Zeitschrift: Mittex: die Fachzeitschrift für textile Garn- und Flächenherstellung im

deutschsprachigen Europa

Herausgeber: Schweizerische Vereinigung von Textilfachleuten

Band: 94 (1987)

Heft: 5:.

Rubrik: Weberei- und Vorwerkmaschinen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Technische Daten der Ringzwirnmaschinen für Aramid

Aus der nachfolgenden Tabelle 3 sind die Maschinendaten und die empfohlenen Produktionsgrenzwerte ersichtlich.

Maschinentyp		AZB 200		AZB 240	
Spindelteilung (mm)		200		240	
Durchmesser Zwirnring (mm)		140		1	80
Spindeldrehzahl max. (min ⁻¹) für Aramid		5500		4000	
	Höhe Zwirn- ring (mm)	verarbeitbarer Nummernbereich (dtex)			
Vorzwirn 1fach	16.7	840 -	3360*	840 –	3360*
Auszwirn bis 6fach	16.7 25.4 38.1	- 9000* - 13500 			12600* 15000 30000
		Zwirnspulen			
Scheibenspule, zylindrisch max.Bewicklungshub(mm)		bis 355*		bis 355*	
Bewicklungsvolumen V (cm³)		3600		6100	
Bewicklungsart		parallel		parallel	
Abzug		rollend		rollend	
Spulen mit konischer Spitze max.Bewicklungshub (mm)		bis 35	5	bis 35	5
Abzug		rollend oder über Kopf			

^{*}empfohlen für Reifencord

Tabelle 3

Zwirn	Zugkraft im Fadenballon (cN)	Wicklungsdichte ³ (Scheibenspule) + /- 0,05 g/cm ³ 0.95 0.85 0.75	
einstufig zweistufig dreistufig	2.0 +/- 0.3 1.3 +/- 0.3 < 1.0		

Tabelle 4

Mit Nylonläufern wurden die besten Zwirnergebnisse erzielt. Läufer mit Glasfaserverstärkung sind abzulehnen. Die Einhaltung der folgenden max. Läufergeschwindigkeiten haben sich in der Praxis bewährt.

Läufergeschwindigkeit max.	Höhe Zwirnring		
(m/s)	(mm)		
40 32	16.7 und 25.4 38.1		

Tabelle 5

^{Erreich}bare Zwirnlängen

Je nach Anzahl der Zwirnstufen und der Drehungen wird eine unterschiedliche Dichte der Scheibenspulen erleicht. Mit dem Bewicklungsvolumen der Spulen in Tab. 3 und den Wicklungsdichten in Tab. 4 können die theoletischen Bewicklungslängen einer Zwirnkonstruktion errechnet werden, die Einzwirnung wurde dabei nicht berücksichtigt.

$$1 = \frac{V \cdot \delta}{T_t} = \frac{G}{T_t} \quad (Km)$$

1 - Zwirnlänge (Km)

V – Bewicklungsvolumen (cm³)

δ - Wicklungsdichte Spule (g/cm³)

T_t - Gesamttiter Zwirn (tex)

G - Zwirngewicht (g)

Zusammenfassung

Hochfeste Aramidfilamentgarne sind sehr empfindlich, sie lassen sich am besten auf besonders modifizierten Ringzwirnmaschinen verarbeiten. Wenn die zulässigen Produktionsparameter eingehalten werden und die Produktionsverhältnisse optimiert sind, kann eine Festigkeitsausnutzung von ca. 95–100% in Bezug auf das unverdrehte Rohgarn erreicht werden.

Die Maschine kann schnell und einfach auf andere Zwirnkonstruktionen umgerüstet werden, ausserdem entfällt der problematische Fachprozess im Vergleich zum Doppeldraht-Zwirnverfahren, dadurch wird die Zwirnqualität und die Wirtschaftlichkeit positiv beeinflusst.

