Zeitschrift: Mittex: die Fachzeitschrift für textile Garn- und Flächenherstellung im

deutschsprachigen Europa

Herausgeber: Schweizerische Vereinigung von Textilfachleuten

Band: 94 (1987)

Heft: 10

Rubrik: Spinnereitechnik

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

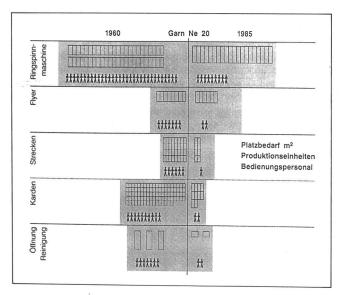
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Spinnereitechnik

Die Kurzstapelspinnerei im Jahre 2000


Referat von Herrn H. Bachmann, Direktor der Firma Maschinenfabrik Rieter AG, anlässlich der Tagung von Eurocoton in Windermere, England am 2. Juli 1987.

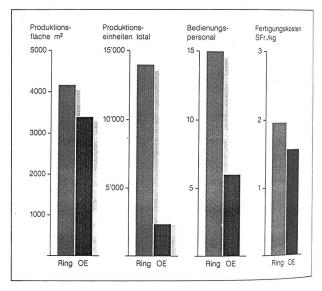
1. Leistungssteigerung bis 1987

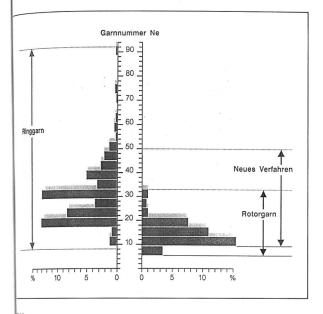
Ringspinnmaschine und O.E.-Rotorspinnmaschine sind im Moment fast die einzigen Endspinnmaschinen der Kurzstapelspinnerei. An beiden liessen sich in den letzten Jahren beträchtliche Leistungssteigerungen erzielen und grössere Rationalisierungen durchführen. Berücksichtigt man die im gleichen Zeitraum in ähnlichem Ausmass erfolgten Verbesserungen an den Maschinen des Vorwerks, so ergeben sich für den Garnproduzenten wesentliche Kosteneinsparungen. Für eine komplette Ringspinnerei konnte in den Jahren 1960 bis 1987 der Personalbestand auf ein Viertel gesenkt werden, resultierend in einer spektakulären Verminderung der Arbeiterminuten pro kg Garn. Etwas weniger auffällig, aber doch auch beachtenswert, sind die Reduktion des Platzbedarfs auf zwei Drittel und die der Produktionseinheite4 auf drei Viertel.

Abteilung	Platzbedarf	Produktions- einheiten	Bedienungs personal
	%	%	%
Ringspinnmaschinen	- 34	- 27	- ·71
Flyer	+ 34	- 14	- 57
Strecken	- 32	- 75	- 83
Karden	- 73	- 89	- 80
Öffnerei/Reinigung	- 57	- 33	- 71
Total	- 36	- 27	- 72

Bild 1

Noch um einiges stürmischer als in der Ringspinnerei verlief die Entwicklung beim O.E.-Rotorspinnen, welches erst seit der ITMA 1967 weltweit bekannt ist, Hier gelang es, innerhalb von 20 Jahren die Rotordrehzahlen von 35'000 min⁻¹ auf 100'000 min⁻¹ zu erhöhen und den Personalbestand, dank eines hohen Automations grades, auf einige wenige Personen abzubauen. Wiederum die Fortschritte im Vorwerk berücksichtigt, bedeutet dies, dass man zur Erzeugung derselben Menge Garn heute mit einer Produktionsanlage halber Grösse auskommt. Die markanten Verbesserungen der O.E.-Rotorspinnmaschine führten zu einer Steigerung der Produktion teilweise auf das Achtfache der Leistung der Ringspinnmaschine pro Spinneinheit. Eine Gegenüberstellung beider Verfahren (Ring- und Rotorspinnen) in Abb. 3 zeigt die sich daraus ergebenden Vorteile für das Rotorspinnen bei einer Garnfeinheit von Ne 20 (30 tex):




Bild 3

- Platzeinsparung um 20%,
- Reduktion der Produktionseinheiten um 80%,
- Verminderung des Personals um 60% und
- Senkung der Fertigungskosten um 20%.

Recht interessant ist dabei, in welchem Marktsektor (Garnnummer) und in welchem Umfang beide Verfahren um Einsatz kommen (Abb. 4). Schwerpunkt der Ringspinnerei ist der Nummernbereich Ne 18–45 (13–33 tex), wohingegen das Rotorspinnen, bedingt durch die Wirtschaftlichkeitsbegrenzung nach oben, vor allem den Bereich Ne 6–20 (30–100 tex) abdeckt. Die grosse Überschneidung liegt bei Ne 20 (30 tex).

Ein neues Verfahren, das sich nur mit sehr viel Aufwand entwickeln lässt, braucht einen lukrativen Markt, also den Bereich, in dem die meisten Garne gesponnen werden. Es ist dies der Sektor Ne 10–50 (12–60 tex). Auch maschinenbautechnisch und technologisch bietet sich dieses Spektrum an. Ein neues, erfolgreiches Spinnverfahren steht daher nicht nur in Konkurrenz zur Ringspinnmaschine, sondern auch zur Rotorspinnmaschine. Ansätze zur Entwicklung eines solchen neuen Verfahrens sind vorhanden und teilweise auch recht vielversprechend.

Es ist daher wenig verwunderlich, dass in den letzten Jahren die Fachzeitschriften, Symposien, Tagungen beherrscht wurden vom Thema «Neue Spinnverfahren». Leider aber lag der Schwerpunkt der Analysen meist bei

intechnisch und technologisch bedingten Grenzen der instamöglichkeiten z. B. des O.E.-Friktionsspinnens, is mechanischen und des pneumatischen Falschdrahtinnens. Dabei ist dieses ständige Auflisten von Eininfänkungen für die Entwicklung hemmend. Wesentinvorteilhafter wäre es, den Spiess einmal umzukehinund sich zu fragen, wie denn ein Verfahren des Jah2000 unseren Vorstellungen entsprechend auszuseinhätte. Die Firma Rieter hat diese Vorstellungen etis konkretisiert und in einen wirtschaftlichen Rahmen
istellt. Es ergeben sich teilweise recht überraschende

Rahmenbedingungen für die Spinnerei 2000

wzugehen ist von den Forderungen der Textilindustrie chrationelleren Fertigungsmethoden, hat doch die Instrie allgemein ihre Produkte in einem hektischen lacht und bei härtester internationaler Konkurrenz unzubringen. Erfüllen lassen sich diese Forderungen land durch ein ständiges Zusammenarbeiten der Forder, der Maschinenhersteller und der Textilproduzenwom Garnerzeuger bis zum Konfektionär.

Basis aller Überlegungen müssen dabei die Rahmen-Ingungen sein, die im Jahre 2000 Gültigkeit haben Iden. Es sind dies vor allem:

wtomatisierter Prozess sowohl auf als auch zwiwhen den Maschinen.

le Integrierung moderner Computeranlagen und lektronik zur Qualitäts- und Produktionsüberwa-

resonalarme Betriebe für ein möglichst bedienungsreies Produzieren während sieben Tagen rund um die

Igemeine und wesentliche Verbesserungen der Prouktionsmaschinen, um durch Leistungssteigerungen in wachsenden Kapitalbedarf auf eine höhere Prouktionsmenge umlegen zu können.

die Erfahrung zeigt, sind Fortschritte in dieser Richnicht über Nacht zu erreichen. Es vergehen Jahre es bedarf vielen Aufwandes, um neue Verfahren, lesse und Maschinen zu entwickeln und sie im Markt wühren. Dies und die zu erwartende Teuerung sind einer Gegenüberstellung der Jahre 1987 und 2000 zu berücksichtigen, denn mit Sicherheit erfahren die Basisfaktoren einer Kostenrechnung nicht unwesentliche Veränderungen. Letztlich liegen der von der Firma Rieter vorprojizierten Entwicklung bis zur Jahrhundertwende, folgende Daten als Annahme zugrunde.

Jahr .	1987	2000	
Betriebsstunden h/Jahr	5850	8000	
Löhne: SFr./h Bedienungspersonal Mechaniker/Elektroniker Hilfspersonal	22. – 25. – 18. –	36. – 40. – 30. –	
Strompreis SFr./kWh	0.12	0.18	
Gebäudekosten SFr./m²	1200	1500	
Zins % p.a.	7.0	7.0	
Amortisation in Jahren: Maschinen Gebäude	10 30	10 30	

Bild 5

- Auch in Zentraleuropa und anderen Ländern ist die Arbeitszeit wie heute bereits in Fernost auf 8000 Stunden anzuheben.
- Die Löhne steigen zum Ausgleich der Teuerung, der Arbeitszeitverkürzung und der Zulagen für Wochenendschichten. Der Ansatz der Stundenlöhne wurde daher angehoben, beim Bedienungspersonal von Fr. 22.- auf Fr. 36.-, bei Mechanikern von Fr. 25.- auf Fr. 40.- und für das Hilfspersonal von Fr. 18.- auf Fr. 30.-/h.
- Der Strompreis erhöht sich von 12 auf 18 Rp./kWh.
- Bei den Gebäudekosten ist statt mit Fr. 1'200.-/m² im Jahre 2000 mit Fr. 1'500.-/m²zu rechnen.
- Die Kapitalzinsen bleiben, von kleinen Schwankungen abgesehen, ziemlich konstant.
- Auch die kalkulatorischen Abschreibungen sollten nicht entscheidend vom derzeitigen Niveau abweichen

Aus diesen Vorgaben lassen sich die Veränderungen bis zum Jahre 2000 ableiten.

