Zeitschrift: Mittex: die Fachzeitschrift für textile Garn- und Flächenherstellung im

deutschsprachigen Europa

Herausgeber: Schweizerische Vereinigung von Textilfachleuten

Band: 108 (2001)

Heft: 4

Artikel: Möglichkeiten zur Verbesserung der Wirtschaftlichkeit des

Verdichtungsprozesses

Autor: Artzt, P. / Jehle, V. / Maidel, H.

DOI: https://doi.org/10.5169/seals-678791

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

S P I N N E R E I mittex 4/01

Möglichkeiten zur Verbesserung der Wirtschaftlichkeit des Verdichtungsprozesses

Dr. P. Artzt; V. Jeble; H. Maidel; M. Baumann, ITV Denkendorf, D

Das Verdichtungs-, oder auch Compactspinnen, steht bezüglich der Wirtschaftlichkeit in Konkurrenz zum konventionellen Ringspinnen. Mehraufwand im Bereich Investitions- und Betriebskosten, können am ehesten durch erhöhte Rohstoffnutzung kompensiert werden. Grundsatzversuche sollen zeigen, welche Möglichkeiten zur Reduzierung der Garndrehung und damit zur Leistungssteigerung des Verdichtungsspinnens bestehen.

Einfluss der Reduzierung des Kämmlingsprozentsatzes auf die Garneigenschaften.

Um eine umfassende Aussage zu treffen, wurden die Versuche sowohl mit mittel-, als auch mit langstapeliger Baumwolle in 2 verschiedenen Garnfeinheiten durchgeführt. Für die Mittelstapelqualität erfolgte der Versuch mit einer Tschad Baumwolle 1 1/16", der Langstapelbereich wurde mit Israel - Pima 1 7/16 - 1 1/2" durchgeführt. Bei beiden Baumwollen betrug die Faserfeinheit 4,1 Micronaire. Dies führt zu einer besseren Vergleichbarkeit, da bei gleicher Garnfeinheit die Anzahl der Fasern im Garnquerschnitt konstant ist.

Die Abbildung 1 demonstriert an Hand der Almeter-Faserlängenprüfung den Einfluss des Kardierprozesses auf die Faserlängenwerte, bei gleicher Auskämmung. Die Garne wurden nach dem konventionellen Ringspinnen und dem Verdichtungsspinnverfahren unter identischen Bedingungen bezüglich Ringdurchmesser, Spinnformat und Spindeldrehzahl hergestellt. Die qualitativen Unterschiede der Garne werden somit durch die Faserlängenverteilung und das Spinnverfahren bestimmt. Besonders ist auf den markanten Unterschied im Kurzfasergehalt nach dem Kämmprozess hinzuweisen. So zeigt sich im Vergleich zu den kardierten Ausspinnungen, dass eine Kurzfaserreduzierung bei einem Kämmlingsprozent von 20 % nicht sehr effektiv ist. Die Kurzfaserreduzierung im Band steht in keinem Verhältnis zum Abgang. So nimmt der Kurzfaseranteil mit 20 % Auskämmung gegenüber kardiert nur um ca. 10 % ab.

Aus der Faserlängenverteilung ist zu erwarten, dass der grösste Qualitätssprung zwischen kardiert und einem Kämmlingsanteil von 10 %, zu erreichen sein wird. Bezüglich des Festigkeitsverhaltens der Garne erkennt man, dass sowohl im Lang- als auch im Mittelstapelbereich die Festigkeit der kardierten Verdichtungsgarne

in etwa mit denen der gekämmten konventionellen Garne vergleichbar ist (Abbildung 2). Der Kämmlingsanteil der konventionellen Ringgarne ist nahezu ohne Einfluss auf die Festigkeit. Das bedeutet, man kann im konventionellen Bereich Garnfestigkeiten über erhöhte Auskämmungen nicht linear steigern. Ebenso ist die klare Tendenz erkennbar, dass der prozentuale Gewinn an Festigkeit durch das Verdichtungsspinnen beim gekämmten Garn grösser ist, als bei den kardierten Garnen.

