Tangentialebene in demselben Punkt an F_4 . Nun können leicht die Spuren dieser Tangentialebenen auf der Ebene E_0 angegeben werden. Es sei \Re der homologe Punkt zu P auf dem Gegenkreis R und \mathfrak{Q}' der homologe Punkt zu P auf dem Gegenkreis Q'. Die Tangente in \mathfrak{Q}' an Q' ist dann die Spur der Tangentialebene in P^* an K^2 . Nach Artikel 4 findet man die Spur der Tangentialebene in P^* an F_4 , wenn man durch den symmetrischen Punkt zu \Re in Bezug auf P die Parallele zieht zur Tangente in \Re an den Kreis R. Der Schnittpunkt dieser 2 Spuren ist der Durchstoßpunkt der Tangente t^* mit der Ebene E_0 , also ein Punkt der gesuchten Tangente t. Denkt man sich die Kreise K der ersten Reihe als Projektionen der Querschnitte eines Kegels mit den zur Bildebene parallelen Ebenen und die Kreise K'der zweiten Reihe als Projektionen der Querschnitte derselben Ebenen mit einer F_4 , so ergibt sich ein neuer Punkt der gesuchten Tangente, wenn man die Tangente in R an den Kreis R schneidet mit der Parallelen zur Tangente in \mathfrak{Q}' an den Kreis Q' durch den symmetrischen Punkt zu Ω' in Bezug auf P. (v. Fig. 3.) Aus diesen beiden Tangentenkonstruktionen ergibt sich eine neue, welche symmetrisch ist in Bezug auf beide Kreisreihen: Man konstruiert die Tangenten in P an die Kreise K und K', aus denen P entstanden ist, ebenso in \Re die Tangente an den Gegenkreis R und in \mathfrak{Q}' die Tangente an den Gegenkreis Q'. Dann bilden diese 4 Tangenten ein Parallelogramm. Die Tangente t in P an C_s ist die Parallele zu der nicht durch Pgehenden Diagonale dieses Parallelogrammes.

Andere Tangentenkonstruktionen ergeben sich, wenn man den Durchstoßpunkt von t^* nicht mit der Ebene E_0 , sondern mit andern zu E_0 parallelen Ebenen bestimmt. Es eignen sich hiezu hauptsächlich die Parallelebenen durch S^* und S_1^* zu E_0 .

Es ergibt sich beispielsweise die folgende andere Tangentenkonstriktion: L sei der Mittelpunkt der Strecke $\Re \mathfrak{Q}'$. Man ziehe durch den Punkt S_1 die Parallele zu LP bis zum Schnitt mit PS. Die Parallele durch diesen Schnittpunkt zur Tangente in P an K trifft die Parallele durch S_1 zur Tangente in P an K' in einem Punkt der gesuchten Tangente t.

Oder allgemeiner: Man ziehe durch irgend einen Punkt von PS_1 die Parallele zu LP bis zum Schnitt mit PS. Die Parallele durch diesen Schnittpunkt zur Tangente in P an K trifft die Parallele durch den angenommenen Punkt zur Tangente in P an K' in einem Punkt der gesuchten Tangente in P. Analog, wenn man ausgeht von einem beliebigen Punkt der Geraden PS.

Zu bemerken ist noch, daß die Kurve $C_{\rm S}$ 4 vierfache Tangenten hat, die 2 Paare gemeinsamer Tangenten der 2 Kreisreihen.

10. Die 6 Doppelpunkte der $C_{\rm S}$. Es wurde gezeigt, daß die imaginären Kreispunkte vierfache Punkte der $C_{\rm S}$ sind. Es soll bewiesen werden, daß die Kurve außerdem noch 6 Doppelpunkte besitzt. Um die Anzahl der Doppelpunkte der $C_{\rm S}$ zu bestimmen, hat man die Anzahl der scheinbaren Doppelpunkte der $R_{\rm S}$ zu suchen bezüglich des angenommenen Projektionszentrums, d. h. bezüglich des Punktes D_{∞} . Oder mit andern Worten: man hat zu bestimmen die Anzahl der Bisekanten der $R_{\rm S}$, welche durch den Punkt D_{∞} gehen.