3. Die Ringspinnerei 2000

Betrachtet man die Ringspinnerei, für die auch weiterhin ein sehr grosses Marktpotential zur Verfügung steht, so kann man sich vorstellen, dass auch hier zwar Fortschritte erzielt, diese aber nicht so spektakulär sein werden und sich vor allem auf die Ringspinnmaschine selbst beziehen. Hier kann man von einer Drehzahlsteigerung der Spindeln auf 20'000 min⁻¹ausgehen. Vermehrt ist mit dem Einsatz von Automation, Elektronik und Prozessleittechnik zu rechnen, was wesentlich höhere Investitionskosten bedingt. Bei einer Garnfeinheit von Ne 40 (15 tex) gekämmt steigen die Arbeitsplatzkosten nach dieser Annahme von derzeit 1,4 auf 3 Millionen Franken.

Diese durch die Grafik klar ausgewiesene Kapitalintensität (aufwandmässig) moderner Spinnereianlagen lässt

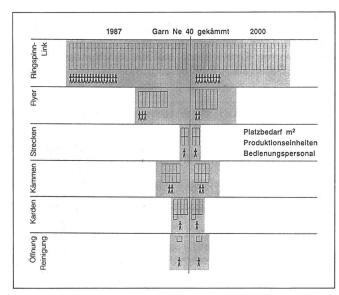


Bild 6

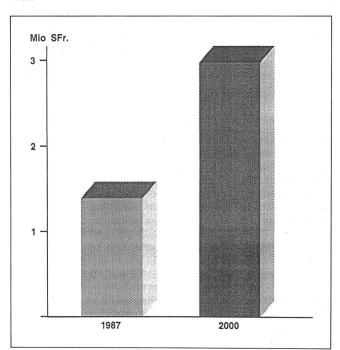


Bild 7

deutlich erkennen, dass sich die Textilindustrie wieder vermehrt in den Industrieländern mit günstigen Zinsverhältnissen ansiedeln wird.

Trotz dieses enormen Kapitalaufwandes gehen die Fertigungskosten von Fr. 4.60 auf Fr. 4.40 pro Kilo Garn zurück (bei einer Betriebszeit von 8000 Stunden pro Jahr).

Im Detail könnten sich diese Kosten zusammensetzen aus:

- 34% Personalkosten, die in der Grössenordnung etwa gleich bleiben, da ein zahlenmässiger Abbau an Personen durch die Lohnkostensteigerung von etwa 50% aufgefangen wird und da ein Teil des abgebauten Bedienungspersonals durch teurere, hochqualifizierte Spezialisten zu ersetzen ist.
- 19% Energiekosten statt 14% wie heute.
- 6% Betriebsmaterialkosten, vor allem Ersatzteile.
- 6% Kapitalkosten für Zubehör und Gebäude, ein Anteil, der sich durch die bessere Maschinenausnutzung wird senken lassen.

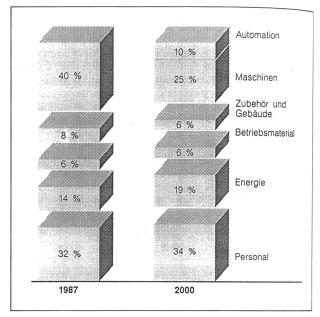


Bild 8

 35% Kapitalkosten für Maschinen und Automation anstatt 40% wie derzeit. Die Reduktion lässt sich wie derum durch eine bessere Maschinenausnutzung, aber auch durch höhere Leistungen erreichen.

Gelänge es nicht, die anvisierten Verbesserungen zu erreichen, d. h. blieben die Bedingungen gleich wie heute, wäre mit einem Anstieg der Fertigungskosten auf knapp Fr. 6.-/kg zu rechnen.

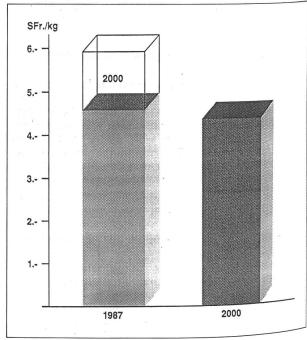
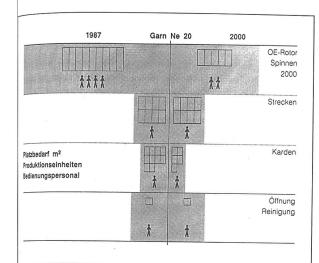



Bild 9

4. Rotorspinnverfahren und neues Spinnverfahren 2000

Die Abbildung 10 zeigt eine Gegenüberstellung einer modernen Rotorspinnerei und einer Spinnereianlage 2000. Bei der Anlage 2000 wird von einem neuen, vollautomatischen Verfahren mit einer Lieferung von 350 m/min ausgegangen. Auf der linken Seite befindet sich

9id 10

© Darstellung der Rotorspinnerei und auf der rechten © der Anlage 2000. Basis des Vergleiches ist das Ro-Impinnen, denn dies stellt das eigentliche Konkurrenz-Infahren dar.

besserungen gegenüber dem Rotorspinnen – auch Benüber einem weiterentwickelten – weist das Verbren 2000 im wesentlichen in zwei Positionen auf, Imlich beim

-Platzbedarf.

les ist auch in der Kostenaufteilung der Abbildung 11 inks Rotorspinnen, rechts Spinnen 2000) klar ersichth. Etwas erstaunlich ist der Zuwachs an Personalkoh. Der Personalbestand in einer modernen Rotorspinhie befindet sich aber bereits heute auf einem so tiefen heau, dass ein weiteres Absenken nur noch in behänktem Ausmass möglich erscheint. Sehr stark wirhisch daher der Ausgleich der Teuerung und die Lohnhagen aus.

Automation 8 % 36 % Maschinen 24 % Zubehör und Gebäude 10 % 12 % Betriebsmaterial 6 % 9 % Energie 19 % 16 % 33 % 27 % Personal 1987 2000

Die vorliegende Grafik zeigt nur die prozentuale Verteilung der Fertigungskosten. Effektiv betragen sie im Jahre 2000 für die von Rieter angenommenen Verhältnisse bei Ne 20 (tex 30) Fr. 1.50/kg beim Rotorspinnen und Fr. 1.40/kg beim Spinnverfahren 2000. Es sei hier nochmals darauf hingewiesen, dass eine Vorschau auf das Jahr 2000 nur auf Annahmen beruhen kann, dass aber auch solche Projizierung, trotz ihrer systembedingten Unzulänglichkeiten, zur Festlegung von Strategien absolut notwendig sind.

5. Schlussbetrachtung

Die kurzen, visionären Überlegungen zeigen deutlich:

- Die Zielsetzung der Textilmaschinenhersteller, ein neues Spinnverfahren zu entwickeln, ist richtig und für den Garnproduzenten wichtig.
- Es ist zu erwarten, dass auch hier, wie schon beim Rotorspinnen, ein Durchbruch möglich ist und Kurzstapelgarne im Jahre 2000 billiger zu erzeugen sind.
- Voraussetzung ist jedoch die Lösung des Politikums der Betriebszeit von 7 Tagen mit 4 oder mehr Schichten.
- Das kapitalintensive Unternehmen der Zukunft macht das Management zu Bankiers.
- Die hohen Produktionsleistungen und hohen Qualitätsanforderungen an die textilen Produkte setzen den Einbezug integrierter Computeranlagen voraus.
- Im Textilbetrieb Vision 2000 wirken sich Fehlentscheide überproportional stark aus. Effiziente, computerunterstützte Management-Informations-Systeme sind daher Bestandteil der Anlage 2000. Die kurzen Durchlaufzeiten erfordern einen raschen Zugriff der Geschäftsleitung zu den Planungs-, Produktions-, Fertigungs- und Verwaltungsinformationsdaten.
- Die Entwicklungsleistungen der Textilmaschinenindustrie und die Kreativität in der textilen Fertigung sichern die Zukunft der Textilindustrie in den Industriestaaten.

Zusammenfassend kann gesagt werden, dass sich für die Garnproduzenten ein sehr positives Zukunftsbild abzeichnet. Aber auch hier gilt: Nur wer wagt, gewinnt!