Man kann zum Schluss kommen, dass es aus Gründen der Garnfestigkeit beim Verdichtungsspinnen kein Argument für das Kämmen gibt, solange man nur das konventionelle Ringgarn vergleicht. Andererseits führt das Verdichtungsspinnen in Verbindung mit dem Kämmprozess zu einem höheren Festigkeitsgewinn gegenüber dem konventionellen Spinnverfahren. Das bedeutet, dass das Verdichtungsverfahren die längeren Fasern besser nutzt. Das Bild der Beurteilung ändert sich jedoch gravierend, betrachtet man die Garnungleichmässigkeitskriterien. Systembedingt verändert der Verdichtungsprozess die Massenverteilung nicht, solange Fehlverzüge in der Verdichtungszone infolge unkontrollierter Anspannungen vermieden werden. Dünnstellen in Garnen, welche durch Faserabsaugungen im Spinndreieck entstehen, werden vermieden. Insgesamt ist der Faserverlust im Bereich Spinndreieck damit geringer. Bei der, in dieser Versuchsserie eingesetzten Maschine (Zinser Air - Contex 700), wird die Anspannung des Faserbändchens in der Verdichtungszone getriebetechnisch zentral eingestellt und somit kontrolliert.

Bei der Baumwollverarbeitung hat sich gezeigt, dass sich eine geringfügige Überliefe-

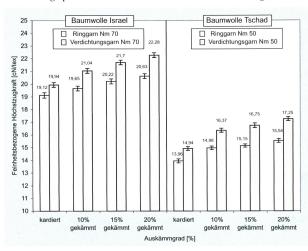


Abb. 1: Almeter Faserkennwerte der Israel- und Tschadbaumwolle in Abhängigkeit der Auskämmgrade

Abb. 2: Garnfestigkeit in Abbängigkeit der Auskämmgrade, des Garntyps und der Garnnummer

mittex 4/01 S P I N N E R E I

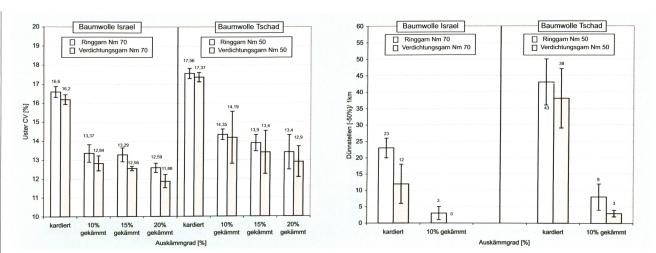


Abb. 3: Garnungleichmässigkeit in Abbängigkeit der Auskämmgrade, Abb. 4: Anzahl der Dünnstellen in Abbängigkeit der Auskämmgrade, des Garntyps und der Garnnummer des Garntyps und der Garnnummer

rung vom Streckwerk in die Verdichtungszone von ca. 2 % positiv auf das Laufverhalten und die Garnwerte auswirkten. So verbessert sich die Uster-Ungleichmässigkeit um 3 % absolut infolge des Kämmens (Abbildung 3).

Durch das Verdichten verursachte Eliminieren des Spinndreiecks scheint es möglich, geringfügige Fehlverzüge im Spinndreiecksbereich zu verhindern. Messungen ergaben zudem, dass die Festigkeit im Spinndreieck ansteigt. Das führt zusätzlich zu einer Verbesserung der Usterwerte beim Verdichtungsspinnen. Der beschriebene Effekt der Eliminierung von Faserabgang im Spinndreieck, wirkt sich besonders auf die Reduzierung der Garndünnstellen aus. Dieser Effekt ist bei den Langstapelgarnen ausgeprägter als bei den gröberen Mittelstapelgarnen (Abbildung 4). Auf die Darstellung der höheren Auskämmgrade wurde auf Grund der geringen Anzahl von Ereignissen verzichtet. Da-

mit hat das Verdichtungsprinzip einen indirekten positiven Einfluss auf die nachgelagerten Zonen des Spinnprozesses. Dies führt zu weniger Faserabgang, zur Reduzierung der Aufschieber an den Fadenleitorganen und zum schonenderen Faserdurchgang durch den Läufer. Der relative Unterschied ist bei gröberen Garnen und kurzstapeligeren Baumwollen geringer. Der Kämmprozess hat, auf Grund seiner Verbesserung der Faserlängenverteilung, logischerweise einen grösseren Einfluss auf die Garngleichmässigkeitskriterien als der Verdichtungseffekt. Das Verdichten kann die Massenverteilung nicht direkt beeinflussen. Dies zeigten auch die ermittelten Werte für die Garndickstellen, bei denen das Verdichtungsspinnen ebenfalls eine geringfügige positive Wirkung hat.