Ein Strahl σ durch das Projektionszentrum trifft die F_4 außer in D_{∞} in 2 weitern Punkten A und A_1 , welche im allgemeinen im Endlichen liegen. Derselbe Strahl σ trifft den Kegel K^2 in 2 Punkten B und B_1 . Der Mittelpunkt der Strecke AA_1 sei $\mathfrak A$, dann ist der Ort von $\mathfrak A$ die erste Polarfläche des Projektionszentrums bezüglich der F_4 , also eine Fläche dritter Ordnung P_3 (Artikel 7). Der Mittelpunkt der Strecke BB_1 sei $\mathfrak B$; dann ist der Ort von $\mathfrak B$ eine Ebene, die Polarebene P des Projektionszentrums bezüglich des Kegels K^2 . Unter den Strahlen durch das Projektionszentrum gibt es einfach unendlich viele, für welche die beiden Punkte $\mathfrak A$ und $\mathfrak B$ zusammenfallen. Diese Strahlen erfüllen eine Cylinderfläche, deren Leitkurve der Querschnitt von P mit P_3 ist, also eine Cylinderfläche dritter Ordnung. Zu den Erzeugenden dieser Fläche gehören auch die gesuchten Bisekanten der R_8 . Die

Schnittkurve dieses Cylinders mit der Projektionsebene E_0 geht also durch die Doppelpunkte der C_8 . Die so entstehende Kurve dritter Ordnung Γ_3 soll heißen: die Kurve der scheinbaren Doppelpunkte. Sie kann auch betrachtet werden als Projektion des Querschnittes von P mit P_3 .

Die Kurve Γ_3 hat mit $ilde{C_8}$ 24 Punkte gemein. diesen fallen 12 in die imaginären Kreispunkte, wie folgende Ueberlegung zeigt: Nach Artikel 8 sind die imaginären Kreispunkte der Projektionsebene dreifache Punkte der $R_{\rm s}$ und vierfache Punkte der C_8 , weil noch je ein Punkt der R_8 in die Kreispunkte projiciert wird. Die imaginären Kreispunkte sind also eine Vereinigung von je einem dreifachen Punkt mit 3 scheinbaren Doppelpunkten. Die Kurve Γ_3 muß daher in den imaginären Kreispunkten eine Berührung zweiter Ordnung haben mit der Projektion desjenigen Zuges der $R_{\rm s}$, welcher nicht in Wirklichkeit, sondern bloß in der Projektion durch die Kreispunkte der Projektionsebene geht. Die imaginären Kreispunkte absorbieren also 2(3+3) Schnittpunkte von Γ_3 und C_8 . Die Anzahl der Doppelpunkte von C_8 ist also $\frac{1}{2}(24-12)=6$. Die C_s ist somit vom Geschlecht p=3. Es folgt hieraus nach einem Satz von Harnack¹, daß die Kurve aus vier geschlossenen Zügen bestehen kann. Eigenschaft ergibt sich übrigens durch die bloße Raumanschauung.

11. Es handelt sich noch um die Konstruktion der Kurve Γ_3 . Sie ist die Projektion des Querschnittes der Polarfläche P_3 mit der Polarebene P auf die Ebene E_0 . Diese Projektion läßt sich in einfacher Weise aus den auf der Ebene E_0 gegebenen Größen konstruieren.

Eine beliebige Ebene E parallel E_0 schneidet P_3 nach einem Kreis U^* (und nach einer unendlich fernen Geraden) und die Polarebene P nach einer Geraden v^* . Dieser Strahl v^* ist die Polare des Fußpunktes der Senkrechten aus der Kegelspitze S_1^* auf der Ebene E in Bezug auf denjenigen Kreis K'^* , welcher durch die Ebene E aus dem Kegel K^2 geschnitten wird. U^* und v^* schneiden sich in 2 Punkten, deren Projektionen auf Γ_3 liegen. Nun sind durch die Ebene

¹ Ueber die Vielteiligkeit der ebenen algebraischen Kurven. Mathematische Annalen, Band X.

