Zeitschrift: Mittex: die Fachzeitschrift für textile Garn- und Flächenherstellung im

deutschsprachigen Europa

Herausgeber: Schweizerische Vereinigung von Textilfachleuten

Band: 90 (1983)

Heft: 11

Rubrik: Non Wovens

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

412 mittex 11/83

Non Wovens

Evaluation von Vliesen für bestimmte Einsätze

1. Einleitung

Als Qualität eines Produktes kann man den Grad der Erfüllung von Erwartungen an eine Vielzahl von Eigenschaften dieses Produktes verstehen. Im Zeitalter der Computer ist es allgemein üblich geworden, eine grosse Menge Daten zu sammeln und zu speichern. Das Ziel wäre, aus diesen Daten kurze, eindeutige und für die Praxis verständliche Schlussfolgerungen zu ziehen. Nun

liegt aber die Schwierigkeit gerade bei der Auswertung grosser Datenmengen, die nicht statistisch verknüpft werden können. Im nachfolgenden soll versucht werden, einen von vielen möglichen Lösungswegen aufzuzeigen. Aufgrund von Laborversuchen wird ein Optimierungsverfahren angewendet, das die Eignung gewisser Stoffe für bestimmte Einsatzzwecke aufzeigen soll. Bewusst wurden 17 der verschiedensten Vliese, die auf dem Markt erhältlich sind, eingekauft.

Es ist selbstverständlich, dass eine Pauschalisierung, wie sie vorliegend aufgezeigt wird, nur Hinweise geben kann, und dass für bestimmte Anwendungen weitere Prüfungen, eventuell sogar Praxisversuche durchgeführt werden müssen. Dazu kommt, dass es sich um ein grobes Schematisierungsverfahren handelt, das demzufolge nur grobe Schlussfolgerungen zulässt. Im konkreten Fall sind die Einzelwerte zu berücksichtigen.

2. Eingesetzte Materialien

Tabelle 1:

Lauf- Nr.	Aufbau/Verfestigung des Materials	Vorgesehener Einsatz	Materialien	Flächengewicht g/m²	Dicke mm
1	Vernadelt	Geotextil	PES, PO	170	2,5
2	Verklebt	Hirschleder-Ersatz	PES	374	0,9
3	Thermisch verfestigt	Geotextil	PO	145	0,8
4	Thermisch verfestigt	Geotextil	PO	235	1,1
5	Vierschichtig: Folie/Vlies/Folie/Vlies (geprägt)	Überkleid	PO	41	0,2
6	Vernadelt, verklebt, durchbrochen (ca. 1-mm-Öffnungen)	Putzlappen	CV	51	0,4
7	Verklebtes Vlies	Putzlappen	CV, PES, CO	135	1,3
8	Vernadelt, Nähgewirkt	Putzlappen	CV, CO, PES, Faden: CV	158	1,7
9	Verklebt, durchbrochen (ca. 1-mm-Öffnungen)	Schürzen	CV	119	0,6
10	Verklebt, durchbrochen (ca. 1-mm-Öffnungen)	Schürzen	CV	115	0,6
11	Verklebt, zweischichtig	Tischtuch	CV	51	0,3
12	Einseitig auf Folie kaschiert	Kliniksaugtuch	CO, Folie: PO	53	0,2
13	Beidseitig auf Folie kaschiert, thermisch verfestigt	Kliniksaugtuch	CO, Folie: PO	74	0,2
14	Drei Schichten:	-			
	- Folie	Saugtuch	PO		
	 Verklebtes Vlies 		СО		
	 Verklebtes Vlies mit Längsfäden im Abstand von ca. 1 cm 		PA 6.6	92	0,8
15	Verklebt	Bettwäsche	CO, PES	55	0,2
16	Verklebt	Kissenüberzüge	CV	36	0,2
17	Verklebt	Kissenüberzüge	CV	36	0,2

3. Prüfmethoden

3.1 Subjektive Merkmale

Die Bestimmung der Biegesteifigkeit wird nach SVI-EMPA 5–8 bei 20 °C durchgeführt. Subjektiv wird die Steifigkeit durch 3 Personen beurteilt, wobei die 17 Muster in 5 Klassen von Note 1 (geringste Steifigkeit) bis Note 5 (höchste Steifigkeit) eingeteilt werden.