Technologie der Rieter-Baumwollkämmerei

1. Einleitung

Mit der Entwicklung neuer Spinnverfahren prognostizierte man der klassischen Baumwollspinnerei und damit auch der Kämmerei eine gravierende Schrumpfung. Inzwischen wurde diese Ansicht revidiert, denn es sprechen gewichtige Gründe für den Weiterbestand, ja sogar für eine Ausweitung der Kämmerei:

- Die Baumwolle ist mit 50% Anteil an der Weltfaserproduktion immer noch die wichtigste Faser und wird es noch lange bleiben.
- Zunehmende Verschlechterung des Rohstoffes Baumwolle in bezug auf kleine Schalenteile und Kurzfaseranteil infolge rationellerer Ernte- und Egreniermethoden.
- Zwang zu besserer Ausnützung des Rohstoffes.
- Renaissance der konventionellen Ringspinnerei, die sich durch hochwertige Garne von neuen Spinnverfahren abheben kann.
- Erkennbare Grenzen der neuen Spinnverfahren in bezug auf Garnqualität und Garnfeinheit, die nur durch höherwertigen Rohstoff überschritten werden können.
- Die Möglichkeit, durch Ausscheiden eines kleineren Betrages an Kämmling (Upgrading) die Produktivität und das Laufverhalten merkbar zu verbessern.
- Die Möglichkeit, Kämmereiabgänge wieder dem Spinnprozess (Rotorspinnerei) zuführen zu können, so dass der Verlust an Rohstoff beim Kämmen nicht mehr so stark ins Gewicht fällt.
- Die Kosten der Kämmerei zu senken und die Arbeitsbedingungen zu verbessern.

2. Kämmerei

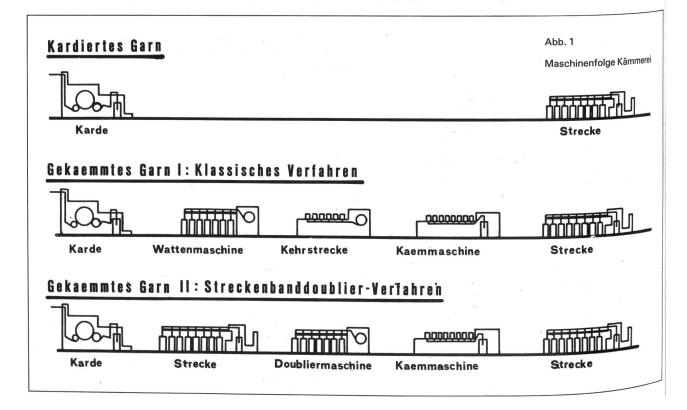
2.1 Vergangenheit

Etwa bis zum Jahre 1950 wurden nur Garne der höchsten Qualitätsstufe und feine Garnnummern über einen langsamen, unproduktiven Kämmprozess hergestellt. Es kam sehr gute, meist handgepflückte Baumwolle zum Einsatz (1)*.

Man hat Garne mittlerer Qualität meist nicht gekämmt, sondern doppelt oder mit sehr geringer Produktion kardiert und anschliessend mit drei bis vier langsamlaufenden Streckpassagen, drei Flyerpassagen und doppelt aufgesteckt auf der Ringspinnmaschine ausgesponnen.

2.2 Heute

Die Baumwolle wird fast ausschliesslich maschinell ge erntet und sehr intensiv egreniert. Dies führt zu einem höheren Verschmutzungsgrad und zu einer Zertrümmerung der Schmutzpartikel (Peppertrash). Die Arbeitsgeschwindigkeit aller Maschinen in der Spinnerei hat sich gewaltig erhöht und die Passagenzahlen deutlich verningert. Die Ansprüche der Abnehmer an die Garne sind gestiegen. Wesentlich höhere Arbeitsgeschwindigkeiten an den Maschinen der Weiterverarbeitung und moderne Prüfmethoden lassen Fehler schneller und deutlicher erkennen. In der Ausrüstung werden Arbeitsgänge eingespart.


Eine moderne Kämmerei sollte deshalb wirtschaftlich arbeiten, d.h. eine hohe Produktion mit geringstem Arbeitsaufwand erzielen und möglichst wenig Abgang aufweisen. Sie muss in bezug auf Baumwoll-Angebot und Qualitätsziel flexibel reagieren können.

Eine konstant hohe Qualität des Kämmaschinenbandes ist Voraussetzung für eine Einsparung von Arbeitsstufen nach der Kämmaschine.

Der Arbeitsplatz Kämmerei hat umweltfreundlich zu sein, d.h. die Bedienung soll rationell, ohne Schwerarbeit, möglichst von Staub und Abfall befreit, arbeiten können.

3. Kämmereivorbereitung

Der Kämmaschine ist ein grosser Wickel mit bestimmtem, möglichst hohem und gleichbleibendem Wattengewicht vorzulegen. Je besser dieser Wickel vorbereitet ist, desto schwerer kann das Wattengewicht für die Kämmaschine gewählt werden und/oder desto kleiner wird der Kämmlingsabfall bei gleicher Sauberkeit des Garnes. Andererseits sind die Forderungen nach maximalem Wickelgewicht und optimal für das Kämmen vorbereiteter Watte entgegengesetzte Forderungen. Die Technologie hat deshalb einen vernünftigen Kompro-

^{*}siehe Literaturnachweis

1957-1987 30 Jahre Zwirnerei 30 Jahre Zwirnerei K**esmalon ag** CH-8856 Tuggen SZ CH-8856 Tuggen SZ Tel. 055 78 71 71 Tel. 055 78 71 71 Telex 875 645

SEIT 30 JAHREN lentalonen NIE VERLOREN

Ob sportlich-dynamisch, modisch-elegant, raffiniert-verführerisch oder technisch-funktionellfuturistisch-intelligent: Ihren Ansprüchen werden wir gerecht!

Kesmalon, ICI und Du Pont finden für Sie auch in Zukunft immer den richtigen Faden!

kesmalon ag

Zwirnerei CH-8856 Tuggen SZ Tel. 055 78 17 17 Telex 875 645 iss in bezug auf Qualität und Wirtschaftlichkeit zu fin-

der Fachwelt war lange Zeit umstritten, welche Art Norbereitung, z.B. Anzahl der Passagen zwischen de und Kämmaschine, Höhe des Gesamtverzuges, ufteilung der Teilverzüge, Anzahl Doublierungen usw. is richtige ist. Bei genauer Analyse ist festzustellen, ss nur die Synthese von Technologie und Maschinenhink das Optimum ergibt. Deshalb muss die Kämmevon der Karde bis und mit der Strecke nach der Kämmachine betrachtet werden.

der Praxis haben sich bisher nach Abb. 1 zwei verbiedene Kämmereivorbereitungs-Verfahren durchgeetzt: (2)

Das klassische Verfahren mit Bandwickler oder Wattenmaschine und anschliessender Kehrstrecke.

Das Streckenbanddoublier-Verfahren mit Bandstrecke und anschliessender Bandwickel- oder Wattendouliermaschine.

ks klassische Verfahren wird vor allem in Europa und sien für hochwertige und feine Garne eingesetzt. Das wite Verfahren ist mehr bei kurzstapligen, gröberen in mittleren Garnen mit niedrigen Auskämmungsprositen verbreitet.

technologische Unterschied liegt hauptsächlich dardess beim klassischen Verfahren in der ersten Stufe dig und in der zweiten Stufe hoch verzogen wird. In Streckenbanddoublier-Verfahren ist es gerade umkehrt.

Häkchentheorie

Erkenntnis, dass die Karde nicht parallele und gelekte Fasern, sondern sog. Faserhäkchen abliefert dies einen deutlichen Einfluss auf die Kämmerei hat, um genau dreissig Jahre alt (3).

n erkannte damals, dass die Mehrheit der Fasern h Abb. 2 die Karde mit einem nachschleppenden hehn, ein geringer Teil als Kopfhäkchen und der Rest Doppelhäkchen oder gestreckt verlassen. In den fol-

Wattenmaschine Kehrstrecke

Wattenmaschine Kehrstrecke

Karde Kanne

Wattenmaschine Kaemmaschine

Kaemmaschine

Wattenmaschine

Kaemmaschine

Wattenmaschine

Kaemmaschine

Wattenmaschine

Kaemmaschine

genden Jahren stellte man fest, dass die Häkchen einen deutlichen Einfluss auf die Garnqualität haben, wenn bestimmte Regeln nicht eingehalten werden. Dazu gehören z.B. die Erkenntnisse:

- Die Auflösung der Häkchen funktioniert am besten, wenn sie ein Streckwerk als Schlepphäkchen passieren und in den Rundkamm als Kopfhäkchen einlaufen.
- Je höher der Verzug und intensiver die Verzugsarbeit, desto besser ist die Auflösung der Häkchen im Streckwerk.
- Zur Auflösung der Häkchen werden immer mehrere Passagen benötigt.
- Selbst durch intensive Streichbewegungen des Rundkammes der Kämmaschine werden nicht alle Häkchen geöffnet.

Die Folgerungen dieser Untersuchungen waren:

- Zwischen Karde und Kämmaschine werden immer zwei Arbeitsstufen mit dazwischenliegender Bandumkehr benötigt.
- Moderne Streckwerke können die Auflösung der Häkchen effizienter vornehmen.
- Nach einer modernen, gut eingestellten Kämmaschine wird nur eine Streckenpassage benötigt.

Unsere Untersuchungen zeigten, dass die Häkchentheorie stimmt und auch für Hochleistungskarden Gültigkeit hat. Diese technologischen Grundlagen müssen deshalb bei der Konstruktion neuer Maschinen berücksichtigt werden (4).