Ein besonderes Gewicht für den späteren Warenausfall kommt den Fasernissen zu. Sie sind nach wie vor eines der bestimmenden Qua-

litätsmerkmale für den Gewebeausfall bei feineren Garnen. Hier hat der Kämmprozess massive Qualitätsverbesserungen durch die Nissenreduzierung zur Folge, welche durch eine Prozessveränderung, wie das Verdichten, nicht eliminiert werden können (Abbildung 5). Der Vergleich kardierter und gekämmter Garne demonstriert einen weiteren massiven Qualitätssprung infolge des Kämmens. Höhere Auskämmgrade zeigen deutliche Verbesserungen. Dies bestätigt die alte Weisheit, dass die Anzahl Nissen in einer gewissen Korrellation zu dem Kämmlingsprozentsatz steht. Somit ergibt sich die klare Aussage, dass aus Gründen der Garnfestigkeit, der Kämmprozess in Verbindung mit dem Verdichtungsspinnen nicht zwingend erforderlich ist, jedoch die Garnungleichmässigkeit durch Kurzfaserreduzierung massiv verbessert wird. Ebenso gibt es zur Nissenreduzierung keine Alternative zum Kämmen.

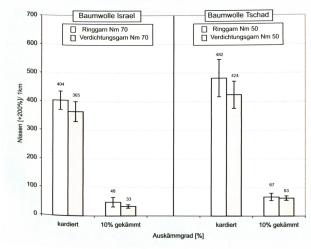


Abb. 5: Nissenzahl in Abbängigkeit der Auskämmgrade, des Garntyps und der Garnnummer

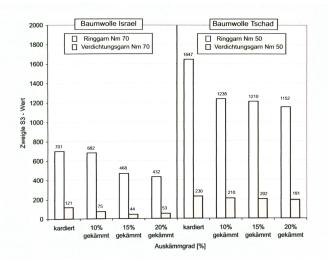
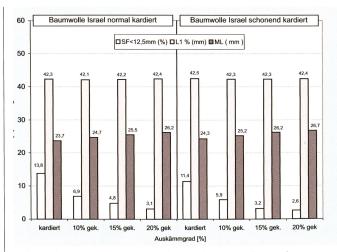



Abb. 6: Zweigle S3 - Wert in Abbängigkeit der Auskämmgrade, des Garntyps und derGarnnummer

S P I N N E R E I mittex 4/01

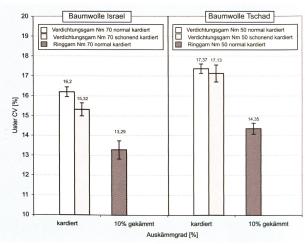
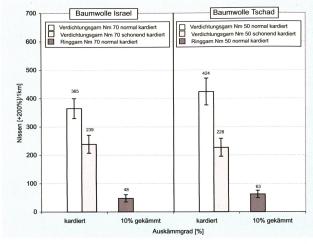


Abb. 7: Almeter Faserkennwerte der Israel Baumwolle, in Abbängigkeit der Auskämmgrade, normal und schonend kardiert

Abb. 8: Garnungleichmässigkeit in Abhängigkeit des Auskämmgrades, des Garntyps und der Garnnummer

Einfluss der Reduzierung des Kämmlingsprozentsatzes auf die Garnstruktur


Ein wesentliches Merkmal der Garnstruktur ist die Garnhaarigkeit. Die Haarigkeit beeinflusst den Faserabrieb und das Aufschiebeverhalten im weiteren Verarbeitungsprozess. Haarige Garne sind meist weniger aufschiebefest und führen zu einem schlechten Warenbild.