3.2 Mechanische Prüfungen

Es werden die Reisskraft und Dehnung (SN 198461), die Weiterreisskraft (SN 198484, Trapeztest), der Berstdruck (DIN 53861), die richtungsunabhängige Flächenscheuerung (mit Schmirgelpapier, Schieferscheuerung, SN-Entwurf 198539), der Wechseldiagonalzugversuch (SN 198498) und die Nahtschiebefestigkeit (ASTM D 434-42/1949) geprüft.

3.3 Bekleidungsphysiologische Eigenschaften

Neben der Luftdurchlässigkeit (SN 198561) werden verschiedene interne Methoden angewandt: Die Wasserdampfdurchlässigkeit bei 2 m/s Luftgeschwindigkeit, die Wasserdampfabsorption, die Wasseraufnahme und der Trocknungsverlauf sowie die Wärmedurchlässigkeit bei 2 m/s Windgeschwindigkeit.

3.4 Sicherheitseigenschaften

Hier wird der Wärmedurchlassgrad (DIN 4842) bei einer Wärmestromdichte von 20 kW/m² und das Brenn- und Glimmverhalten bei 3 s Zündzeit (SN 198898–1977) festgestellt.

3.5 Weitere Eigenschaften und Beständigkeiten

Als zusätzliche Eigenschaften wurden vor allem die Viskositätszahlen (SN 195591, 195596 bzw. nicht normierte Methoden), die Farbechtheiten (Lichtechtheit, Wetterechtheit, Waschechtheit, Reibechtheit trocken und nass, Lösungsmittelechtheit, Wasserechtheit nach ISO 105), die Massänderungen (SN 198860) und der Thermoschrumpf (80 °C, 15 min und 120 °C, 10 min) als wichtig erachtet.

3.6 Alterungen

Für die Beurteilung der Alterungseffekte wurde einerseits die künstliche Feuchtalterung bei 70 °C/50% relative Luftfeuchtigkeit während 10 Tagen (SN 198890) und andererseits der Xenontest 450 während 20 h und 120 h durchgeführt. Bei letzterem ist zur Erhöhung des UV-Anteils der Glas-Aussenzylinder durch einen Quarzglaszylinder ersetzt und 4 der 7 KG 1-Filter entfernt worden.

Der Alterungseffekt wird durch die Reisskraftveränderung in Längsrichtung festgestellt.

mittex 11/83 413

4. Ergebnisse

Die Ergebnisse sind in gekürzter Fassung in den Tabellen 2–4 zusammengestellt.

Tabelle 2: Subjektive Merkmale und mechanische Eigenschaften

	Bie	ae-				Rel. R	eisskraf	t in %	Rei	ss-	Rel. D	ehnun	a in %	Wei	ter-			Wechsel-				
	steifigkeit			Reiss	kraft	feucht	20 h	120 h	dehr	nuna	feucht		120 h	rei	ss-	Berst-	Schiefer	diagonal	N	lahtschiebe-		
EMPA	Mitte	•	Griff	N/5		ge-	be-	be-	9	6	ge-	be-	be-			kraft N				zug-		festigkeit*
Nr.	in µl	V m²	Note	oria	inal	altert	lichtet	lichtet	orig	inal	0		lichtet				rung	versuch		N/2,5 cm		
	+ 20			"												kN/m	Tr	Hübe		,		
	längs	quer		längs	quer	längs	längs	längs	längs	quer	längs	längs	längs	längs	quer				längs	quer		
1	34	21	1	255	342	97	96	71	72	77	95	72	85	132	161	6,3	350	3000	,196	→196		
2	129	66	4	284	390	102	85	63	29	43	110	76	35	43	63	6,9	→3000	3000	196	>196		
3	77	54	4	223	189	106	73	7	56	60	92	47	2	294	232	4,9	1675	3000	196	>196		
4	1390	1130	5	720	669	104	69	12	44	42	93	43	14	801	715	>20	→3000	3000	196	>196		
5	4	4	2	76	104	101	78	29	10	19	105	69	20	27	25	2,9	85	3000	94	148		
6	3	1	2	80	7	101	75	19	11	41	101	72	32	13	5	1,1	45	500	57	12		
7	10	6	1	40	43	100	85	45	50	48	106	85	61	29	32	1,4	90	500	71	55		
8	15	5	1	32	50	81	81	81	37	38	109	99	112	32	44	2,8	40	500	70	55		
9	81	3	3	209	19	98	84	33	10	84	100	94	51	32	8	2,7	450	3000	125	32		
10	96	3	3	221	17	92	75	36	11	87	91	93	47	43	10	2,9	325	3000	180	32		
11	11	1	2	89	14	97	46	9	10	38	100	60	14	10	3	1,4	45	50	54	18		
12	1	2	2	33	24	97	.85	0	35	5	105	99	0	4	2	0,4	0	50	38	16		
13	5	2	2	70	59	97	53	19	23	5	100	21	21	26	3	0,9	0	50	72	37		
14	20	3	3	59	37	103	71	29	30	3	107	50	34	28	11	0.8	50	200	63	33		
15	2	1	2	45	20	102	82	44	16	6	99	71	23	16	8	0,7	175	500	46	24		
16	4	1	2	70	12	104	97	9	8	46	98	24	0	4	2	1,1	60	50	35	schon beim		
																				Nähen defekt		
17	3	1	2	64	13	95	94	27	10	50	89	18	5	4	2	1,1	65	50	31	schon beim		
																				Nähen defekt		

