Zeitschrift: Mittex: die Fachzeitschrift für textile Garn- und Flächenherstellung im

deutschsprachigen Europa

Herausgeber: Schweizerische Vereinigung von Textilfachleuten

Band: 89 (1982)

Heft: 7

Rubrik: Webereizubehör/Prüfgeräte

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

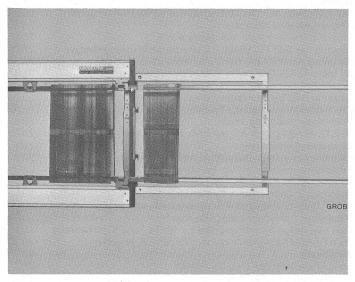
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


Webereizubehör/Prüfgeräte

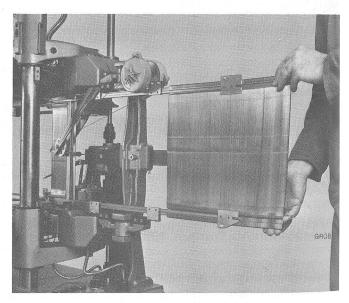
Vorbereitung und Pflege reiterloser Webegeschirre

Im Zusammenhang mit der Bereitstellung der Webketten stellt das Vorbereiten neuer Webegeschirre einen wichtigen Arbeitsgang dar. Dies trifft auch für das Umrüsten jener Webegeschirre zu, die nach monatelanger und mehrschichtiger Laufzeit auf den Webmaschinen aus der Weberei in die Einzieherei zurückkommen.

Ein bewährtes Litzen-Verschiebe- und Transport-System

Um die Webelitzen von den Tragschienen zu entfernen oder auf diese wieder aufzuschieben, werden in vielen Webereien seit Jahren für Litzen mit C-förmigen Endösen Transitex- und für solche mit J-förmigen Endösen Transextra-Transportschienen und Verschiebevorrichtungen verwendet. Diese Transportschienen gibt es in den Längen von 500 und 980 mm. Letztere sind vor allem für die Kontrolle und Behandlung der Litzen in der Lavatex-Reinigungsanlage geeignet.

Mit der TRANSEXTRA-Verschiebevorrichtung werden die stark verschmutzten Webelitzen leicht und rasch vom reiterlosen Webeschaft auf die TRANSEXTRA-Reinigungsschienen verschoben.

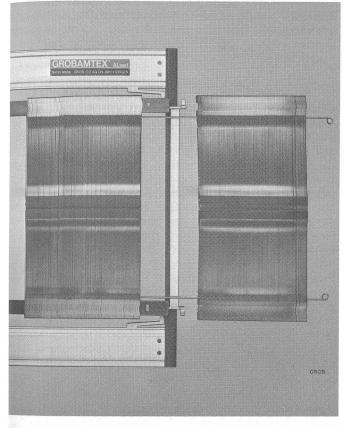

Die neue «Porter»-Alternative

Seit neuestem gibt es eine zusätzliche Möglichkeit reiterlose Webegeschirre rationell vorzubereiten. Das hiefür vorgesehene Porter-Reihsystem besteht aus zwei Elementen und zwar aus Reihstäben und Reihbrücken. Bei den Reihenstäben ist das eine Ende umgebogen und dient als Anschlag für die Webelitzen, während auf dem anderen Stabende eine leicht aufschiebbare Federsicherung das Abgleiten der Litzen verhindert. Die Reihbrücke dient dazu, die aus der Schaftebene angehobene Litzentragschiene während des Auf- und Abschiebens der auf

den Reihstäben befindlichen Litzenstapel in der gewünschten Lage festzuhalten.

Für den Versand von Flachstahl-Litzen mit seitlich offenen C- und J-förmigen Endösen ist man jetzt dazu übergegangen, die Litzen auf 345 oder 395 mm langen Porter-Reihstäben zu verschicken. Die Litzen besitzen hiefür ober- bzw. unterhalb der Endösen entsprechende Reihlöcher, durch welche die Reihstäbe geschoben werden.

Ein weiterer Vorteil des neuen Porter-Reihsystems liegt darin, dass die Reihstäbe auch für den weberei-internen Litzentransport sowie für das Auf- und Abschieben eingesetzt werden können. Da die Endösen der auf den Reihstäben befindlichen Litzen frei sind, können sie auf die Litzentragschienen der Webeschäfte oder auf die Magazinschienen von Einziehmaschinen direkt geschben werden. Dadurch wird ein Arbeitsgang eingespart, und zwar das Entfernen der Versandschienen und das Einschieben der Transportschienen in die Endösen der Litzen.