Bindungsbedingte Gewebestrukturen verwischen sich, farbige Markierungen im Buntgewebe verlieren an klarer Aussage, da abstehende Haare unterschiedlicher Farbigkeit sich vermischen. Somit ist ein klares Warenbild nur mit Reduzierung der Haarigkeit erreichbar. Der Uster-UT3 Haarigkeitswert gibt aus messtechnischen Gründen keinen Absolutwert für die Haarigkeit an, sondern erfasst diesen nur indirekt über Streulichtmessung. Somit ist es ein Wert, der mehr oder weniger die Garnstruktur beschreibt, welche mit dem späteren Warenbild

sehr gut korrelliert. Will man dagegen die Haarigkeit erfassen, und diese bezüglich gewünschter und störender Haarigkeit bewerten, so muss eine Längenklassifizierung erfolgen. Unter gewünschter Haarigkeit versteht man Längenklassen von 1 bis 2 mm. Sie führen zu einer höheren Deckkraft und zu einem weicheren Griff. Haare länger als 3 mm führen zu Faserflug und zur Klammerneigung in der Weiterverarbeitung. Sie müssen meist durch einen Sengprozess in der Ausrüstung eliminiert werden. Für diese differenzierte Betrachtung der Haarigkeit der Garne eignet sich die Zweigle - Haarigkeitsmessung (Abbildung 6).

Danach ergeben sich gravierende Vorteile für das Verdichtungsspinnen. Der Anteil der Haare länger als 3 mm (S3-Wert), reduziert sich auf 15 - 20 % gegenüber konventionellen Ringgarnen. Dabei ist bemerkenswert, dass das Kämmen keine Alternative zum Verdichtungsspinnen ist. Die kardierten Verdichtungsgarne

erreichen ein Haarigkeitsniveau, welches durch keinen Kämmprozess erreichbar ist. Das heisst, Verdichtungsgarne führen zu einer neuen Garnstruktur, mit bisher nicht erreichbaren Haarigkeitswerten für Stapelfasergarne. Somit sollte das Verarbeitungsverhalten der kardierten Verdichtungsgarne, auf Grund der guten Festigkeitswerte und des geringen Haarigkeitsniveaus, etwa denen der gekämmten konventionellen Ringgarne entsprechen. Der Einfluss der Stapellänge des Rohstoffes wird deutlich sichtbar beim Vergleich der Langstapel Israel -Pima Baumwolle mit der Tschad - Mittelstapelbaumwolle. Das Haarigkeitsniveau der Mittelstapelgarne ist etwa doppelt so hoch, was auch auf die gröbere Garnfeinheit zurückzuführen ist. Die Garne Nm 50 haben etwa 40 % mehr Fasern im Querschnitt als die der Nm 70, hinzu kommt die höhere Anzahl Fasern auf Grund der kürzeren Länge. Höhere Auskämmprozente verbessern das Haarigkeitsniveau nur noch ge-

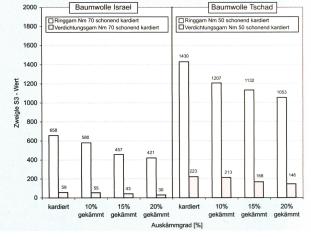


Abb. 9: Nissenzahl in Abhängigkeit des Auskämmgrades, Garntyps und Garnnummer

Abb. 10: Zweigle S3 - Wert in Abhängigkeit der Auskämmgrade, Garntyps und Garnnummer

mittex 4/01 S P I N N E R E I

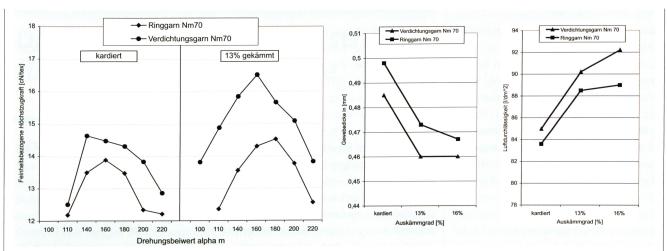


Abb. 11: Drehungskennlinien von Verdichtungs- und konventionellem Ringgarn, kardiert und gekämmt.