^{*}Anmerkung: Bei den Vliesen 5 bis 17 ist das Vlies gerissen, die Naht noch ganz.

Tabelle 4: Massänderungen

		Massänderung durch die Behandlung in %										
		Wäsche 40°C	Thermos	schrumpf								
	to .	40 °C	Reinigung Stufe P	80 °C 15 min	120 °C 10 min							
1	längs	- 2,5	- 3,1	- 3,1	- 2,4							
	quer	+ 0,1	- 1,4	0,0	- 0,4							
2	längs	0,0	- 0,1	0,0	- 0,3							
	quer	0,0	0,0	0,0	0,0							
3	längs	- 0,7	- 1,6	- 0,5	- 1,1							
	quer	- 0,9	- 1,5	- 0,3	- 1,3							
4	längs	- 0,2	- 0,7	0,0	- 3,1							
	quer	- 0,1	- 0,4	- 0,2	- 2,1							
5	längs	- 2,0	- 3,7	- 0,5	- 2,0							
	quer	- 1,6	- 3,8	0,0	- 2,2							
6	längs	- 6,2	- 0,9	+0,9	- 0,3							
	quer	+ 0,8	0,0	-0,6	- 0,6							
7	längs	- 5,1	- 1,3	- 0,4	- 1,1							
	quer	- 2,0	+ 0,1	+ 0,1	- 0,6							
8	längs	- 3,3	- 3,1	- 2,3	- 0,8							
	quer	- 0,2	- 0,1	- 0,6	- 1,3							
9	längs	- 2,0	0,0	0,0	- 0,3							
	quer	- 0,5	- 0,3	0,0	0,0							
10	längs	- 1,8	- 0,2	0,0	- 0,3							
	quer	- 1,3	- 0,4	0,0	0,0							
11	längs	- 3,4	- 0,4	- 0,3	- 0,4							
	quer	- 0,3	- 0,3	+ 0,2	0,0							
	längs	- 6,9	- 1,4	- 3,1	- 5,5							
	quer	- 3,2	- 0,9	- 0,3	- 0,3							
	längs	- 1,4	- 1,5	- 0,8	- 1,5							
	quer	- 1,3	- 1,5	- 0,3	- 0,4							
14	längs	Vlies	- 1,2	- 0,8	- 4,2							
	quer	defekt	- 1,4	- 0,2	- 0,9							
	längs	- 1,7	- 1,5	- 0,4	- 0,9							
	quer	- 2,2	- 1,7	- 0,2	- 0,2							
16	längs	- 3,7	- 0,7	0,0	- 0,1							
	quer	- 1,0	- 0,7	0,0	0,0							
17	längs	- 2,7	- 0,7	0,0	- 0,3							
	quer	- 1,7	- 0,3	0,0	0,0							