5. Einfluss der Kämmereivorbereitung auf die Faserhäkchen

Umfangreiche Laboruntersuchungen haben bewiesen, dass Einstellungen und Verzüge der Kämmereivorbereitung bis in die Garnqualität durchschlagen. Solche Erkenntnisse sind erst möglich, seit Mittelstapel und vor allem Kurzfaseranteil exakt gemessen werden können (5).

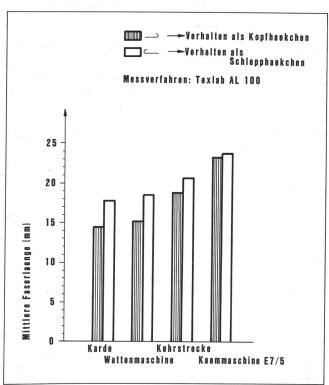


Abb. 3 Einfluss des Verzuges auf Faserhäkchen bei klassischer Vorbereitung

Man kann damit feststellen, wie weit die Parallelisierung bzw. Häkchenöffnung fortgeschritten ist.

Abb. 3 lässt erkennen, wie beim klassischen Verfahren an Wattenmaschine und Kehrstrecke der Mittelstapel ansteigt und damit der «scheinbare» Kurzfaseranteil abnimmt. Da an diesen Maschinen keine Kurzfasern entnommen werden, ist die Stapelverbesserung einzig und allein durch die Parallelisierung und Auflösung von Faserhäkchen zu erklären. Man erkennt mit zunehmender Passagenzahl sehr gut die Abnahme dieser Faserhäkchen. Im Idealfall müssen Leit- und Schlepphäkchen den gleichen Mittelstapel resp. Kurzfaseranteil ergeben.

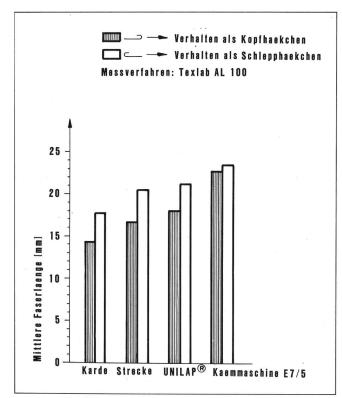


Abb. 4 Einfluss des Verzuges auf Faserhäkchen beim UNILAP®-Verfahren

Das in der «mittex» Okt. 87 beschriebene UNILAP®-Verfahren zeigt das gleiche Verhalten. Durch den höheren Verzug an der Strecke wird aber ein grosser Teil der Häkchen nach Abb. 4 bereits dort geöffnet. Nach der Kämmmaschine E7/5 sind deshalb keine Unterschiede mehr zwischen den beiden Vorbereitungsverfahren erkennbar.

6. Verzug in der Kämmereivorbereitung

Die an der Karde erzeugten Häkchen bedingen einen Vorbereitungsverzug zwischen Karde und Kämmaschine sowie eine zweimalige Umkehr des Faserverbandes. Durch die neuentwickelten Streckwerke liegt der Vorbereitungsverzug beim UNILAP®-Verfahren deutlich niedriger als beim alten Streckenbanddoublier-Verfahren. Als Vorteile daraus resultieren eine bessere Wickelqualität und grössere Wickel-Nettogewichte. Der optimale Vorbereitungsverzug liegt zwischen 8- und 11fach.

Aus Abb. 5 der Garnqualität in Abhängigkeit des Vorbereitungsverzuges geht hervor, dass sich Garnreinheit und Garnfestigkeit leider gegensätzlich verhalten. Einerseits wird bei hohem Vorbereitungsverzug zwar eine bessere Garnfestigkeit erreicht, jedoch erleidet die Garnreinheit infolge der höheren Parallelisierung eine Ver-

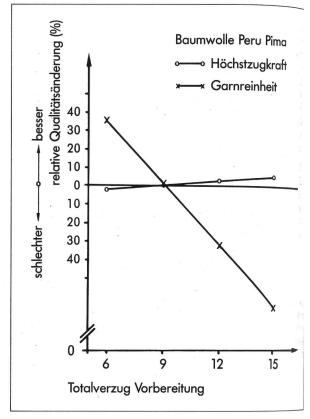


Abb. 5 Einfluss Vorbereitungsverzug auf Garnqualität

schlechterung. Denn eine hohe Parallellage der Fassen im Vorlagewickel reduziert das Rückhaltevermögen in der Watte. Dadurch ist es möglich, dass die Fassen, die nach dem Durchgang des Rundkammes aus der Watte herausgezogen werden, Nissen und Unreinigkeiten in das Kämmband mitreissen. Ein gewisses Minimum von querliegenden Fasern in der Wickelwatte ist durchals erwünscht. Sie helfen dem Rundkamm zusätzlich Unreinigkeiten in den Kämmling abzustreifen.

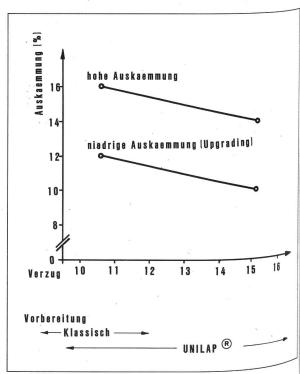
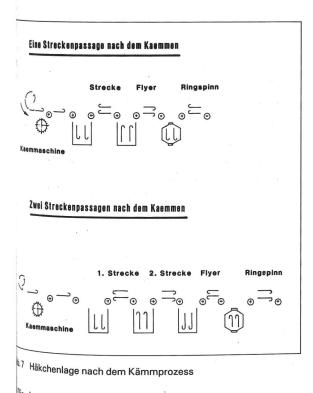


Abb. 6 Einfluss Vorbereitungsverzug auf Auskämmung


ererseits nimmt der Kämmlingsprozentsatz nach 6 mit höherem Vorbereitungsverzug bei gleicher maschineneinstellung ab. Dies ist besonders bei halbgekämmten Sortimenten (Upgrading) wegen Einsparung von Abgängen interessant. Generell ist Jer Kontrolle des Kämmlings zu bedenken, dass die maschine ein Stapelziehapparat ist. Ein variierender mlingsabgang muss nicht ein Maschinenfehler sein. e Schwankung ist meist die Folge einer Mischungswankung in der Putzerei oder der Einfluss von Manen aus dem Vorwerk.

dem neuen UNILAP®-Verfahren sind somit je nach setzung, Garnqualität und Abgang-Prozente in gesen Grenzen steuerbar. Bedeutung gewinnt jedoch die Einsparung von Gutfaserabgang aufgrund der en Wickeldimensionen, da wesentlich weniger Aneranfallen.

treckprozess nach dem Kämmen

ersuchungen in der Rieter-Versuchsspinnerei und vor m in der Praxis zeigen, dass mit der neuen Kämmeorbereitung UNILAP® und der Kämmaschine E7/5 mit # Streckenpassage hochwertige Garne erzeugt werkönnen. Dies aus zwei Gründen:

a doch noch Faserhäkchen durch die Nadeln der ämmaschine schlüpfen und diese dann nur noch innsiv im Ringspinnstreckwerk aufgelöst werden könen, ist es wichtig, dass die Mehrzahl dieser Häkchen m Ringspinnstreckwerk als Schlepphäkchen prämitert werden. Dies ist beim Ein-Streckenpassagenlözess (Abb. 7) der Fall.

hochparallelisierten Kämmaschinenbänder werhodurch zweimaliges Strecken weiter parallelisiert,
he Haftlänge nimmt ab, die Bänder neigen zum Abheissen von Fasern und zu Fehlverzügen am Einlauf
his Flyers. Mit nur einer Streckenpassage wird dieses
hoblem vor allem bei kurz- und mittelstapliger Baumholle entschärft

Wiederum ist aber der ganze Kämmereibereich mitsamt der Streckenpassage als Einheit zu betrachten. Die Einpflanzung von einzelnen Stufen in einen bestehenden Betrieb stellt vielfach einen Kompromiss dar und sollte vor der Investition auf ihren Erfolg hin untersucht werden.

8. Prozessempfehlung

Verfahren	UNILAP® - Verfahren		Klassisches Verfahren	
Karde -ohne Regulierung -mit Regulierung (o.Streckwerk)	х	X	X	X
Strecke vor UNILAP ® - ohne Regulierung - mit Regulierung	X	X		
UNILAP ®	ч Х	X	V	/
Wattenmaschine			Х	X
Kehrstrecke	V		Х	Х
Kaemmaschine E7/5	Х	Х	X	Х
Strecke - mit Regulierung (Kurzzeit)	X	х	X	X

Abb. 8 Prozessempfehlung für eine moderne Kämmerei

Abb. 8 zeigt eine Prozessempfehlung zwischen Karde und Flyer. Die Wahl des jeweiligen Vorbereitungsverfahrens muss aufgrund verschiedener Kriterien wie Ziel des Kämmprozesses, Platzbedarf, Art der Bedienung und nicht zuletzt der Wirtschaftlichkeit erfolgen. Meistens wird dann der Entscheid zugunsten des UNILAP®-Verfahrens fallen.