E die Kreise U^* und die Geraden v^* einander projektiv zugeordnet. Die Projektionen der Kreise U^* bilden nach Artikel 7 ein Büschel, dessen Grundpunkte G_1 und G_2 die Berührungspunkte der Tangenten aus S an den Gegenkreis R sind. Die Projektion der Geraden v^* , also die Linie v, ist die Polare des Punktes S_1 in Bezug auf den Kreis K', die Projektion des obigen Kreises K'^* . Die sämtlichen Linien v bilden also ein Büschel von Parallelen. Das Büschel der Kreise U und das Büschel der Geraden v sind projektiv; ihr Erzeugnis ist die Kurve Γ_3 . Man kann 3 Paare dieser Projektivität angeben:

1) Dem Kreis U_1 durch den Punkt S entspricht die Polare v_1 des Punktes S_1 in Bezug auf denjenigen Kreis Σ' der zweiten Reihe, welcher dem Nullkreis S der ersten

Reihe entspricht.

2) Dem Kreis $U_2 = R$ entspricht als v_2 der unendlich ferne Strahl des Büschels. Dieser Kreis berührt also Γ_3 in den imaginären Kreispunkten. Sein Mittelpunkt ist der Doppelbrennpunkt von Γ_3 . Dieser Punkt ist nach Artikel

10 auch ein singulärer Brennpunkt der $C_{\rm s}$.

3) Dem unendlich großen Kreis U_3 des Büschels entspricht als v_3 die Polare von S_1 in Bezug auf den Gegenkreis Q'. Die Elemente U_3 und v_3 sind die Querschnitte der Projektionsebene E_0 mit der Fläche P_3 und mit der Ebene P. Die Gerade v_3 ist die reelle Asymptote der Kurve; ihr Tangentialpunkt ist der Schnittpunkt der Geraden v_3 und U_3 . (v. Fig. 4.)

Durch diese 3 Paare ist die Projektivität der beiden Büschel bestimmt; von Γ_3 kennt man dadurch schon mehr

Elemente als zur Bestimmung notwendig sind.

12. In ebenso einfacher Weise läßt sich eine zweite Kurve Γ'_3 konstruieren, welche durch die gesuchten Doppelpunkte geht. Betrachtet man nämlich die Kreise K der ersten Reihe als Projektionen der Querschnitte eines Kegels mit den zur Bildebene parallelen Ebenen und die Kreise K' der zweiten Reihe als Projektionen der Querschnitte einer F'_4 mit denselben Ebenen, so zeigt die analoge Ueberlegung, daß die Doppelpunkte der C_8 auf einer neuen Kurve dritter Ordnung liegen, welche ebenfalls dargestellt werden kann als Erzeugnis eines Kreisbüschels und eines dazu projektiven

Büschels von unter sich parallelen Strahlen. Die Kreise U' des neuen Büschels gehen durch die Berührungspunkte der Tangenten aus S_1 an den Gegenkreis Q'. Die Strahlen v' des neuen Büschels sind die Polaren des Punktes S in Bezug auf die Kreise K der ersten Reihe. Die 3 Paare entsprechender Elemente U' v', welche die Projektivität bestimmen, sind die folgenden:

1) U'_1 sei der Kreis des Büschels, welcher durch S_1 geht; diesem entspricht die Polare v'_1 von S in Bezug auf den Kreis Σ_1 der ersten Reihe, welcher dem Nullkreis

S, der andern Reihe korrespondiert.

2) Dem Gegenkreis $Q' = U'_2$ entspricht der unendlich entfernte Strahl des Büschels als v_2' . Der Mittelpunkt dieses Kreises ist demnach der Doppelbrennpunkt der Kurve Γ'_3 und zugleich ein singulärer Brennpunkt der C_8 .

3) Dem unendlich großen Kreis U'_3 des Büschels entspricht als v'_3 die Polare von S in Bezug auf den Gegenkreis R. Es ist also die Verbindungslinie G_1 $G_2 = U_3$ die reelle Asymptote von Γ'_3 und der Schnittpunkt der Geraden U'_3 und v'_3 ist der zugehörige Tangentialpunkt. Damit ist auch die Kurve Γ'_3 vollständig bestimmt.