Litzenmagazin der Einziehmaschine USTER wird mit GROBEXTRA-Webelitzen gefüllt, die auf PORTER-Reihstäben gereiht sind.

Zwei Reihsysteme bestehen nebeneinander

Bisher wurden Grobextra- und Grobamtex-Webelitzen auf Versandschienen geliefert. Ab jetzt kommen sie auf Reihstäben in die Webereien. Geblieben sind die handlichen und stapelbaren Kartonschachteln, in denen sich die Litzen einwandfrei und platzsparend lagern lassen.

Die Umstellung auf das Porter-Reihsystem hat keinerlei Änderungen in den Webereien zur Folge. Es kann weiterhin mit den vorhandenen Grobextra- und Grobamtex-Webelitzen sowie mit den Transitex- oder Transextra-Transportschienen und Verschiebevorrichtungen gearbeitet werden. Die «neuen» Webelitzen unterscheiden sich von den bisherigen lediglich durch die beiden Reihlöcher, dennoch ist es empfehlenswert, die beiden Litzenausführungen getrennt einzusetzen. Transitex- oder Transextra-Transportschienen können nicht nur für Litzen bisheriger Ausführung, sondern auch für solche mit Reihlöchern verwendet werden. Zusätzliche Einrichtungen in der Einzieherei sind nicht erforderlich. Beide Systeme kommen mit dem gleichen, der Länge der Webeschäfte angepassten Rüsttisch zurecht.

Für Grobtex- und Grobextra-Dreherwebelitzen sowie für Grobtex- und Grobtra-Rondofil-Rundstahlwebelitzen werden weiterhin Transitex- oder Transextra-Transportschienen verwendet.

Auf dem Rüsttisch in der Einziehanlage BARBER COLMAN wird der Abstand der Litzentragschienen kontrolliert. Anschliessend werden die GROBAMTEX-Webelitzen auf den GROBAMTEX-Webeschaft aufgeschoben

Schnelles Abrüsten der gebrauchten Webegeschirre

Nach dem Abweben der Kette kommt das Webegeschirr zurück in die Einzieherei. Dort werden die Litzen von den Schäften abgestossen.

Beim Transitex- oder Transextra-Reihsystem geht das folgendermassen vor sich: Der Litzentragschienen-Verschluss wird geöffnet und der Webeschaft auf den entsprechend langen Rüsttisch gelegt. Nun schiebt man den Webeschaft an die Verschiebevorrichtung und hängt die Seitenstützen in die beiden dafür vorgesehenen Halter ein, womit die Enden der oberen und unteren Litzentragschiene auf die richtige Höhe angehoben werden. Jetzt wird an jedes dieser Enden eine Transportschiene angefügt, so dass sich die Webelitzen paketweise auf die Transportschiene oder direkt auf die Reinigungsschienen der Lavatexanlage schieben lassen.

Beim Porter-Reihsystem wird wie folgt vorgegangen: Der Webeschaft wird ebenfalls auf den Rüsttisch gelegt und der Litzentragschienen-Verschluss geöffnet. Man hebt die Enden der Litzentragschiene von Hand an und schiebt die Porter-Reihbrücke darunter. Diese kommt mit ihrer Aussparung auf die Seitenstütze des Webeschaftes zu liegen und hält die Litzentragschiene auf der richtigen Höhe. Nun werden die Webelitzen zu einem Stapel zusammengeschoben, worauf der Reihstab durch die Reihlöcher gestossen werden kann. Das Auf-

schieben der Abschlussfeder auf das eine Ende des Reihstabes verhindert ein Abgleiten der Litzen. Jetzt kann der Litzenstapel mit einem einzigen Handgriff von der Litzentragschiene des Webeschaftes abgeschoben werden. Die Beschreibung beider Vorgänge beansprucht übrigens wesentlich mehr Zeit als deren Durchführung.