Bei Karden ohne Regulierung empfiehlt Rieter beim UNI-LAP®-Verfahren eine Strecke mit Regulierung. Dies führt zu einer hohen Gleichmässigkeit der Wickelwatte in Längs- und Querrichtung. Karden mit sog. Kurzzeit-Streckwerksregulierung bringen in der Kämmereivorbereitung infolge ihres zusätzlichen Verzuges nur Nachteile.

Bei Einschluss der Kämmaschine E7/5 kann bis zu den feinen, langstapligen Ringgarnen nach der Kämmaschine mit nur einer Streckenpassage gearbeitet werden, die dann allerdings eine Kurzzeitregulierung aufweisen muss.

9. Einfluss der Auskämmung auf die Fadenbrüche

Die Fadenbrüche in der Spinnerei beeinflussen nicht nur die Wirtschaftlichkeit der Spinnerei, sondern mit wesentlich grösseren Kostenanteilen auch die Weiterverarbeitung bis hin zur Qualität des Endproduktes. Die Kämmerei hilft in Fällen eines ungleichmässigen Rohstoffes bzw. bei Sortimenten an der Spinngrenze, die Fadenbrüche oft schon durch geringe Auskämmungsprozente deutlich zu senken und zwar um 50 % bei 15 % Auskämmung (6).

In der Rotorspinnerei wird normalerweise keine gekämmte Baumwolle eingesetzt. Mittels einer Diplomarbeit wurde der Einfluss der Auskämmung auf das Fadenbruchverhalten bei einem Sortiment im Grenzbereich untersucht. Es zeigt sich nach Abb. 9 hier eine Fadenbruchreduktion um mehr als 50% bereits nach der geringen Auskämmung von 8% (7).

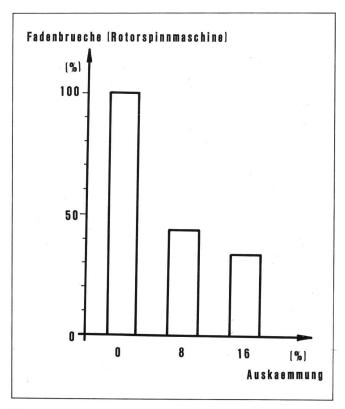


Abb. 9 Einfluss Auskämmung auf Fadenbrüche Rotorspinnmaschine

10. Auskämmung und Garnqualität

Sowohl beim Ringgarn wie auch beim Rotorgarn wird die Garnqualität durch das Kämmen verbessert. Es ist logisch, dass der Verbesserungsfaktor beim Ringgarn deutlicher zum Ausdruck kommt als beim Rotorgarn (8).

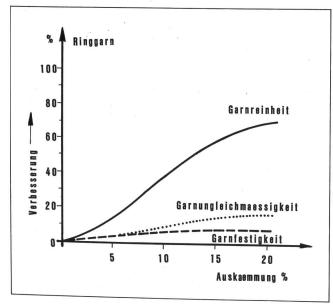


Abb. 10 Einfluss Auskämmung auf Garnqualität Ringgarn

Aus den Qualitätskurven der Abb. 10 erkennt man, dass die optimale Auskämmung gesucht werden muss. Nicht die maximale Auskämmung ist entscheidend, sonden die für den Endzweck wirtschaftlichste Auskämmungist anzustreben.

11. Wirtschaftlichkeit

Aus diesen technologischen Ergebnissen wird klar, dass bei Investitionen für eine Kämmerei stets eine gesamt wirtschaftliche Betrachtung vom Rohstoff bis zum Fetigartikel angestellt werden muss. Schliesslich sind nicht nur die reinen Kosten der Kämmerei, sondem wirtschaftlichen die Folgekosten zu berücksichtigen. Diese geben sich insbesondere auch aus dem Laufverhalten der Weiterverarbeitung, der Qualität des Endartikels und der Einsparung von Abgang. Kapitalisiert man z.B. nur die Kosten der Fadenbrüche in Spinnerei und Weberei, so erkennt man in Abb. 11, welches Investitions potential pro Jahr zur Verfügung steht (9).

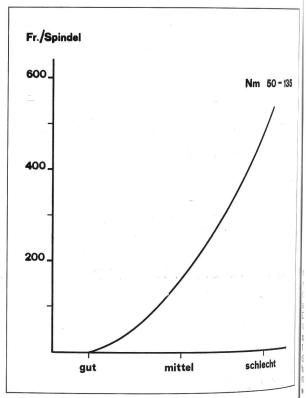


Abb. 11 Ringspinn-Weberei Laufverhalten kapitalisiert

Nicht zu vergessen sind die in einer Wirtschaftlichkeits analyse schlecht zu bewertenden Faktoren wie Bedienungserleichterung am Arbeitsplatz, Qualitätsverbesserung durch weniger Eingriffe des Bedienungspersonals, bessere Kämmarbeit und andere mehr.

12. Zusammenfassung

Werden die in den vorhergehenden Kapiteln dargelegten Grundlagenkenntnisse berücksichtigt, so ergeben sich durch die Kombination einer modernen Kämmaschine (E 7/5) mit der weitgehend automatisierten Kämmerei vorbereitung UNILAP® und einer Regulierstrecke nach der Kämmerei folgende markante Vorteile: (10)

- Trotz einer deutlichen Produktionserhöhung minde stens gleichbleibende Garn- und Endproduktqualität.

Flexibilität ohne besonderen Einfluss auf die Garnqua-

Prozessverkürzung nach der Kämmaschine ohne Verlust von Garnqualität.

Weniger Gutfaserabgänge durch Automation, Pakkungsgrössen und Prozessverkürzung.

Reduktion des Kämmlingsabganges bei gleichbleibender Produktqualität.

Optimale Anpassung des Kämmlingsabganges an das technologische Qualitätsziel.

Somit hat sich der Kämmprozess wieder einen Spitzenplatz in einer modernen, zukunftsorientierten und qualiutiv hochstehenden klassischen Baumwollspinnerei ernoert.

lber auch bei manchen neuen Spinnverfahren kann der lämmprozess vorteilhaft sein. Sobald man mit Rohstoff nd Produktqualität an Grenzen stösst, wird man wieder liber das Kämmen diskutieren.

Die Garnherstellung besteht aus technologisch verketteIm Prozesstufen. Alle Maschinen sind deshalb harmoisch aufeinander abzustimmen. Dies ist vor allem dann
möglich, wenn die Maschinen vom Öffnen bis zur Garnbldung aus einer Hand kommen. Nur wer den Gesamtprozess beherrscht, hat die Technologie-Kompetenz
mm Rohstoff bis zum Endprodukt.

Dipl. Ing. (FH) M. Frey Maschinenfabrik Rieter AG Winterthur

literaturnachweis

Walz: Die moderne Baumwollspinnerei

d Wilhelm/Wagner: Theorie der Faserhäkchen in Verbindung mit den krugs- und Auskämmungsprozessen bei Baumwolle – Textil-Praxis ւէ Տ. 223 (1957)

Mondini: Die neue Rieter-Kämmereivorbereitung; «mittex» –

§ Frey: Arbeitsergebnisse mit dem Faserlängenmessgerät AL-100; § Internationale Baumwolltest-Tagung Bremen 1986

Frey: Auswirkung verschiedener Auskämmungsgrade auf das wirdenhalten in der Ringspinnerei und auf die Eigenschaften der Gar«2. Reutlinger Ringspinn-Kolloquium, Oktober 1978

Degloff: Einfluss der Rohstoffveredlung durch einen Kämmprozess die Qualität und Laufeigenschaften bei feinen Rotorgarnen; blum-Arbeit Fachhochschule; Reutlingen – Dezember 1985

N Frey: Zusammenhang zwischen Faserstoffkennwerten und Garnmaität bei feinen Rotorgarnen; 4. Reutlinger OE-Kolloquium, April

Roder: Was kosten Fadenbrüche den Spinnerei-Betrieb? ChemieMilitary Regillindustrie, April 1984

Frey: Baumwollkämmerei Quo Vadis? 18. Internationale Baum
| Frey: Baumwollkämmerei Quo Vadis? 18. Internationale Baum-

Interlining-Hersteller wählen Dref 3

Bereits im Jahre 1977 als die Dref 2-Grobgarnspinnmaschine als erste Friktionsspinnmaschine kommerziell auf dem Weltmarkt verfügbar war, wurden Garne für Einlagestoffe (Interlinings) aus diversen Fasermischungen mit Tierhaaren gesponnen.

Als die Dref 3-Friktionsspinnmaschine für den mittleren Garnfeinheitsbereich vor einigen Jahren entwickelt wurde, kristallisierte sich innerhalb der Garn- und Produktepalette sehr schnell der Einsatzbereich Dref 3-Garne für Interlinings aufgrund einer Reihe von Vorteilen, die vor allem qualitäts- und kostenbewusste Anwender interessierten, heraus.

Diese Vorteile sind – wie bedeutende Hersteller von Interlinings aus Dref 3-Garnen aus Ziegenhaar und Ziegenhaarmischungen bestätigen – von mehrfacher Bedeutung und eröffnen neue Möglichkeiten in der Herstellung von Spezialgewebekonstruktionen.