Abb. 12: Gewebedicke und Luftdurchlässigkeit in Abbängigkeit vom Spinnverfabren und der Auskämmgrade

ringfügig. Damit ergibt sich bei konventionellen Ringgarnen kein Argument für die höheren Auskämmprozente zur Haarigkeitsreduzierung. Die massive Haarigkeitsreduzierung ist nur mit dem Verdichtungsspinnprozess erreichbar.

Einfluss eines schonenden Kardierprozesses auf die Garnwerte

In Verbindung mit dem Verdichtungsspinnen stellt sich die Frage, ob ein schonender Kardierprozess, in bestimmten Bereichen der Garnerzeugung, den Kämmprozess mit geringer Auskämmung ersetzen kann. Bezüglich der Garnfestigkeitskriterien kann am vorherigen Abschnitt abgeleitet werden, dass bereits mit dem Standardkardierprozess die Festigkeitswerte der Verdichtungsgarne denen der gekämmten Garne entsprechen. Insofern ist hier das Ziel bereits erreicht, und ein schonender Kardierprozess führt nur zu einer weiteren Verbesserung. Das Problem liegt bei den Garngleichmässigkeitskriterien, welche durch die Kurzfasern primär beeinflusst werden. Ähnlich wie beim Einsatz unterschiedlicher Faserstoffe, deren Kurzfaseranteile die Garnwerte beeinflussen, müssten auch durch unterschiedliche Kardierbedingungen die Kurzfaseranteile, und damit die Garngleichmässigkeitskriterien, beeinflussbar sein. Dabei kann die Karde dies in zweierlei Hinsicht tun. Schonendes Kardieren kann einmal primär die Verminderung, wie Faserschädigung, und damit Reduzierung des Kurzfaseranteils bedeuten. Dabei bleibt der im Rohstoff bereits enthaltene Kurzfaseranteil, unbeeinflusst. Das Mass der Beeinflussbarkeit ist allerdings begrenzt und dürfte sich im Bereich von 2 - 4 %bewegen. Anders dagegen ist eine Vorgehensweise, bei der der Karde eine spezielle Funktion zur Kurzfaserausscheidung übertragen wird, welche sonst an der Kämmmaschine stattfindet. Dabei muss an der Karde ein höherer Abgangsprozentsatz in Kauf genommen werden. Es muss jedoch bedacht werden, dass auch beim Kämmprozess zur Kämmlingsausscheidung ein bestimmter Betrag langer Fasern benötigt wird. Die ideale Selektion der Kurz- und Langfasern findet nicht statt. Ein wichtiger zusätzlicher Aspekt der Fragestellung zur Eliminierung des Kämmprozesses, ist der Prozess der Nissenreduzierung. Dies dürfte eine Dominanz des Kämmprozesses bleiben.

Bei den vorgestellten Versuchen wurde eine schonende Kardierung ohne zusätzliche Massnahmen zur Kurzfaserausscheidung realisiert. Es wurden im Wesentlichen die Produktion halbiert sowie die Tambourdrehzahl reduziert. Dies führt zu einer Kurzfaserreduzierung, im Vergleich zum kardierten Material, um etwa 2 % (Abbildung 7).

Deutlich ist die Effektivität des Kämmprozesses erkennbar. Eine 10 % - Auskämmung reduziert den Kurzfaseranteil um ca. 7 %. Weitere Steigerungen um 10 % auf 20 % erbringen ebenfalls nur etwa eine Verbesserung des Kurzfaseranteils um 5 %. Das heisst, Kurzfaserausscheideelemente an der Karde, unter der Prämisse höherer Abgangsprozente, zur Eliminierung des Kämmprozesses wären durchaus wirtschaftlich. Ein Vergleich der Uster - CV - Werte (Abbildung 8) zeigt allerdings sofort, dass der Kämmprozess, auch auf Grund seiner höheren Dublierung, entscheidende Vorteile für die Garngleichmässigkeit erbringt. Dieser Vorteil ist durch noch so intensive Kurzfaserausscheidung an der Karde nicht minimierbar.