Die Kurven Γ_3 und Γ'_3 sind zirkular und haben denselben Tangentialpunkt für die reellen Asymptoten. Die 6 übrigen gemeinsamen Punkte dieser beiden Kurven dritter Ordnung sind die Doppelpunkte der C_8 .

Aus der Konstruktion folgt, daß die 6 Doppelpunkte der $C_{\rm s}$ im allgemeinen nicht auf einem Kegelschnitt liegen. Sie liegen auf einem Kegelschnitt, wenn die Zentralen der

beiden Kreisreihen dieselbe Richtung haben.

13. Wirkliche Doppelpunkte der R_8 und Doppelpunkte zweiter Art der C_8 . Die projektive Beziehung der beiden Kreisreihen kann so spezialisiert werden, daß die Kurve C_8 noch weitere Doppelpunkte, jedoch von anderem Charakter als die bereits gefundenen, besitzt. Die gegenseitige Lage der Flächen K^2 und F_4 kann derart sein, daß die Durchdringungskurve R_8 wirkliche Doppelpunkte aufweist. Die aus solchen hervorgehenden Doppelpunkte der C_8 sollen Doppelpunkte zweiter Art der C_8 genannt werden. Die Durchdringungskurve von 2 Flächen bekommt einen wirklichen Doppelpunkt, wenn die beiden Flächen sich in einem Punkt

berühren; d. h. wenn beide Flächen in einem gemeinsamen Punkt dieselbe Tangentialebene haben oder wenn ein Doppelpunkt der einen Fläche auf der andern Fläche liegt.

Die Kurve C_8 wird also Doppelpunkte zweiter Art bekommen, wenn die projektiven Kreisreihen so gewählt sind, daß F_4 und K^2 in einem gemeinsamen Punkt dieselbe Tangentialebene haben oder wenn S^* auf K^2 oder endlich S_1^* auf F_4 liegt.

Der Fall, daß der Doppelpunkt D_{∞} auf K^2 liegt, kann hier nicht in Betracht kommen, weil dann die Ordnung von C_8 um 2 Einheiten verringert würde.

Die beiden letzten Kriterien für das Auftreten eines Doppelpunktes zweiter Art sagen aus:

Wenn der Kreis Σ' der zweiten Reihe, welcher dem Nullkreis S der ersten entspricht, durch S geht, so ist S ein Doppelpunkt der C_s oder wenn der Kreis Σ_1 der ersten Reihe, welcher dem Nullkreis S_1 der zweiten entspricht, durch S_1 geht, so ist S_1 ein Doppelpunkt der C_8 . Es bleibt noch zu untersuchen, welche Bedingung erfüllt sein muß, damit F_4 und K^2 in einem gemeinsamen Punkt dieselbe Tangentialebene haben. Soll P* diese Eigenschaft haben, so müssen durch P 2 korrespondierende Kreise K und K' der beiden Reihen gehen, welche sich in P berühren. p sei die Tangente, nach der die Berührung stattfindet. Ist R der homologe Punkt zu P auf dem Gegenkreis R, so ist die Parallele \mathfrak{q}' zu p durch den symmetrischen Punkt zu \Re bezüglich P die Spur der Tangentialebene der ${\cal F}_4$ in ${\cal P}^*$ auf der Projektionsebene E_0 . Die Verbindungslinie $S_1 P$ muß in dieser Tangentialebene liegen; ihr Durchstoßpunkt muß sich somit auf q' befinden. Konstruiert man also den Gegenkreis Q' so, daß er im Schnittpunkt von \mathfrak{q}' und S_1P die Linie \mathfrak{q}' berührt, so haben K^2 und F_4 in P^* eine gemeinsame Tangentialebene und dem zufolge C, in P einen Doppelpunkt zweiter Art. Das Kriterium für einen Doppelpunkt zweiter Art ist also folgendes: P ist ein Doppelpunkt zweiter Art für $C_{\rm s}$, wenn die Kreise K und K', aus denen P entstanden ist, sich in diesem Punkt berühren und die Tangente, nach der diese Berührung stattfindet, in der Mitte liegt zwischen der homologen Tangente r des Gegenkreises R und der homologen Tangente q' des Gegenkreises Q'.