Tabelle 3: Bekleidungsphysiologische und Sicherheitseigenschaften

	Luft-	Wasser-	Was-	Wasseraufnahme		Wärme-	Wärme-	Brennl	barkeit
	durch	dampf-	ser-	und Trocknungs-		durch-	durch-	Brenn-	Brenn-
EMPA	lässig-	durchlässig-	dampf-		verlauf	lässig-	lassgrad	zeit	zeit
Nr.	keit	keit	absorp-		Halbwerts-	keit	bei	nach	für
	I/(m² · s)	g/(m² · h)	tion	%	zeit	W/(m ² ·K)	$20 kW/m^2$	Zün-	290
		bei 2 m/s	%		min. be		%	dung	mm
1	739	212	0,4	5	3,2	12	51	32	-
2	47	202	0,3	27	22,3	22	63	35	10
3	1149	273	1,3	7	2,8	21	74	35	11
4	653	251	0,2	12	7,2	15 73		35	-
5	1	89	0,8	33	3,3	23	52	5	-
6	2675	503	8,6	59	6,5	21 71		8	2 7
7	956	257	5,3	35	11,3	16	58	30	7
8	603	240	5,9	49	21,7	13	53	31	9
9	1433	361	7,8	50	11,6	22	68	18	5
10	1684	414	6,2	48	11,2	22	69	16	5
11	1586	298	4,6	42	5,4	23	81	10	3
12	0	2,9	4,7	81	11,5	25	78	19	3
13	0	71	5,4	81	12,9	25	76	20	4
14	0	0	5,6	83	18,7	21	69	20	5
15	121	258	4,4	47	4,9	26	77	6	2
16	1550	279	6,1	55	4,2	22	80	9	2
17	1359	265	6,7	33	1,9	22	84	10	2

5. Auswertung

Die so erhaltenen Ergebnisse sollen erste Rückschlüsse auf die Verwendbarkeit von Vliesen für gewisse Einsätze geben. Hier werden folgende Beispiele herangezogen:

- Topfhandschuhe
- Handtuch für Eintagesgebrauch
- Winterabdeckung für den Garten

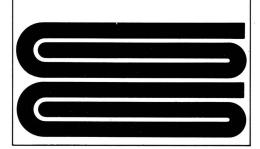
Um die umfangreichen Daten besser überblicken zu können, werden die einzelnen Prüfergebnisse in drei Stufen bewertet, und zwar:

 nicht brauchbar (minus): das heisst, in der Praxis ist diese Eigenschaft nicht genügend, sofern sie überhaupt von Bedeutung ist.

Verkaufsprogramm

100 80 36 90 100 120 135 150 170 60 80 Nm 40 110 dtex Bekleidungsgarne supergekämmte, gasierte Baumwollflorzwirne **SWISS COTTON** rohmercerisiert mercerisiert gefärbt matt gefärbt TREVIRA 350 glänzend/Baumwolle supergekämmt 65/35, gefärbt Stickzwirne NICOSA® supergekämmte Baumwollzwirne ungasiert roh matt gasiert rohmercerisiert gasiert mercerisiert gefärbt Polyester spun glänzend rohweiss weiss und gefärbt Texturgarn NIGRILA® HE Nylsuisse-Crêpe hochelastisch, gefärbt Zwirne Einfachgarne

Niederer + Co. AG, CH-9620 Lichtensteig Zwirnerei - Färberei Telefon 074 7 37 11 Telex 77 115 mittex 11/83 X


Bei Siegfried Zofingen sind sie am Lager und daher rasch lieferbar. Weil sie dort stets so rein sind wie die zugrundeliegende Formel, sind sie sicher in der Anwendung. Gebindegrössen von 1 bis 200 Kilo. – In Lohnfabrikation macht man bei Siegfried auch Zwischen- oder Endprodukte: diskret – in Ihrem Namen.

Denn bei Siegfried sind die Dienstleistungen ausschlaggebend. Und darum verlassen sich Textilund Farbspezialisten auf Siegfried.

Siegfried AG

CH-4800 Zofingen Telefon 062 50 11 11/Telex 68 434

Garne

Gugelmann

Gugelmann spinnt

Baumwoll-Qualitätsgarne

AK supergekämmt
3K supercardiert
KK Open-End
Ne 12-40
Ne 8-30
Ne 6-10

Wollmischgarn «melanetta» 55% Wolle/

45% Baumwolle supergekämmt

- für Tricoteure Nm 24-56

Gugelmann färbt

eigene Garne, sowie Fremdgarne im Lohn, auf Kreuzspulen, unbegrenzte Farbpalette, beste Echtheiten, nuancenkonform

Gugelmann zwirnt

Rohgarne, gefärbte Garne und im Lohn, knotenarm

Gugelmann handelt

Gespinste für HAKA – Storen und Deko – Polyester texturiert – gasiert – mercerisiert

Besser geht's mit Gugelmann-Garnen

für Plüsch – Unterwäsche – Oberbekleidung – Haushalt – Teppichgarne – Kleiderstoffe – Deko