Dipl. Ing. (FH) Werner Grill Saurer-Allma

Literatur

(1) Nuesch, W. Kevlar Aramid Faser in der Gummiindustrie,

Mai 1981 - Du Pont

(2) Twaron Technical Documentation, 1985 - Enka

(3) Grill W. Vorteile der Ringzwirnmaschine bei der Herstellung

technischer Zwirne «mittex 4/1984» – Seite 132 – 135

Weberei- und Vorwerkmaschinen

Rationalisierung in der Webereivorbereitung

SVT-Kurs vom 12.12.1986, bei der Maschinenfabrik Rieter AG, Winterthur

1. Rationalisierung ist lebenswichtig

Nur wer ständig Rationalisierungsmöglichkeiten erkennt und realisiert, wird auf Dauer am Markt erfolgreich sein. Die Vielfalt der Garnarten und Garnaufmachungen sowie das abwechslungsreiche Artikelprogramm unserer Webereien, erfordern in der Kettvorbereitung, neben einer grossen Beweglichkeit des Personals, eine hohe Flexibilität der Anlagen. Trotz dem beträchtlichen Anteil an manuellen Tätigkeiten, vor allem im Bereich Spulentransport und Spulenhandling, sind Automationsansätze

lediglich in Teilbereichen oder als Speziallösungen in Vertikalbetrieben mit grossen Produktionseinheiten und strikt normierten Produktionsbedingungen zu finden.

Der geforderten Flexibilität werden z.B. moderne Hochleistungszettelanlagen gerecht, die dank optimalem Fadenlauf, hohen Produktionsgeschwindigkeiten und idealen Bedienungsverhältnissen rationelles Arbeiten ermöglichen und somit wirtschaftlich produzieren.

2. Optimale Anlageauslegung

2.1 Rationelle Auftragsgrösse

Die optimale Ausnützung der Kettvorbereitungsanlage ist dann gegeben, wenn das Fassungsvermögen des Spulengatters und der Zettelwalzen voll ausgenützt wird. Dies ist bei grossen Auftragslängen relativ unproblematisch. Anders bei Kleinpartien. Bei diesen lohnt es sich, nach Möglichkeiten für das Zusammenfassen mehrerer Aufträge gleichen Materials zu suchen.

Eine solche Möglichkeit, drei verschiedenartige Aufträge zu einer Zettel- und Schlichtepartie zusammenzufassen, möchte ich am folgenden Beispiel aufzeigen. Während man den grössten Teil der Fäden auf sogenannten Vollzettelbäumen mit grosser Länge zetteln kann, erfolgt die Anpassung der pro Auftrag erforderlichen Fadenzahl auf einer oder mehreren Ergänzungswalzen.

Auftragsnummer 1	Auftragslänge	12000 m	3930 Fäden	
2	Auftragslänge	8000m	3904 Fäden	
3	Auftragslänge	8000m	3888 Fäden	
Walze 1–6 = Vollwalzen				
	Zettellänge	28000 m	584 Fäden	
Walze 7 = Ergänzungswalze	Zettellänge	12000 m	426 Fäden	
	Zettellänge	8000 m	400 Fäden	
	Zettellänge	8000 m	384 Fäden	
	Total	28000 m		

Diese Art der Arbeitsorganisation bietet nicht nur Vorteile in der Zettlerei, sondern es lässt sich auch in der Schlichterei der Bedienungsaufwand reduzieren; es gibt weniger Abfall und die Produktionsanlagen werden besser ausgenützt. Abb. 1: Zusammengefasste Zettel- und Schlichtepartie mit unterschiedlicher Fadenzahl.

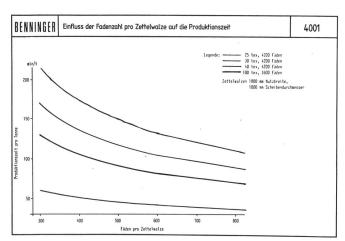


Abb. 1

Zu bemerken bleibt, dass bei grösserer Variation der Fadenzahl und des Wickeldurchmessers der Ergänzungswalze, gegenüber den Vollwalzen, die Abbremsung im Zettelwalzengestell entsprechend angepasst werden muss.