Durch das Vorhandensein eines Doppelpunktes P wird das Geschlecht der C_8 um eine Einheit reduziert.

Durch Vereinigung von Doppelpunkten zweiter Art mit solchen erster Art können auch höhere Singularitäten, nämlich dreifache und vierfache Punkte der $C_{\rm S}$ hervorgebracht werden. Die Untersuchung der einzelnen Fälle ist interessant, würde aber hier zu weit führen. Ein Beispiel mag genügen. Es soll gezeigt werden, wie die Annahmen zu treffen sind, damit $C_{\rm S}$ die Punkte S, $S_{\rm 1}$ und einen beliebigen Punkt P zu Doppelpunkten zweiter Art hat.

Für diesen Fall muß also S^* auf K^2 und S_1^* auf F_4 liegen; ferner müssen K^2 und F_4 in P^* eine gemeinsame Tangentialebene haben.

Von der ersten Kreisreihe seien gegeben: S, der Gegenkreis R, der Kreis K, auf welchem P liegen soll und endlich der Kreis Σ_1 , welcher dem Nullkreis S_1 der zweiten Reihe entsprechen soll. Dann ist durch diese Angaben die zweite Reihe zweideutig bestimmt.

Die Spitze S_1^* des Kegels K^2 muß liegen in der Tangentialebene in P^* an F_4 und auf dem Kreis Σ_1^* , dessen Projektion Σ_1 ist. Dieser Punkt ist also einer der beiden Schnittpunkte der Tangentialebene mit Σ_1^* . Man findet die Projektion dieser Punkte durch folgende Ueberlegung: p sei die Tangente von K in P, q' die Spur der Tangentialebene auf E_0 , r_∞ die unendlich ferne Gerade der Ebene und endlich s die Projektion der gesuchten Schnittlinie der Tangentialebene mit der Ebene des Kreises Σ_1^* . Dann ist die letztere Gerade bestimmt durch die Projektivität:

 $(p \, \mathfrak{q}' \, r_{\infty} \, s) = (KK_{\infty} \, R \, \Sigma_1),$

wobei K_{∞} der unendlich große Kreis der Reihe ist. Das Büschel der 4 Strahlen muß also zur Reihe der Mittelpunkte jener 4 Kreise projektiv sein, wodurch s eindeutig bestimmt ist, da alle andern Elemente bekannt sind. Schneidet man jetzt s mit Σ_1 , so ist einer dieser beiden Schnittpunkte der gesuchte Punkt S_1 . Es sei ferner σ die Projektion der Schnittlinie der Tangentialebene mit der Parallelebene zu E_0 durch den Punkt S_1^* . Zur Bestimmung von σ hat man die Projektivität:

 $(p q' r_{\infty} \sigma) = (KK_{\infty} RS)$

σ ist dadurch eindeutig bestimmt. Verbindet man nun S_1 mit P, so ist der Schnittpunkt dieser Linie mit σ die Projektion des Durchstoßpunktes der Linie S_1*P* mit der Parallelebene zu E_0 durch den Punkt S*. Konstruiert man also jetzt den Kreis, welcher im Schnittpunkt von S_1 P mit σ die Linie σ berührt und durch S geht, so ist dieser Kreis Σ' , d. h. derjenige Kreis der zweiten Reihe, welcher dem Nullkreis S der ersten entspricht. Dadurch ist die zweite Kreisreihe den Bedingungen der Aufgabe gemäß bestimmt. Zu bemerken ist noch, daß der Gegenkreis Q' die Linie \mathfrak{q}' im Schnittpunkt mit der Linie S_1 P berührt.

Die hier entstehende C_8 ist rational. Wenn man diese Kurve nach reciproken Radien transformiert und als Mittelpunkt der Transformation einen Doppelpunkt der C_8 annimmt, so erhält man eine spezielle Kurve sechster Ordnung mit 10 Doppelpunkten, wovon 2 in den imaginären Kreispunkten liegen. Es ergibt sich hieraus eine verhältnismäßig einfache Konstruktion dieser ausgezeichneten Kurve sechster Ordnung.