Gugelmann & Cie. AG, Roggwil BE

Postadresse: Postfach, 4900 Langenthal

Telefon 063/48 12 24 Telex 68 142 gtex ch

Tabelle 5: Einstufungen

Tabelle 5. Linstalangen				
Subjektive Merkmale	Bewertung:	klein	mittel	hoch
Biegesteifigkeit	Nm²	100،	100 bis 500	,500
Steifigkeit subjektiv	Note	٠ 2	→2 bis ∢4	, 4
Mechanische Eigenschaften	Bewertung:	-	0	+
Reisskraft	N/5 cm	، 20	20 bis 200	,200
Rel. Reisskraft gealtert	%	₹ 80	80 bis 90	, 90
Rel. Reisskraft belichtet roh	%	₹ 50	50 bis 90	, 90
Reissdehnung	%	٠ 4	4 bis 8	, 8
Rel. Reissdehnung gealtert	%	₹ 80	80 bis 90	, 90
Rel. Reissdehnung belichtet	%	₹ 50	50 bis 90	, 90
Weiterreisskraft	N	٠ 5	5 bis 15	, 15
Berstfestigkeit	kN/m	۰ 0,5	0,5 bis 4	, 4
Scheuerung	Touren	₹ 50	50 bis 200	,200
Wechseldiagonalzug	Hübe	₹ 50	50 bis 500	,500
Nahtschiebefestigkeit	N	₹ 10	10 bis 70	, 70
Physiologische Eigenschaften	Bewertung:	klein	mittel	hoch
Luftdurchlässigkeit	I/(m² · s)	₹ 50	50 bis 500	,500
Wasserdampfdurchlässigkeit bei 2 m/s	g/(m² · h)	₹150	150 bis 300	,300
Wasserdampfabsorption	%	٠ 4	4 bis 8	, 8
Wasseraufnahme	%	₹ 25	25 bis 40	, 40
Trocknungsverlauf	min	, 30	30 bis 10	₹ 10
Wärmedurchlässigkeit bei 2 m/s	$W/(m^2 \cdot K)$	، 10	10 bis 20	, 20
Sicherheitseigenschaften	Bewertung:	-	0	+
Wärmedurchlassgrad	%	, 75	75 bis 60	، 60
Brennzeit für 290 mm	s	٠ 4	4 bis 8	, 8
Weitere Eigenschaften				
Massänderung Waschen	%	, 10	10 bis 3	، 3
Chemisch Reinigen	%	, 10	10 bis 3	، 3
Thermoschrumpf 80°	%	, 10	10 bis 3,5	، 3,5
120°	%	, 12	12 bis 4	4
120	/0	, 12	12 013 4	, 4

Anmerkung: Diese Werte sind Beispiele und keinesfalls allgemeingültig

- bedingt brauchbar (null): Je nach Anwendungszweck ist diese Eigenschaft genügend.
- brauchbar (plus): Für übliche Anwendungen von Textilien ist diese Eigenschaft genügend.

Es sei vermerkt, dass es sich dabei um eine grobe Einteilung handelt. Die Wertung gilt für übliche textile Anwendungen. Beim Einsatz für neue Gebiete oder andere Anwendungszwecke sind die einzelnen Anforderungen neu zu überdenken.

Für die subjektiven Merkmale und für die bekleidungsphysiologischen Eigenschaften wurden abweichend davon die drei Stufen klein (k), mittel (m), hoch (h) gewählt, da je nach Anwendung die Anforderungen verschieden sind.

Die Grenzen für die drei Bereiche werden willkürlich gemäss den Mindestwerten in Tabelle 5 angenommen.

Die 17 sehr verschiedenen Vliese werden nun in der folgenden Tabelle 6 nach diesem Schema klassifiziert. Aus dieser Tabelle ist je nach Anwendung eine Grobeinstufung möglich, wenn an die einzelnen Eigenschaften gewisse Anforderungen gestellt werden.