2.2 Optimale Spulengrösse

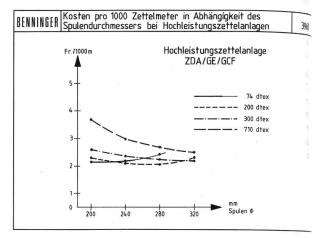


Abb. 2

Die Reduktion des Bedienungsaufwandes beginnt mit der Optimierung der Spulengrösse. Vor allem im mittleren bis groben Garnbereich lohnt es sich, Spulen mit grossem Volumen und damit grosser Lauflänge einz setzen. Wie sich die Reduktion der spulenwechselbe dingten Stillstandzeit einer Zettelanlage auf die Produktionszeit bzw. auf die Produktionskosten auswirk konnte ich am SVT-Kurs vom 7. März 1986 bereits der legen. Zur Erinnerung nochmals die Abb. 2: «Kosten mit 1000 Zettelmeter in Abhängigkeit des Spulendurchmessers bei Hochleistungszettelanlagen». Daraus geht het vor, dass vor allem Garne gröber als 200–300 dtex het stengünstiger ab 280 mm Spulendurchmesser und der über gezettelt werden können.

2.3 Richtige Gattergrösse bzw. Wahl der Fadenzahl pro Zettelwalze

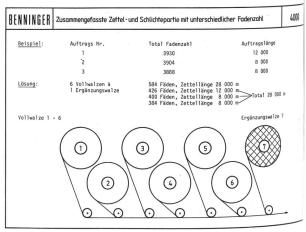


Abb. 3

Die wirtschaftlichste Form der Auftragsabwicklung eigibt sich, wenn die Leistungsfähigkeit der Kettvorbertungsanlagen optimal ausgenützt ist. Dabei hat die Gattergrösse einen nicht unwesentlichen Einfluss auf die Produktivität der Anlage. Abb. 3: Einfluss der Fadenzahl pro Zettelwalze auf Produktionszeit. Die Abbildungmacht deutlich, dass vor allem bei feinerem Garn erst einer Fadenzahl über 600, das heisst mit 600–700 feden pro Zettelwalze rationell gezettelt werden kann während bei gröberem Garn, z.B. 100 tex (die unterstellwarden), der Produktionseinfluss der Fadenzahl pro Zettelwalze relativ gering bleibt.

In der Schlichterei verhält es sich umgekehrt. Allerdings wirkt sich die Fadenzahl pro Zettelwalze trotz ihrem erheblichen Einfluss auf die Zettel- bzw. Partielänge nur geringfügig auf die Produktivität der Schlichteanlage aus, da sich am Verhältnis Rüstzeit zu Laufzeit kaum etwas ändert.

Wie verhält es sich mit den Produktionskosten in der Zettlerei im Vergleich zur Schlichterei? Während sich in der Zettlerei mit steigender Fadenzahl pro Zettelwalze die Produktionskosten reduzieren, sind die Produktionskosten in der Schlichterei bei geringen Fadenzahlen und damit langen Schlichtepartien etwas günstiger. Abb. 4: Einfluss der Fadenzahl pro Zettelwalze auf die Zettelund Schlichtekosten (exklusive Schlichtemittel).

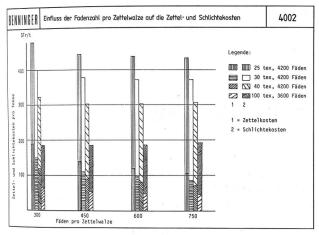


Abb. 4

3. Rationelles Kettvorbereitungskonzept mit oder ohne Automation

Der extrem hohe Anteil der Personalkosten an den Produktionskosten in der Webereivorbereitung ist Grund genug, nach Automationsmöglichkeiten zu fragen.

3.1 Spinnerei/Spulerei

Teilerfolge werden im Bereich des Spulenhandlings an Spinn- und Spulmaschinen erzielt, wo die Spulen übernommen und in Transportwagen oder sonstigen Transporteinheiten abgelegt werden. Diese vollautomatisch arbeitenden Spulenstapler sind, wie aus den vorgängigen Referaten zu entnehmen war, in den Maschinen integriert und in ihrer Leistung der anfallenden Spulenzahl angepasst. Ausserdem bieten sie, dank sorgfältiger Spulenbehandlung, eine hohe Sicherheit gegen Transportund Handlingsverletzungen.

^{3,2} Spulentransport/Spulenlagerung

Auch in diesem Bereich lassen sich Automationsschritte finden. So werden zum Beispiel Spulenwagen mittels induktiv gesteuerten Schleppfahrzeugen ins Garnlager oder zum Verarbeitungsort transportiert.