Spinnverfahren - Dref 3

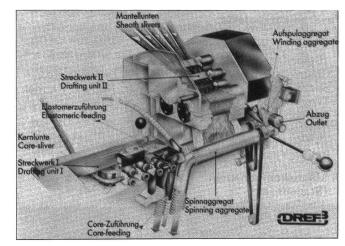


Abb. 1

Beim Dref-Spinnverfahren für den mittleren Garnfeinheitsbereich von 667–33 tex (Nm 1,5–30) handelt es sich um ein Umwindeverfahren mit Falschdrallfixierung. Dabei wird ein hochverzogenes Streckenband im Bereich des Dref-spezifischen Spinnaggregates mit frei von einem zweiten Streckwerk zufliegenden Stapelfasern

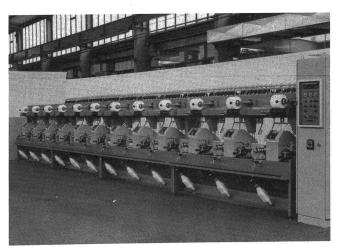


Abb. 2 D3-Friktionsspinnmaschine

ummantelt und als homogenes Umwindegarn mit Abzugsgeschwindigkeiten bis 250 m/min aus der Spinneinheit abgezogen.

Aufbauend auf den Erfahrungen, die im Laufe der letzten Jahre mit der Grobgarnspinnmaschine Dref 2 gewonnen wurden, begann im Sommer 1978 der erste Entwicklungsschritt zu einem Spinnverfahren für den mittleren Garnfeinheitsbereich.

Unter Wahrung der Vorteile, die ein Friktionsspinnverfahren bei der Drehungseinbringung bietet, sowie unter Berücksichtigung der Erkenntnis, dass mit zunehmender Garnfeinheit auch die Anzahl der parallel zur Garnachse liegenden Einzelfasern im Garnverband zwangsläufig steigen muss, kam nach reiflicher Überlegung ein Umwindeverfahren zur Anwendung.

Zur Garnbindung werden eine Kernlunte über Streckwerk I und Mantellunten über Streckwerk II getrennt zugeführt. Dies erlaubt erstmals die Produktion von Garnen mit unterschiedlichen, jedoch exakt definierbaren Faserkomponenten in Kern und Mantel, wobei unterschiedliche Faserarten, Faserfeinheiten und Stapellängen verwendet werden können.

Fasereinsatzpalette:

- a) Kernkomponenten
 (Stapelfasern und Filamente):
- Chemiefasern wie PES, PA, PAC, PP, Zellwolle etc.
- Spezialfasern, z.B. Aramid- (Kevlar, Nomex, Kermel, Twaron, Konex etc.), PVC- und PAN-Fasern
- Ziegenhaarmischungen
- Baumwollmischungen, Synthesefasern etc.
- diverse Filamente (Multi-, Mono-, hochfeste oder texturierte Filamente), Elastomere, Metalldrähte etc.
- b) Mantelkomponenten (Stapelfasern)
- reine Baumwolle kardiert
- Synthesefasern und Spezialfasern wie für den Kernteil
- Ziegenhaare und Ziegenhaarmischungen

Fasertiter: 0,6-3,3 dtex Standard-Stapellängen: 30-60 mm

Garnbereich: 667-33 tex (Nm 1,5-30)

Streckenbandgewicht: 2,5-3,5 g/m

Die Oberfläche von Dref 3-Garnen besteht nur aus Stapelfasern. Neben derartigen «Stapelfasergarnen» können auf der Dref 3-Spinnmaschine auch Coregarne mit einer absolut zentrischen und vollkommen abgedeckten Seele angefertigt werden (z.B. Mono-, Multifilamente etc.).

Herstellung des Garnes für das Produkt-Interlining:

Für die Herstellung von Garnen für Einlagestoffe oder als Ersatz von Spezialzwirnen (z. b. Rosshaarzwirn) bietet das DREF 3 – System sehr viele Möglichkeiten, speziell in Richtung Multikomponentengarne.

Praxisbeispiele

(Abb. 3 und 4):

 a) Streckwerk I:
 1 Zellwoll-Streckenband 3,3 dtex/60 mm (braun, schwarz etc.) mit Monofilament, schrumpfarm

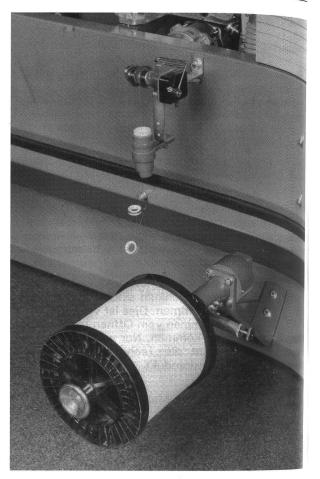


Bild 3 D3-Monofilamentzuführung für D3-Core-Garne

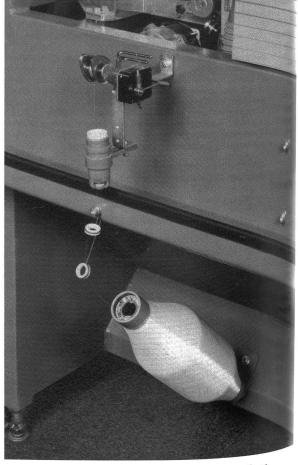


Bild 4 D3-Multifilament-Zuführung für DREF 3-Cora-Garne

Streckwert II:

5 Streckenbänder Ziegenhaar/Zellwoll-Mischung Kern-/Mantelverhältnis: 50/50

M Streckwert I:

1 Streckenband Zellwolle 3,3 dtex/60 mm (weiss/schwarz)

Streckwerk II:

5 Streckenbänder aus

35% Zellwolle

15% Wolle

50% Ziegenhaar (davon 20% Ziegenhaarabfälle)

Kern-/Mantelverhältnis: 50/50

Streckwerk I:

1 Streckenband Zellwolle 3,3 dtex/60 mm

Streckwerk II:

5 Streckenbänder aus

30% Zellwolle

20% Ziegenhaar

20% Wollkämmlinge

30% Wolle

Kern-/Mantelverhältnis: 50/50

wen diesen Garnkonstruktionen ist bei Herstellung in Garnen für Einlagestoffe unter Verwendung der übliden Ziegenhaarmischungen, d. h. Mischungen von ca. Wiegenhaar und ca. 60% Viskose 8,9 dtex, 100-120 mm Länge, folgende Garnkonstruktion mögen werden.

Streckwerk I:

1Zellwoll-Streckenband 3,3 dtex/60 mm

Streckwerk II:

⁵ Streckenbänder, davon in Kanal I 1 Streckenband ^{Zellwolle} 3,3 dtex/60 mm; in den Kanälen 2–5 Strekkenbänder, bestehend aus Ziegenhaarmischung.

für diese Spezialkonstruktionen soll das Streckenbandwicht für Streckwerk I 3 g/m betragen, für Streckwirk II können die Streckenbänder mit Ziegenhaarmischungen bis max. 5 g/m betragen.

le nach Garnfeinheit kann man die Garne mit einem len-/Mantelverhältnis von 40/60 oder 50/50 herstellen. Die Garnfeinheit beträgt bei dieser Garnkonstruklen Nm 4–12.

Produktionsgeschwindigkeit beträgt 100–120

lisatz Rosshaarzwirn durch DREF 3 – Garn:

In einen optimalen Rücksprung und das Einholungsvernögen des Einlagestoffes zu erhalten, verwendet man derzeit in der Praxis, je nach Notwendigkeit (jeder 3/5/7. Schuss), einen Rosshaarzwirn, welcher relativ der und sehr kompliziert herstellbar ist (Preis zw. DM 30.– pro kg).

las Hauptziel der Einlagestoffhersteller ist u.a., diesen losshaarzwirn durch ein DREF 3 – Garn zu ersetzen, und zwar durch folgende Garnkonstruktionen:

Unter Verwendung der o.a. Garnkonstruktion, jedoch mit einem PES- oder PA-Monofilament.

Der Garnfeinheitsbereich beträgt ca. Nm 4 – 10 bei einem Monofilamentdurchmesser von 0,2 mm und Nm 4 – 14 bei einem Monofilamentdurchmesser von 0,15 mm. Die Produktionsgeschwindigkeit beträgt ca. 100 – 120 m/min.

^{∛Eine} Garnkonstruktion aus jeder beliebigen Stapelfa-^{§er} (im Bereich der üblichen Verwendungsmöglichkeit der DREF 3 – Spezifikationen), ebenfalls mit zusätzlich einem Monifilament aus PES oder PA.

Der Garnfeinheitsbereich beträgt Nm 4 – 20 bei einem Monofilamentdurchmesser von 0,1 – 0,2 mm.

Bei Herstellung eines Mischgewebes, d.h. jeder 3./5./7. Schuss besteht aus einer Monifilamentkonstruktion, muss unbedingt eine schrumpfarme Monofilamenttype verwendet werden, da sonst nach dem Ausrüsten des Garnes eine Wellenbildung im Gewebe sichtbar wird.

Weiter ist zu beachten, dass der Fettgehalt der Ziegenhaare 0,3 % nicht überschreitet.