In der folgenden Tabelle 7 sind für die genannten Anwendungsbereiche Mindestanforderungen aufgestellt. Dabei wird mindestens die entsprechende Stufe gefordert, bzw. bei den physiologischen und den subjektiven Eigenschaften genau die angegebenen. Es liegt jedoch auf der Hand, dass für einen bestimmten Einsatz die ex-

Tabelle 6: Die Bewertung der Eigenschaften

EMPA Nr.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Konstruktion Material		PES /PO	PES	РО	РО	РО	cv	CV/ PES		cv	cv	cv	со	со	CO/ PO	CO/ PES	VI	VI
Masse pro Flächeneinheit Dicke	g/m² mm		374 0,9					135						74 0,2		55 0,2	36 0,2	
Subjektive Merkmale Biegesteifigkeit bei 20 ° C Steifigkeit subjektiv		k k	m h	k h	h h	k k	k k	k k	k k	k m	k m	k k	k k	k k	k m	k k	k k	k k
Mechanische Eigenschaften Reisskraft schlechtere Richtung Rel. Reisskraft gealtert Rel. Reisskraft belichtet 120 h	N/5 cm % %	+ + 0	+ + 0	0 + -	+ + -	0 +	- + -	0 + -	0 0	- + -	- + -	- + -	0 + -	0 + -	0 + -	0 + -	+	+
Reissdehnung (schlechtere Richtung) Rel. Reissdehnung gealtert Rel. Reissdehnung belichtet 120 h	% % %	+ + 0	++	+ + -	+ + -	++	+ + -	+ + 0	+ + + +	+ + 0	+ + -	+ + -	0 + -	0 +	- + -	0 + -	0 + -	0 -
Weiterreisskraft (schlechtere Richtung) Berstfestigkeit	N kN/m	++	++	++	++	+ 0	0	+	+	0	0	_ 0	-	0	0	0	_ 0	0
Scheuerung Wechseldiagonalzugversuch Nahtschiebefestigkeit (schlechtere Richtung)	Tr Hübe N	+ + +	+++++	+ + +	+ + + +	0 + +	- 0 0	0 0	- 0 0	+ + 0	+ + 0	- 0 0	- 0 0	- 0 0	0 0	0 0	0	0 0 -
Physiologische Eigenschaften Luftdurchlässigkeit Wasserdampfdurchlässigkeit bei 2 m/s Wasserdampfabsorption Wasseraufnahme Trocknungsverlauf Wärmedurchlässigkeit bei 2 m/s	I/m²·s) g/(m²·h) % min W/(m²·K)	h m k k h m	k m k m m h	h m k k h h	h m k k h m	k k k m h	h h h h h	h m m m m	h m m h m m	4 4 4 4 A	h h m h m h	h	k k m h m h	k k m h m h	k k m h m h	m m m h h	h m m h h h	h m m m h
Sicherheitseigenschaften Wärmedurchlassgrad Brennzeit	% s	+	0 +	0 +	0 +	+	0 -	+ 0	+ +	0	0	-	-	- 0	0	-	-	-
Massänderung schlechtere Richtung Waschen Chemische Reinigung Thermoschrumpf 80°C 120°C	% % %	+ 0 + +	+ + + +	+ + + +	+ + + +	+ 0 + +	0 + + +	0 + + +	0 0 + +	+ + + +	+ + + + +	0 + + +	0 + + 0	+ + + +	- + 0	+ + + +	0 + + +	+ + + +

akten Messwerte berücksichtigt werden müssen. Hier sei noch festgehalten, dass es sich bei dieser Auswertung nicht um eine Mittelung handelt. Unserer Ansicht nach dürfen bei einer Bewertung eines Artikels auf keinen Fall verschiedene Kriterien auf irgendeine Weise durch Gewichtung verknüpft werden.

Tabelle 7: Mindestwerte für bestimmte Einsätze

	Topfhand- schuhe	Hand tuch	Ab- deckung
Subjektive Merkmale Biegesteifigkeit Steifigkeit subjektiv	k, m k, m	k, m k, m	k, m k, m
Mechanische Eigenschaften Reisskraft Rel. Reisskraft gealtert Rel. Reisskraft belichtet roh Reissdehnung	0 0 - 0	0 - -	0 0 0
Rel. Reissdehnung gealtert Rel. Reissdehnung belichtet	0 -	0 - -	0 0
Weiterreisskraft Berstfestigkeit	0	0 0	++
Scheuerung Wechseldiagonalzug Nahtschiebefestigkeit	0 0 0	_ 0 _	0 0 -
Physiologische Eigenschaften Luftdurchlässigkeit Wasserdampfdurchlässigkeit bei 2 m/s Wasserdampfabsorption Wasseraufnahme Trocknungsverlauf	k, m, h k, m k, m, h k, m m, h	k, m, h k, m, h k, m, h h m, h	m, h m, h - - -
Wärmedurchlässigkeit bei 2 m/s Sicherheitseigenschaften Wärmedurchlassgrad Brennzeit	k, (m) * + 0	k, m, h - 0	-
Weitere Eigenschaften Massänderung Waschen Chemisch Reinigung Thermoschrumpfung 80° 120°	0 - + +	= -	- - - ,

^{*}unter Voraussetzung, dass zwei Lagen

Für eine zusätzliche Selektion könnten noch weitere Kriterien in Betracht gezogen werden, die im Gegensatz zu den absolut erforderlichen gewisse wünschbare Eigenschaften umschreiben.