EDV-verwaltete, automatisierte Garnlager nehmen normierte Spulenmengen gleicher Spulengrösse, ihrer Garnkennziffer entsprechend, auf. Bei Buntketten wird mit dem Mustercode die jeweils benötigte Spulenzahl abgerufen und automatisch angeliefert.

Die Rohgarnanlieferung auf palettierten Spulentürmen, mit 8-12 Spulenlagen übereinander oder gleich hoch gestapelten Spulenkartons, rationalisiert den Spulentransport und die Lagerung ganz erheblich. In der Kettvorbereitung sind die Entnahmebedingungen mit den über 2 Meter hohen Türmen allerdings ungünstig. Material- und personalschonend wirkt beim Spulenturm das Loch im Boden, bzw. die darin eingebaute Senk- und Hebebühne, ähnlich wie der Federboden beim Spulentransportwagen.

3.3 Spulenhandling am Gatter

Mit der Automation des Spulenhandlings am Gatter bzw. mit dem automatisierten Aufstecken von Spulen auf Gatterwagen, stehen wir erst am Anfang. Ein Eingriff in diesen Bereich tangiert nicht nur die Spulenaufmachung, sondern die gesamte Transport- und Lagerorganisation in einem Betrieb und zwar in der Regel sowohl für Schuss- als auch für Kettgarne. Die Frage, ob Automation in diesem Bereich gleichzeitig eine kostengünstige Rationalisierung mit sich bringt, bedarf einer sorgfältigen Abwägung. Ich möchte nur auf einige der zu nehmenden Hürden hinweisen, zum Beispiel den Takt zum «Spulenaufnehmen, Fadensuchen und Aufstekken» auf einen Gatterwagen:

- für eine geübte Arbeiterin 11 Minuten pro 100 Spulen
- für einen Industrieroboter 50 Minuten pro 100 Spulen

Ist der Aufsteckroboter der Spulmaschine zugeordnet, so sind Kriterien wie Ergreifen der Spule, automatisches Auffinden des Fadenendes auf der Spule, Ablegen der Spule und Sichern des Fadenendes, etc. zu erfüllen.

Auch dem Transport und der Spulenlagerung muss Rechnung getragen werden. Beladene Gatterwagen oder Monorail-Einheiten können in erster Linie für den Sofortverbrauch ohne werksüberschreitenden Verkehr in Betracht gezogen werden, weniger aber für die Lagerhaltung. Bei einem breiten Materialsortiment erweitert sich das Transport- und Lagerproblem für automatisch beladene Gatterwagen, die vor allem wesentlich mehr Lagerraum in Anspruch nehmen, als konventionelle Lagereinheiten.

Sie sehen, insbesondere schweizerische Unternehmen mit ihrer Artikelvielfalt und Neigung zu grosser Flexibilität, stehen hier vor einem Fragenkomplex, den zu lösen noch viel gemeinsame Arbeit und gegenseitiges Verständnis erfordern wird.

Noch ein Wort zu Aufsteckhilfen, insbesondere für schwere Spulen. Diese Geräte sind bei Spulen von über 5–7 kg Gewicht eine wertvolle Hilfe. Sie sind in erster Linie dazu da, die Arbeit zu erleichtern, nicht aber zu beschleunigen. Sie bieten zudem die Gewähr dafür, dass die Spule schonender behandelt wird, als beim harten Zugriff eines kräftigen Mannes, der ja alternativ dafür eingesetzt werden müsste. Die schweren Spulen findet man (soll ich sagen glücklicherweise) vorerst nur in der Filamentkettherstellung.

4. Hochleistungs-V-Gatter mit optimalen Bedienungsverhältnissen

Das Konzept der Hochleistungs-Zettelanlage mit V-Gatter hat sich durchgesetzt, da es einerseits optimale Bedienungsverhältnisse bietet und andererseits wegen der idealen Fadenlaufverhältnisse hohe Zettelgeschwindigkeiten erlaubt, ohne das Kettmaterial zu überlasten.