Vorteile bei der Herstellung von DREF'3 - Garnen für Interliningstoffe:

In der Praxis ergeben sich bei der Garnherstellung nach dem DREF 3 – System Vorteile. Als Beispiele angeführt werden:

- Für 100 kg Garnproduktion/Tag, Garn 133 tex (Nm 7,5) wurden mit konventionellen Ringspinnmaschinen früher 8 Personen benötigt; mit DREF 3: Einsparung von 5 Personen.
- Früher lag die Abfallquote beim Spinnen zwischen 30 und 35%; mit DREF 3 kein Abfall.
- mit DREF 3 keine Dickstellen
- Wirkungsgrad in der Weberei: früher zwischen 50 und 60%; mit DREF 3 beträgt die Webeffizienz (Greiferwebmaschine mit 1,80 m Arbeitsbreite) ca. 85%.
- Beimischung von ca. 20–30% Fadenabfällen in den Mantel (Streckwerk II); dadurch Reduzierung der Rohmaterialkosten bei DREF 3.
- Für 100 kg Garn pro Schicht (8 Stunden) wurden früher 300 Ringspindeln benötigt; für die gleiche Garnmenge reicht eine DREF 3 Maschine mit 12 Köpfen.
- Das Gewebebild mit DREF 3 Garnen ist bedeutend gleichmässiger und hat Oberbekleidungscharakter (Abb. 5).

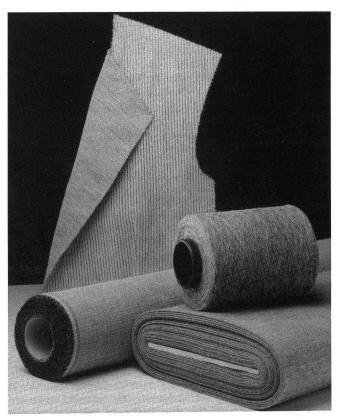


Bild 5 Interlining-Gewebe aus DREF 3-Garnen

Die Herstellung von Garnen für Interliningstoffe nach der DREF 3 – Technologie bietet nicht nur Vorteile in der Spinnerei, sondern auch in der Vorbereitung (Vereinfachung des Vorwerks) sowie höhere Wirkungsgrade in der Spinnerei, in der Raschlerei oder Weberei. Zusätzlich kann die Qualität gesteigert und die Produktepalette erweitert werden.

M. Gsteu Textilmaschinenfabrik Dr. Ernst Fehrer A — 4021 Linz

Die neue Rieter Kämmereivorbereitung

1. Vorwort

1.1 Für die Herstellung feiner Garne ist das Kämmen der Baumwolle unerlässlich.

Mit «Kämmen» bezeichnet man eine Reihe von Operationen, die mit der Kämmaschine durchgeführt werden:

- Ausscheidung von Kurzfasern aus der Fasermasse, um die Spinneigenschaften der Fasern zu verbessern
- Ausscheidung verbliebener Unreinheiten (Nissen, Schalenteile), um die Reinheit des Kammzuges zu erhöhen
- Parallelisierung der Fasern
- 1.2 Die Kämmaschine kann diese Funktionen technisch und wirtschaftlich am besten erfüllen, wenn die Fasermasse für das Kämmen optimal vorbereitet wird. Die Kämmereivorbereitung hat die Aufgabe, die Fasern der Kardenbänder durch Doublieren und Strecken zu parallelisieren und zu einer Watte hoher Gleichmässigkeit und passender Breite und Dicke zu verarbeiten. Die Watte wird um eine Hülse gewickelt und in Form eines Wickels der Kämmaschine vorgelegt.

2. Verfahren

- 2.1 In der Spinnereipraxis finden zwei Kämmereivorbereitungsverfahren Anwendung:
- Wattenmaschine/Kehrstrecke: Für die Verarbeitung langer und mittlerer Stapel mit hoher Auskämmung
- Strecke/Wattendoubliermaschine: Für niedrigere Auskämmung kürzerer Stapel (Upgrading)

Bild 1 zeigt schematisch die Reihenfolge der Maschinen in den beiden Verfahren.

3. UNILAP®-Konzept

3.1 Die herkömmlichen Rieter Kämmereivorbereitungsmaschinen Wattenmaschine E2/4A und Kehrstrecke E4/1A, von denen weltweit je über 1400 Exemplare in Betrieb sind, arbeiten gemäss dem Verfahren, das wir in dieser Betrachtung «klassisches Verfahren» nennen. Diese Maschinen sind weltweit für die hervorragenden technologischen Resultate bekannt, die durch ihren Ein-

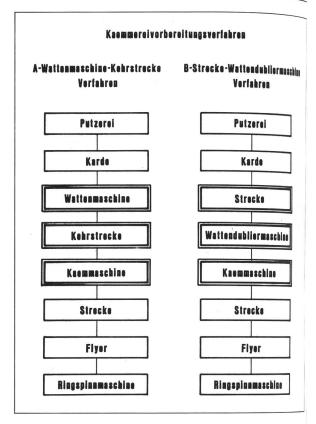


Abb. 1

satz in den Spinnereien erreicht werden können. Diess Rieter-Verfahren war der Streckenvorbereitung überlegen.

3.2 Die Rieter UNILAP®-Maschinengeneration basiff auf einem neuen Konzept. So können wir nach dem Prin

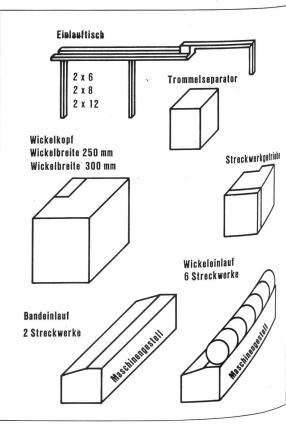


Abb. 2

ip der Baukastenkonstruktion (Bild 2) nicht nur die Maghinen für das klassische Verfahren anbieten, sondern orallem das neue Rieter UNILAP®-Verfahren.

las neue Rieter UNILAP®-Verfahren besteht aus Strekle-UNILAP®-Kämmaschine E7/5. Es unterscheidet sich inn der bisher bekannten Strecken-/Wattendoubliervor-⊮eitung durch:

- Andere Verzugsaufteilung zwischen Karde und Kämmaschine
- Neuartige Bandführung
- Automation
- Leistungsfähige Streckwerke

33 Rieter hat beide Verfahren mit den eigenen neuen laschinen gründlichen technologischen Untersuchunjan sowohl im Hause als auch in namhaften Spinnereien interzogen.

Ne Ergebnisse der zahlreichen Versuche zeigen, dass:

- Die neuen UNILAP®-Kämmereivorbereitungsmaschinen bezüglich erreichbarer Garnqualität den früheren Kämmereivorbereitungsmaschinen überlegen sind
- -Zwischen den beiden neuen Kämmereivorbereitungsverfahren kein nennenswerter qualitativer Unterschied im Garn festgestellt werden kann.

4. Verfahrensempfehlung

4.1 Aufgrund der oben aufgeführten Erkenntnisse emplihlt Rieter heute das neue UNILAP®-Verfahren, besteland aus:

- -Strecke
- -UNILAP®
- -Kämmaschine E7/5

weil dieses Verfahren gegenüber dem klassischen eine höhere technologische Flexibilität, vereinfachtes Handfig, eine höhere Wirtschaftlichkeit und grössere Freiheit nder Maschinenaufstellung bietet.

Mesentlichen Vorteile des UNILAP Verfahrens sind:

- Höheres Gewicht der Gesamtvorlage
 von bis zu 32 Kannen à rund 32 kg, d.h. annähernd
 1Tonne Material. Dies führt zu folgenden Vorteilen:
- Weniger Abfall, da bei Bandbruch Bänder und nicht Wickel angesetzt werden.
- Wird mit abgestimmten Bandlängen gearbeitet (ganze Vorlage gleichzeitig gewechselt), ergeben sich fehlerfreie Wickel, was zu einer Erhöhung des Nutzeffektes der gesamten Kämmerei und der nachfolgenden Maschinen führt.
- Geringerer Personaleinsatz für die Bedienung
- Geringere Abgangmenge (bis zu 50% weniger) beim Wickelansetzen.

Breites Einsatzgebiet mit flexibler Anwendung

- Die flexiblere Aufteilung des Verzuges zwischen Strecke und UNILAP® gestattet, die Maschinen den verschiedenen Baumwollprovenienzen und dem gewünschten Garn besser anzupassen.
- Die bessere Ausnützung der Verzugsverhältnisse erlaubt es, schwerere Wickel mit nach wie vor einwandfreiem Ablaufverhalten aufzubauen. Zudem arbeitet Rieter mit schwereren Wattengewichten (65-75 g/m) und Auslaufgeschwindigkeiten bis 100 m/min, was die Versorgung von 6 Kämmaschinen E7/5 ab einer Vorbereitung ermöglicht.
- Die erzielten Garnwerte sind denen im klassischen Verfahren über den gesamten Stapelbereich gleichwertig.
- Individuelle Maschinenaufstellung möglich für bessere Ausnützung des Raumes (flexibleres Layout).

4.2 In speziellen Fällen kann auch in Zukunft das klassische Verfahren mit den Maschinen UNILAP® 2 (Wattenmaschine) und UNILAP® 4 (Kehrstrecke) zur Anwendung kommen.