Vergleicht man nun die geforderten Werte der Tabelle 7 mit der Bewertungstabelle Nr. 6, ergeben sich folgende Eignungen:

- Topfhandschuhe: Vlies Nr. 1, 7
- Handtuch für Eintagesgebrauch: Vlies Nr. 8, 15
- Abdeckung für Garten: Vlies Nr. 1

Da das Spektrum der Vliese sehr breit ist, ist es fast unumgänglich, dass sich für die einzelnen Einsätze nur wenige Vliese eignen. Es zeigt sich aber auch, dass für marktgängige Produkte durchaus erweiterte Einsatzgebiete offen stehen. Aufgrund dieses Schemas ist es also durchaus möglich abzuklären, ob sich für einen bestimmten Einsatz ein Vlies eignen würde, wobei selbstverständlich auch der Preis berücksichtigt werden müsste.

Zusammenfassung

Es wurde versucht, aufgrund einer grossen Datenmenge ein Ausleseverfahren zu entwickeln. Für eine erste informative Optimierung sollte dieses Schema genügen. Bei konkreten Einsätzen sind unter Umständen einerseits die genauen Messdaten zu berücksichtigen und anderseits andere zusätzliche Prüfungen notwendig. Die Ergebnistabellen zeigen im Weiteren einen Teil des heute handelsüblichen Spektrums an Vliesstoffen.

E. Martin, dipl. Phys. ETH Chef Abteilung Textil-Physik EMPA St. Gallen

Synthetik

Synthetische Filamentgarne für technische Anwendungen

Chemiefasern – Eigenschaften und Einsatz im technischen Bereich

Die Entwicklung textiler Produkte für industrielle Anwendungen ist zum grössten Teil auf den Fortschritt zurückzuführen, welcher bei der Entwicklung synthetischer Fasern erzielt wurde. Seit mehreren Jahren sind Naturfasern in technischen Einsatzgebieten an ihren Grenzen angelangt; nur dank Forschung und Entwicklung im Bereich synthetischer Faserstoffe können neue Einsatzgebiete und Anwendungen erschlossen werden. Die ausgezeichneten Eigenschaften dieser Fasern, speziell ihre hohe Reisskraft und ihr hohes Modul, ermöglichten die Herstellung hochbelastbarer Textilien. In den meisten Fällen haben synthetische Fasern die Naturfasern verdrängt, da sie für industrielle Anwendungen auf Grund ihrer Eigenschaften besser geeignet sind.

Die Viscosuisse unternimmt seit langem grosse Anstrengungen in Forschung und Entwicklung für spezielle Fasertypen. Einen breiten Raum nehmen hierbei hochfeste Nylsuisse (Polyamid-) und Tersuisse (Polyester-) Garne ein, welche der weiterverarbeitenden Textilindustrie auf Grund ihrer spezifischen Eigenschaften die Möglichkeit bieten, in Einsatzgebiete vorzudringen, welche ihr bisher verschlossen waren.

Von Seiten der weiterverarbeitenden Industrie werden an Nylsuisse- und Tersuisse-Garne für spezielle technische Einsatzgebiete spezifische Forderungen gestellt, wie definierte Festigkeit, Bruchdehnung usw. sowie bestimmte Eigenschaften wie die Strapazierfähigkeit, welche als Abrasion oder Schlag-Zähigkeit usw. gefordert werden. Diese Kriterien versucht die Viscosuisse durch entsprechende Modifizierung ihrer Garne zu erfüllen.

Marktaussichten für technische Garne

Die Viscosuisse AG beurteilen die Entwicklung technischer Garne insgesamt sehr positiv. Abgesehen vom Einsatzgebiet Pneu hat Polyester in der Mehrheit der technischen Anwendungen bereits die Führung übernommen.