Das Beschicken des Gatters mit neuen Spulen erfolgt im Innenteil des V's, also an einem definierten Ort, während dem Abzetteln eines zuvor aufgesteckten Spulensatzes. Sind diese Spulen leer, werden die neu aufgesteckten Spulen in Arbeitsposition gefahren. Abb. 5: Spulentransport am V-Gatter GE/GCF. Da die Fäden

gruppenweise pro Schiene in die selbsteinfädelnden Fadenspanner und den abgestuften Expansionskamm eingelegt werden, bewältigen 2 Personen einen Partiewechsel mit 600 Fäden in weniger als 20 Minuten. Das ist gleich schnell oder schneller, als wenn die Fäden mittels automatischem Knoter geknotet würden.

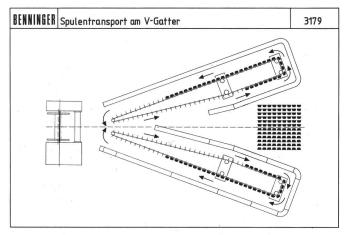


Abb. 5

Die gesteuerten Normaldruckspanner am V-Gatter GE/GCF werden bei Erreichen einer Minimalgeschwindigkeit automatisch geöffnet, so dass keinerlei zusätzliche Zugkrafterteilung im Spannerbereich erfolgt und gemeinsam mit dem freien Fadenlauf vom Spanner bis zur Maschine eine höchst niedrige Fadenbelastung resultiert. In der Folge treten weniger Fadenbrüche beim Zetteln und in den Folgeprozessen auf, womit eine entsprechende Produktions- und Qualitätserhöhung erreicht wird.

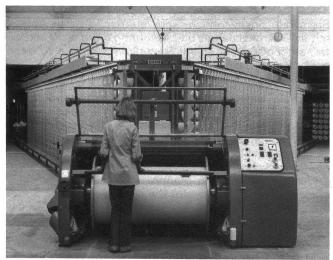


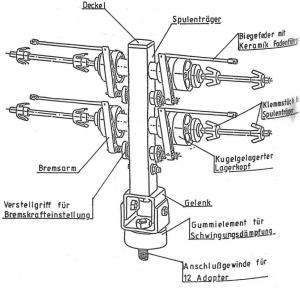
Abb. 6

Das praktisch keinerlei Material- oder Garnaufmachungseinschränkungen bestehen, ist die so wichtige Vielseitigkeit ebenfalls gewährleistet. Abb. 6: Benninger-Hochleistungszettelanlage mit V-Gatter, Modell ZDA/GE/GCF.

5. Zusammenfassung

Der rationelle Weg in der Kettvorbereitung geht über die zeitliche und aufwandmässige Straffung des Produktionsablaufs, zum Beispiel durch

- rationelle Auftragsgrössen
- materialentsprechende Spulengrössen und Spulengrößen und Spul
- rationellen Spulentransport und Spulenlagerung
- günstige Bedienungsbedingungen und Einsatz ratineller Bedienungshilfen
- leistungsfähige Kettvorbereitungsanlagen


Rationalisierung in der Kettvorbereitung bedeutet som den optimalen Weg zu beschreiten und unter Einsatz will Hochleistungsanlagen gute Kettqualität bei niedrige Produktionskosten zu produzieren.

M. Bolle Benninger AG, 9240 Uzw

Zubehör Weberei

Klöcker-Dreher weiterentwickelt – jetzt auch für Jacquard

Der für schützenloses Weben und für mehrbahniges ben mit Schützen entwickelte, auf dem Dreher-Prinzberuhende Klöcker-Dreher hat in den letzten Monateine entscheidende Weiterentwicklung erfahren, weldt vor allem von der stetigen Erhöhung der Schusseintragleistungen diktiert wird; diese erreichen heute bereitpraktisch nutzbare Zahlen von 600 bis 800 Schuss prinzberen Minute. Es ging bei dieser Weiterentwicklung in erst Linie darum, die zwangsläufig vorhandenen Verschleisteile resistenter zu machen, ein Modell für das schützen lose Jacquard-Weben zur Serienreife zu entwickeln und das Problem der Dreherspulenlagerung einer grundstellichen Überprüfung zu unterziehen.

Die Dreherspulenlagerung gibt es für zwei bis zwölf Spulen