Gepflegte Webegeschirre sind länger einsatzfähig

Bei dem heute üblichen, grossen Fassungsvermögen der Kettbäume bleiben die Webegeschirre monatelang auf den Webmaschinen und dies im Mehrschichtbetrieb. Wen wundert es da, dass Webegeschirre stark verschmutzen, beispielsweise auf Webmaschinen mit hydraulischem Schusseintrag. Da entstehen auf den Litzen Rückstände, denen mit herkömmlichen Reinigungsmethoden nicht mehr beizukommen ist.

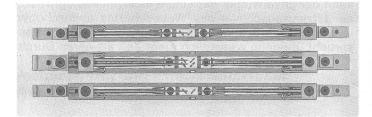
Die Lavatex-Reinigungsanlage wird jedoch mit derartigen Verschmutzungen fertig. Ihr Fassungsvermögen beträgt 240 Liter Reinigungsflüssigkeit und diese kann bis auf 80° C erhitzt werden. Pro Minute ergiessen sich davon 80 Liter über Reinigungsbürsten und Litzen. Infolge der Umwälzung und Filterung der Reinigungsflüssigkeit wird der Schmutz fortwährend weggeschwemmt und die Litzen werden tadellos sauber.

Zwecks guter Reinigung sowie für die Kontrolle sollten die Litzen nicht zu dicht gedrängt auf die Reinigungsschienen gereiht werden. In diesem Sinn ist es empfehlenswert, einen Litzenstapel von maximal 320 mm Länge über die 980 mm langen Lavatex-Reinigungsschienen gleichmässig zu verteilen.

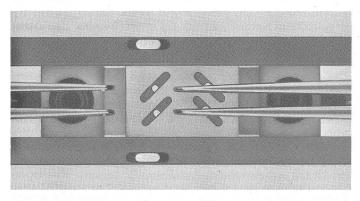
Mit Transitex- oder Transextra-Verschiebevorrichtung können die Webelitzen von den Schäften direkt auf die Lavatex-Reinigungsschienen geschoben werden.

Nach dem Trocknen werden die Litzen wieder der Einzieherei zugeführt oder auf Transportschienen, beziehungsweise auf Porter-Reihstäben gelagert.

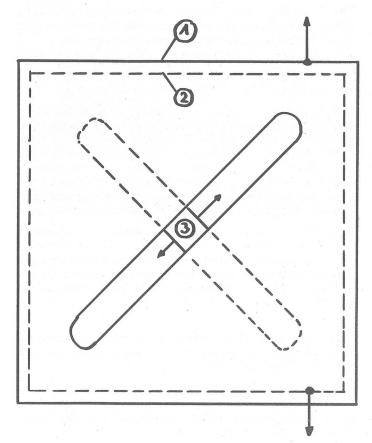
Wie die Erfahrung zeigt, ist es zweckmässig, die Litzen von den Webeschäften getrennt zu reinigen. Die Verschmutzung der Litzen ist nicht gleicher Art wie diejenige der Schäfte. Der Transport von Webeschäften, die nicht selten bis zu 5 Meter lang sind, ist umständlich. Müssten Reinigungsmaschinen, Spülbehälter und Trokkenvorrichtungen diesen Dimensionen angepasst werden, würden daraus erhebliche Mehrkosten entstehen.


Gegen die Nassreinigung ganzer Webeschäfte sprechen verschiedene Gründe. Beispielsweise können Holzteile wie aufgeleimte Schaftführungen, Seitenstützen usw. aufquellen. Ferner dringt bei Schaftstäben mit Durchbrüchen die Reinigungsflüssigkeit in die Hohlräume der Profile ein, woraus sie nur schwer wieder zu entfernen ist.

Gereinigte Webelitzen bieten viele Vorteile: Moderne Einziehanlagen leisten mehr, wenn einwandfrei gepflegte Litzen vorgelegt werden.


Saubere Litzen führen zu weniger Kettfadenbrüchen und Webmaschinenstillständen und nicht zuletzt schätzen es in der Einzieherei tätige Mitarbeiter mit gereinigten Webelitzen zu arbeiten.

GROBEXTRA, GROBAMTEX, TRANSEXTRA, TRANSITEX, PORTER und LAVATEX sind international eingetragene Schutzmarken der Firma Grob & Co AG, 8810 Horgen.


Kantenapparat für schützenloses Weben

Die drei Kantenapparate für Links, Mitte und Rechts. Im Zentrum die Gleitsteine mit den Kulissen. Oben und unten die Befestigungselemente für die Tragschienen. Längs durch die Kantenapparate führen die Stehernadeln; hinter ihnen sind knapp sichtbar die elastischen Übertragungselemente.