Das Gleiche gilt für die Fasernissen (Abbildung 9). Deutlich bewahrheitet sich erneut, dass ein schonender Kardierprozess deutliche Vorteile bezüglich des Nissenniveaus aufweist, wie der Vergleich, normal und schonend kardiert, beim Verdichtungsspinnen zeigt. Allerdings ist der Sprung zum gekämmten Garn selbst bei hoher Kardierleistung (normal kardiert) signifikant. Das heisst, die Qualitätsvorteile eines Kämmprozesses liegen primär zwischen den Stufen kardiert und gekämmt. Hohe Kämmlingsprozentsätze verbessern die Garneigenschaften nur noch graduell. Somit scheint im schonenden Kardieren eine Prozessverkürzung durch Eliminierung des Kämmprozesses nicht realisierbar, jedoch sollte eine Reduzie-

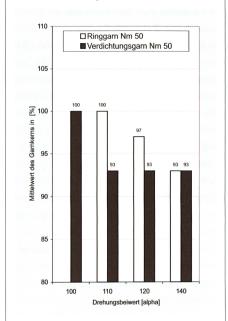


Abb. 13: Mittelwert des Garnkerns ohne abstehende Faserenden vom Ring- und vom Verdichtungsgarn Nm 50

S P I N N E R E I mittex 4/01

rung des Kämmlingsprozentsatzes in Verbindung mit dem Verdichtungsspinnen möglich sein.

Die Haarigkeitsreduzierung beim Verdichtungsspinnen führt zu einem völlig neuen Garnaussehen und zu veränderter Garnstruktur. Ähnlich wie auf die Nissen, hat der Kardierprozess auch Einfluss auf die Haarigkeit (Abbildung 10), wobei dies bei einer Langstapelbaumwolle ausgeprägter ist als bei Mittelstapelbaumwollen. Der grosse Sprung kommt allerdings durch das Verdichtungsspinnen. Das Kämmen ist bezüglich der Haarigkeitsreduzierung als untergeordnet zu betrachten. Das bedeutet, dass für Produkte, bei denen der Aspekt der Festigkeit im Vordergrund steht, der Kämmprozess entfallen könnte. Produkte mit Ansprüchen an Garngleichmässigkeitskriterien, verlangen auch unter dem Aspekt einer schonenden Kardierung einen Kämmprozess.

Möglichkeiten der Produktivitätssteigerung beim Verdichtungsspinnen durch Drehungsreduzierung

Die Garndrehung ist das wesentliche Mittel zur Verfestigung der Stapelfasern. Bisher wurden, bezüglich der Festigkeit der Garne bei gleichem Drehniveau, meist das Ring- und das Verdichtungsspinnen miteinander verglichen. Dabei spielen auch die seltenen Schwachstellen, und deren Häufigkeit, eine grosse Rolle für die Weiterverarbeitung. Das eingestellte Garndrehungsniveau wird zum einen von der Anzahl Fadenbrüche beim Spinnen, und zum anderen aber im Wesentlichen durch das Laufverhalten in der Weiterverarbeitung bestimmt. Bekannterweise steigt die Garndehnung beim Spinnen infolge Eliminierung des Spinndreiecks fast bis an die Klemmlinie. Das heisst, das Spinndreieck als Schwachstelle entfällt, was sich positiv auf das Fadenbruchverhalten auswirken sollte. Zum anderen wirkt das Verdichtungsspinnen auf die Verfestigung in höherem Masse als das Ringspinnen. Dies zeigen Spinnversuche, bei denen versucht wurde, die Garndrehung unter industriellen Bedingungen auf eine Mindestdrehung, bei angemessener Fadenbruchlage, zu realisieren. Es wurden dabei die charakteristischen Kennlinien für eine Mittelstapelbaumwolle ermittelt.

Das Ergebnis für die kardierte und gekämmte Vorlage zeigt, dass der Wert der maximalen Festigkeit beim Verdichtungsspinnen bei ca. am 20 weniger erreicht wird als beim Ringspinnen. Zum anderen verlangen lange Fasern (gekämmt) mehr Drehung als kurze Fasern (kardiert). Der Festigkeitsgewinn der Verdichtungsgarne ist aber auch bei geringeren am - Werten (unter 110) signifikant. Das heisst, man müsste in der Lage sein, bei geringeren am - Werten unter konstanter Fadenbruchlage Garne zu spinnen, die bezüglich Festigkeit, denen der heutigen konventionellen Ringgarne ähnlich sind (Abbildung 11).