- 14. Derjenige Fall ist noch besonders zu behandeln, wo für eine oder für beide Kreisreihen die charakteristische Konstante k=1.
- a) Für die erste Kreisreihe sei $k \leq 1$, für die zweite Kreisreihe sei k=1. Die zweite Reihe besteht aus Kreisen, die sich im Punkt S, berühren; d. h. die Kreise bilden ein Der Index dieser Reihe ist = 1. Nach dem Satz von de Jonquières ist demnach das Erzeugnis dieser zwei Kreisreihen eine Kurve sechster Ordnung. Der Grund dieser Reduktion der Ordnung des Erzeugnisses um 2 Einheiten läßt sich aus unserer Raumbetrachtung leicht erkennen. Der Kegel K^2 hat im angenommenen Fall eine Mantellinie, welche zur Projektionsebene senkrecht steht, d. h. der Doppelpunkt D_{∞} der F_4 liegt auf dem Kegel K^2 . Der Punkt D_{∞} ist demnach ein wirklicher Doppelpunkt der $R_{\rm s}$. Die Projektion dieser R_8 ist eine Kurve sechster Ordnung, welche die Kreispunkte zu dreifachen Punkten hat und für welche S_1 ein Berührungsknoten ist. Weitere Doppelpunkte erster Art kann diese C_6 nicht haben; sie ist also vom Geschlecht p = 2. Durch Transformation nach reciproken Radien für S, als

Mittelpunkt geht die Kurve über in eine C_4 mit einem unendlich fernen Doppelpunkt.

b) Haben beide Kreisreihen die charakteristische Konstante k=1, so kann man nach Artikel 6 die erste Reihe betrachten als Projektionen der Querschnitte einer Fläche dritter Ordnung F_3 mit den zur Bildebene parallelen Ebenen und die zweite Reihe als Projektionen der Querschnitte eines Kegels K^2 mit denselben Ebenen. Die Durchdringungskurve beider Flächen ist eine Kurve sechster Ordnung, welche in den imaginären Kreispunkten der Ebene E_0 und im Punkt D_{∞} wirkliche Doppelpunkte hat. Die Projektion dieser Kurve auf E_0 , also das Erzeugnis der beiden projektiven Kreisreihen, ist eine bieirkulare Kurve vierter Ordnung, welche durch S und S_1 geht und in diesen Punkten die Tangenten der beiden Kreisreihen berührt.

In den Fällen *a)* und *b)* kann man nach der allgemeinen Methode noch Doppelpunkte zweiter Art erzeugen.

15. Eine lineare Kreisreihe kann auch zu andern Gebilden erster Stufe in projektive Beziehung gesetzt werden, vorausgesetzt, daß diese Gebilde rational sind. Im Anschluß an Artikel 14 soll hier das Erzeugnis der projektiven Zuordnung der Kreise einer linearen Reihe zu den Kreisen eines beliebigen Büschels untersucht werden.

Die Kreise eines Büschels mit 2 getrennten Grundpunkten können angesehen werden als Orthogonalprojektionen der Querschnitte eines Hyperboloides H^2 mit den zur Bildebene parallelen Ebenen. Das Hyperboloid geht durch das unendlich ferne Projektionszentrum und ist ein hyperbolisches, wenn die Grundpunkte reell sind, ein elliptisches, wenn die Grundpunkte imaginär sind. Die Grundpunkte G und L des Kreisbüschels repräsentieren die Projektionen der 2 durch das Projektionszentrum gehenden Erzeugenden g und l der Fläche. Die Kreise der Reihe stellen dann wieder die Projektionen der Querschnitte der zur Bildebene parallelen Ebenen mit einer ${\cal F}_4$ dar. Die beiden Flächen ${\cal F}_4$ und ${\cal H}^2$ durchschneiden sich in einer Kurve achter Ordnung, welche die imaginären Kreispunkte der Bildebene zu dreifachen Punkten und das Projektionszentrum D_{∞} zu einem Doppelpunkt hat. Die Projektion dieser Kurve aus D_{∞} ist eine Kurve sechster Ordnung. Die imaginären Kreispunkte sind dreifache Punkte der Kurve, die

beiden Punkte G und L sind Doppelpunkte. Weitere Doppelpunkte erster Art können nicht vorkommen. Die Kurve ist also vom Geschlecht 2. G und L sind Doppelpunkte erster Art, denn g z. B. schneidet F_4 außer in D_{∞} in 2 weitern Punkten, welche der R_8 angehören und deren Projektionen in G vereinigt liegen.