Die Gleitsteine, in welche die Schlitze eingelassen sind, werden von zwei U-Schienen geführt. In diesen befinden sich die Bohrungen für den Durchzug der Steherfäden, welche von hier aus zu den oben und unten liegenden Umlenkösen geführt werden. Von diesen Umlenkösen aus werden diese Fäden parallel zu den Stehernadeln zu deren Ösen geführt.

Die Querbewegung der K für die Kantenbildung benötigten Kettfäden geschieht durch das senkrechte Verschieben von Kulissen. 1 : vorderer Gleitstein – 2 : hinterer Gleitstein – 3 Durch die Schrägschlitze gebildete Öse für den Durchzug der Kettfäden. Die schützenlosen Webmaschinen weisen einen grossen Nachteil auf: Es entsteht nicht wie bei Schützenwebmaschinen dank kontinuierlichem Schusseintrag von selbst eine Webkante, sondern für deren Bildung muss wegen der einzeln abgelängten Schussfäden zu irgendwelchen Kunstgriffen Zuflucht genommen werden. Eine der besten Möglichkeiten ist die Bildung einer Dreherkante. Hiefür muss mit einer Vorrichtung eine Querbewegung der für die Kantenbildung benötigten Kettfäden erreicht werden.

Im Zentrum: Kulissenführungen

Während andernorts Exzenter im Vordergrund stehen, geschieht diese Querbewegung beim hier besprochenen Kantenapparat wie folgt mit Kulissen: In einem Gleitstein befindet sich ein schräg laufender Schlitz; hinter diesem Stein ist ein zweiter kongruenter Stein angebracht, der ebenfalls mit einem Schlitz versehen ist, wobei dieser aber in der Gegenrichtung schräg geführt ist, also in einem Winkel von 90° zum ersten Schlitz steht. An der Kreuzungsstelle der beiden Schlitze ergibt sich eine durchgehende Öffnung, die sich sowohl auf und ab als auch seitlich verschiebt, wenn die beiden Gleitsteine vertikal gegeneinander bewegt werden. Die senkrechte Bewegung erfolgt bei diesem Kantenapparat durch Bewegung der Schäfte, auf denen der Kantenbilder montiert ist. Mit Magneten wird die nötige Verzögerung erreicht. Kettfäden, welche durch die von den beiden Schrägschlitzen gebildeten Öffnungen geführt werden, bewegen sich nicht nur senkrecht, sondern gleichzeitig auch waagrecht.

Auf dem Schaft montiert

Im Detail ist der Kantenapparat wie folgt aufgebaut und montiert: Auf dem ersten Schaft (montiert auf den Litzentragschienen) befindet sich der Hauptteil des Kantenapparates mit den Stehernadeln und den in zwei U-Schienen gelagerten Kulissensteinen aus verschleissfestem Kunststoff oder Sinterkeramik. Die Auf- und AbBewegung der Kulissen wird erreicht durch eine elastische Verbindung zum gegenläufigen zweiten Schaft; diese Verbindung ist elastisch, um unregelmässige Schaftbewegungen aufzufangen und auszugleichen.

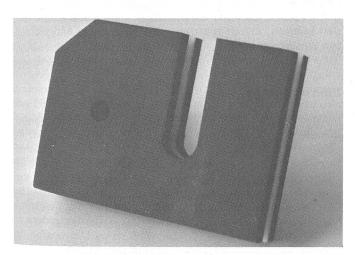
Arbeitsweise

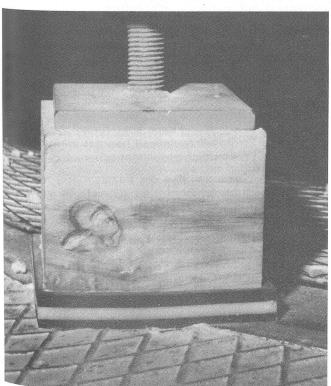
Durch die Punktführung, welche durch die Kulissen gebildet werden, laufen die Dreherfäden, welche aus der Kette gnommen oder zusätzlich als Hilfsfäden zugeführt werden können. Sie werden bei der Bewegung der Schäfte jeweils im Zwischenraum der Stehernadeln zwangsläufig auf die andere Seite der Nadeln gebracht, womit das Kreuzdrehverfahren erreicht wird.