5. Weitere Vorteile der UNILAP®-Maschinengeneration

- 5.1 Die UNILAP®-Kämmereivorbereitung bietet die folgenden Vorteile:
- Hohe Produktion (bis 360 kg/h effektive Produktion) bei bester Qualität des Produktes
- Erhöhung der gesamten Wirtschaftlichkeit der Kämmerei durch:
 - Herstellung schwererer und grösserer Wickel (bis zu 25 kg Nettogewicht und 650 mm Wickeldurchmesser)
 - Verbesserung der Bedienbarkeit der Maschinen
 - Maschinen weitgehend automatisiert
 - Befreiung des Personals von der schweren Arbeit des manuellen Wickeltransportes durch Mechanisierung
 - Schonende Behandlung der grossen Wickel und mühelose Beförderung derselben bis zur Kämmaschine mittels eines Wickeltransportsystems
- 5.2 Die Herstellung grösserer Wickel hat dazu geführt, dass die Maschinen grössere Dimensionen aufweisen. Um die Bedienbarkeit und Zugänglichkeit der UNILAP® trotzdem zu erleichtern, weisen die Maschinen die folgenden konstruktiven Details auf:
- Die Kehrbleche und der Schleiftisch für die Vliesförderung zu den Kalanderwalzen sind unterhalb des Streckwerkes angeordnet (patentierte Ausführung, Bild 3). Diese Massnahme erleichtert dem Bedienungspersonal die Zugänglichkeit zum Streckwerk ausserordentlich.

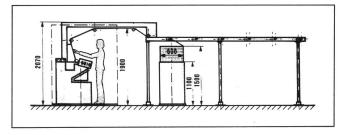


Abb. 3

- Das Wickeltransportsystem über Kopf erlaubt zudem eine gute Zugänglichkeit der Maschine von allen Seiten.
- 5.3 Einige konstruktive Einzelheiten haben dazu beigetragen, die Leistung der Maschinen zu erhöhen, unter anderem:
- Steuerung der Wickelbelastung während des Wickelaufbaues (Bild 4). Die Wickelbelastung wird automatisch den veränderlichen geometrischen Verhältnissen
 während des Wickelaufbaus angepasst. Diese Vorrichtung erlaubt es, grössere Wickel mit gleichmässiger Dichte herzustellen.
- Pneumatisch belastetes Streckwerk
- Gemeinsame Verschiebbarkeit der hinteren Streckwerkzylinder für eine schnelle Anpassung des Streckwerkes beim Sortimentswechsel
- Kalanderaufhängung mittels Blattfeder, daher keine Schmierung und Wartung notwendig (Bild 5)

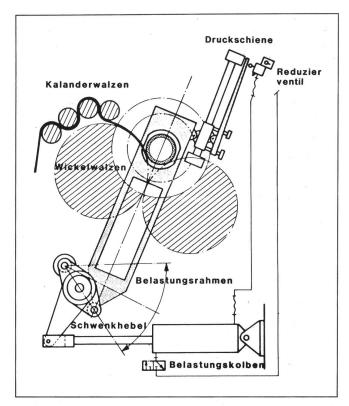


Abb. 4

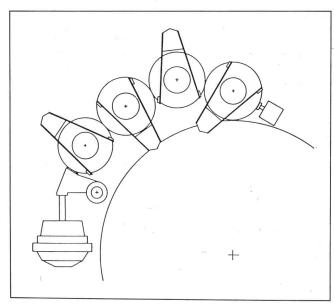


Abb. 5

5.4 Alle Maschinenfunktionen ausser dem Ansetzen der Streckenbänder erfolgen automatisch. Die Wickel werden vollautomatisch in das Wickeltransportsystem eingesetzt. Sammelstöranzeige und Blindschaltbilder erlauben dem Personal das rasche Erkennen der Störungen und deren Behebung (Bild 6).

6. Wickeltransportsysteme

Zur Entlastung des Personals von der schweren Arbeit des manuellen Wickeltransportes (mit 25 kg schweren Wickeln lässt sich manuell nicht mehr umgehen) und zur Schonung der Wickel ist das Rieter Hängebahntransportsystem E6/4 das geeignete Mittel für den Transport innerhalb der Kämmerei.

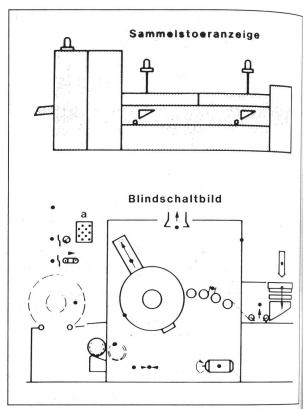
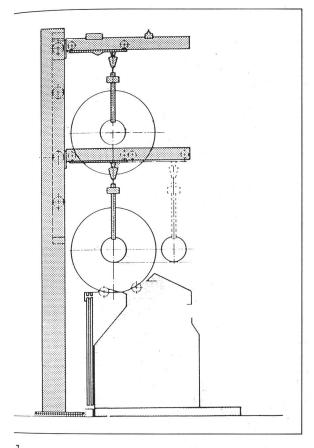


Abb. 6

Dieses patentierte Fördersystem verkettet eine UNLAP®-Maschine im Normalfall mit sechs Kämmaschine E7/5.


Der fertige Wickel wird nach Erreichen der festgelegten Länge aus dem UNILAP® ausgestossen. Ein Wickelgreifer der Überkopfhängebahn senkt sich, fasst den fertigen Wickel im Hülsenbereich und hebt diesen in die Hängebahn. Der Wickelgreifer mit dem Wickel wird mit den sich bereits in der Hängebahn befindenden leeren Wickelgreifern automatisch gekoppelt.

Nach diesem Vorgang werden alle Wickelgreifer in der Hängebahn um eine Wickelgreiferlänge vorwärts befürdert. Es lassen sich Gruppen von vier oder acht Wickelgreifern für den Transport zusammenkoppeln. Gleichzeitig kommt es zu einer Entriegelung des mit einer leutel Hülse bestückten Wickelgreifers.

Er lässt die leere Hülse in das Hülsenmagazin frei hinditerrollen. Während der Abwicklung dieser Vorgänge gelangt eine leere Hülse in den Wickelkopf der Maschine Die Maschine läuft wieder an.

Das Personal schiebt die in Gruppen von vier oder acht in der Hängebahn geführten Wickelgreifer manuell zu betreffenden Kämmaschine. Diese besitzt eine Senkstation, um den Wickelwechsel zu ermöglichen (Bild 7). Zuerst entfernt das Personal die leeren Hülsen der gleichzeitig abgelaufenen Wickel und setzt diese auf de dafür vorgesehenen Halter.

Dann senkt das Personal den Schienenstrang mit den vier bis acht vollen Wickeln auf den Abrolltisch der Kämmaschine, entriegelt die Greifer, führt dann den Schienenstrang mit den leeren Wickelgreifern über die Hülsen und verriegelt diese mit einer einzigen Hebelbewegung Mittels der Hebestation führt es die Schiene mit den let ren Wickelgreifern und Hülsen in die Hängebahn zurücktel wickelgreifergruppen (vier oder acht) sind somit bei Wickelgreifergruppen (vier oder acht) sind somit bei eit für den Rücktransport der Hülsen zum UNILAPS, Die

UNILAP

Kaemmaschine E7/5

Watte muss manuell angesetzt werden; der Wattenanfang befindet sich bereits auf allen Wickeln positioniert, was die Arbeit des Personals wesentlich erleichtert.

Um den Anforderungen aller Anlagen zu genügen, sind zwei Transportvarianten des Systems E6/4 entwickelt worden:

- Transportsystem E6/4 mit Weichen und geschlossenem Hängebahnverlauf (Bild 8)
- Transportsystem E6/4 mit Verschiebebrücke und offenem Hängebahnverlauf (Bild 9)

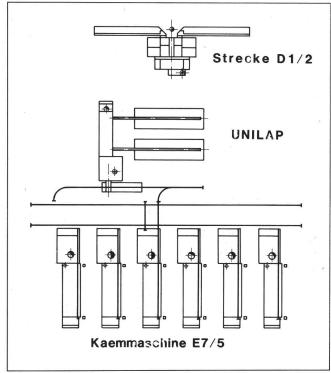


Abb. 9

6.3 Die von Rieter entwickelten Überkopf-Wickeltransportsysteme bieten nicht nur die volle Entlastung des Personals von jeglicher manuellen Behandlung der schweren Wickel, sondern erlauben zudem eine schonende Behandlung der empfindlichen Wickel, die damit keine Transportschäden mehr erleiden. Der Bedienungsraum ist nicht mehr mit Wickelwagen verstellt.

7. Schlussfolgerung

Mit den neuen Kämmereivorbereitungsmaschinen der UNILAP®-Generation, den Wickeltransportsystemen und mit der Kämmaschine E7/5 hat Rieter eine ausgereifte Entwicklung anzubieten, die auch die anspruchsvollsten Erwartungen erfüllen kann. Mehr als zehn Anlagen befinden sich bereits in Betrieb, und weitere Anlagen werden nächstens in Betrieb genommen. Die Serienlieferung wird im Februar 1988 aufgenommen.

Dr. Ing. G. Mondini Maschinenfabrik Rieter AG Winterthur