Die Tangente in einem Punkt P der C_6 wird erhalten als Projektion der Tangente t^* im entsprechenden Punkt P^* an die Raumkurve R_{\circ} . t^* ist die Schnittlinie der Tangentialebenen in P^* an F_4 und an H^2 . Die Spur der Tangentialebene von F_4 in P^* auf der Bildebene E_0 wird nach Artikel 4 bestimmt als die Parallele zur Tangente in P an den Kreis Kdurch den symmetrischen Punkt zum homologen Punkt R in Bezug auf P. Die Tangentialebene in P^* an das Hyperboloid wird am einfachsten bestimmt durch die 2 durch P^* gehenden geraden Linien des Hyperboloides. Es sei Q' der Kreis des Büschels, welcher dem unendlich großen Kreis der Reihe entspricht, d. h. der Schnitt des Hyperboloides mit der Ebene E_0 . Die Projektionen der 2 Geraden des Hyperboloides durch P^* sind die Verbindungslinien von P mit den Grundpunkten G und L des Büschels. Die zweiten Schnittpunkte dieser Geraden mit dem Kreis Q' sind die Durchstoßpunkte derselben mit der Ebene E_0 . Die Verbindungslinie der beiden letzten Punkte ist die Spur der Tangentialebene des Hyperboloides in der Ebene E_0 . Wenn man diese Spur mit der frühern schneidet, so erhält man einen Punkt der Tangente in P an $C_{\mathfrak{g}}$.

Die Konstruktion der Spur der Tangentialebene des Hyperboloides erleidet eine geringe Modifikation in dem Fall, wo die Punkte G und L imaginär sind. Man findet dann die genannte Spur, wenn man zur Verbindungslinie GL bezüglich P und die Polare von P bezüglich des Kreises Q' den vierten harmonischen Strahl konstruiert.

16. Zum Schluß dieses Abschnittes möchte ich noch bemerken, daß die projektiven linearen Kreisreihen auch aus einem andern Gesichtspunkt betrachtet werden können. Die cyklographischen Bilder 1) der Punkte einer geraden Linie erfüllen eine lineare Kreisreihe und umgekehrt können die Kreise

¹) Man vergleiche: Fiedler, Cyklographie oder Konstruktion der Aufgaben über Kreise und Kugeln, Leipzig 1882.

einer linearen Reihe stets als die cyklographischen Bilder der Punkte einer Geraden aufgefaßt werden.

Die Paare entsprechender Kreise KK' von 2 projektiven linearen Reihen können demnach angesehen werden als die cyklographischen Bilder der Paare entsprechender Punkte von 2 projektiven geraden Punktreihen im Raum.

Man hat also den Satz: Der Ort der Schnittpunkte der cyklographischen Bilder entsprechender Punktepaare von 2 projektiven geraden Punktreihen im Raumist eine Kurve achter Ordnung vom Geschlecht 3.

Mit Hülfe des Satzes von de Jonquières läßt sich die Ordnung der analogen Kurve bestimmen für den Fall, daß die projektiven Punktreihen auf Raumkurven beliebiger Ordnung N_1 resp. N_2 gegeben seien. Es ergibt sich der Satz: Der Ort der Schnittpunkte der cyklographischen Bilder entsprechender Punktepaare von 2 projektiven Punktreihen auf Raumkurven von der Ordnung N_1 und N_2 ist im allgemeinen eine Kurve von der Ordnung 4 (N_1+N_2) .

Die Richtigkeit dieses Satzes geht daraus hervor, daß die Indices der so entstehenden Kreisreihen gleich sind $2N_1$ und $2N_2$.