Damit ergibt sich ein wesentliches Potential für Produktionssteigerungen in Verbindung mit dem Verdichtungsspinnen. Wie gross dieses Potential ist, muss in Kombination mit der Spindeldrehzahl, der Garnfeinheit, dem Ringdurchmesser und dem Rohstoff (Faserlänge) optimiert werden. Werden Zwirne hergestellt, so pflanzt sich dieser Vorteil in den Zwirnen direkt fort. Garne mit reduzierter Drehung ergeben ebenfalls notwendigerweise reduzierte Zwirndrehungen. Das Verdichtungsspinnen bewirkt auch eine grössere Kompaktheit des Garnes. Darunter versteht man üblicherweise die Dicke oder den optischen Durchmesser eines Garnes. Durch die Anwendung des Verdichtungsspinnens ergibt sich eine geringere Deckkraft im Endartikel. Dies macht sich bereits in der Gewebedicke bemerkbar. Dabei wurden Verdichtungsgarne nur im Schuss eingesetzt. Die Deckkraft ist auch individuell über die Luftdurchlässigkeit messbar. Das gleiche Gewebe mit Verdichtungsgarn im Schuss, ergab stets eine geringfügig höhere Luftdurchlässigkeit beim Einsatz des Verdichtungsgarnes (Abbildung 12).

Das heisst, die Garnstrukturunterschiede schlagen sich im Gewebeausfall nieder. Die Drehungsreduzierung der Garne ist ein wesentliches Hilfsmittel zur Korrektur dieser Erscheinung, und führt zu einer Erhöhung der Deckkraft im Gewebe. Eine am ITV entwickelte Methode zur Garnstrukturmessung, erlaubt die optische Bestimmung des Garndurchmessers am laufenden Faden. Unter Eliminierung der Haarigkeit kann damit der Mittelwert des Garnkerns festgestellt werden (Abbildung 13). Ein Vergleich der Verdichtungs- und Ringgarne in Abhängigkeit der Garndrehung ergibt, dass der prozentuale Unterschied der Garndicke durch etwa 10 am reduziert werden kann. Das heisst, die Drehungsreduzierung ist ein Mittel zur Kompensation der Deckkraftunterschiede.

Wir danken dem Forschungskuratorium Textil e.V. für die finanzielle Förderung dieses Forschungsvorhabens (AIF-Nr. 11989), die aus Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi), über einen Zuschuss der Arbeitsgemeinschaft industrieller Forschungsvereinigungen «Otto von Guericke» e.V., (AIF), erfolgte.

500. Rotorspinnmaschine R 20 ausgeliefert

Die 500ste R 20 von Rieter wurde an die Fa"Belda Llorens" in Bañeres (E) geliefert. Zur
Übergabe dieser Rotorspinnmaschine fand eine
Feier im Beisein der Besitzerfamilie Mataix
statt. Der Betrieb in Bañeres, Spanien, mit derzeit mehr als 14'000 Rotoren ist spezialisiert
auf die Herstellung farbiger Garne aus einer
Vielzahl von Mischungen aus Baumwolle, Polyester, Viskose und Acryl. Insbesondere werden
flockegefärbten Mischungen verarbeitet. Belda
Llorens setzt dazu Karden, Strecken und Rotorspinnmaschinen von Rieter ein.

Bei einem Betriebsrundgang erläuterte George Mataix den zuständigen Verkaufsleitern und Produktverantwortlichen von Rieter seine Strategie einer ständigen Weiterentwicklung seiner Produkte. Das betriebsspezifische Knowhow über Rohmaterial und Verarbeitungsprozesse ermöglichen ihm, die Rotorspinnmaschinen mit einem sehr hohen Nutzeffekt zu betreiben. Die hohe Flexibilität und die Zuverlässigkeit der R 20 unterstützen diese Bemühungen.

Daneben betrachtet Mataix die ständige Erneuerung der Rotorspinnerei als wichtigen Bestandteil seiner Unternehmensstrategie, die ihm weiterhin eine führende Marktposition sichern soll.