Die Steherfäden ihrerseits werden als Hilfsfäden von hinten zugeführt: durch Bohrungen in den U-Schienen, von dort nach oben oder unten zu Umlenkösen und von hier in die Nadelöffnungen.

Vielseitigkeit

Bei Verwendung von asymmetrischen Litzen sind ungleiche elastische Übertragungselemente zu verwenden: oben kurze, unten lange. Die Tragschienenbefestigung ist sehr universell ausgeführt, so dass die Apparate auf allen Schäften mit festem Sitz montiert werden können. Es werden alle praktisch vorkommenden Litzenlängen und Tragschienenbreiten berücksichtigt. Selbstverständlich sind einfache Modelle für die linke und rechte Seite vorhanden, und ein Doppelmodell dient dem mehrbahnigen Weben.


Der Kantenbilder hat sich vor allem wegen der kleinen hin- und hergehenden Massen auch bei hohen Tourenzahlen auf allen Arten und Systemen schützenloser Webmaschinen bewährt. So bildet er beispielsweise auf Sulzer-Projektilwebmaschinen bei über 300 U/min einwandfreie Kanten, oder auf Rüti-Luftmaschinen wird mit diesem Kantenbilder mit Drehzahlen bis 600 U/min gearbeitet.


Mit dem K-MAG genannten Kantenbilder steht eine Vorrichtung zur Verfügung, die weitgefächerten Anforderungen zu entsprechen vermag und eine wesentliche Lücke in der schützenlosen Webtechnik ausfüllt.

Dr. W. Honegger c/o Webschützenfabrik Honegger AG 8340 Hinwil

LEDER-POLYPAD-Maschinenunterlagen

POLYPAD RPR Maschinenunterlagen eignen sich ganz besonders für hochtourige Maschinen in Webereien, Spinnereien, Zwirnereien und Texturierbetrieben.

POLYPAD-Maschinenunterlagen

- garantieren bei hohem Lärmpegel eine Lärmdämpfung von über 6 Dezibel und wirken deshalb gehörschonend
- dämpfen die von Maschinen auf ihre Unterlage abgegebenen Schwingungen wesentlich
- schonen deshalb Maschinenteile, Lager, Gebäude und erhöhen deren Lebensdauer.

POLYPAN-Maschinenunterlagen sind öl-, fett-, säureund wärmebeständig. Sie bestehen aus zwei Lagen Neoprenschaumstoff und der Zwischenschicht aus Spezialpolyäthylen.

POLYPAD ist leicht und schnell zu montieren, da je nach Anwendung ein Verschrauben oder Verleimen entfällt.

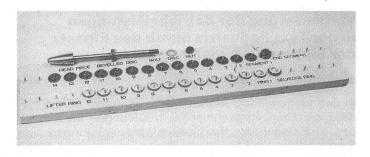
Belastbarkeit

POLYPAD-Maschinenunterlagen können mit maximal 7 kg pro cm² belastet werden.

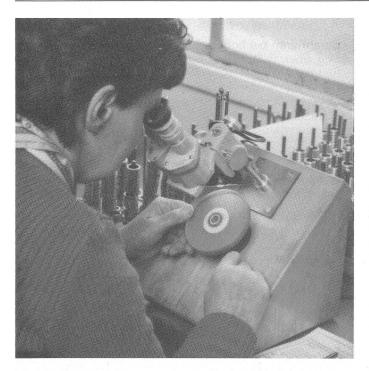
LEDER & CO. AG, 8640 Rapperswil

Wartung von Breithalter-Zylindern

Immer höhere Tourenzahlen der Webmaschinen erfordern laufend widerstandsfähigeres Webmaschinenzubehör. Der regelmässige, gründliche Unterhalt dieses Zubehörs wird von bestimmender Bedeutung. Ganz besonders die Breithalter werden unter höchste Ansprüche gestellt und sind einer grossen Belastung unterworfen. Die häufigsten Defekte bei Breithalterzylindern sind:


- verbogene oder abgebrochene Spitzen
- ausgelaufene Büchsen
- abgenützte Ellipsen
- blockierte Rädchen
- In der falschen Reihenfolge montierte Ellipsen
- ungleich abgelaufene Gummiwalzen

Die Folgen sind fehlerhafte Gewebe und ein reduzierter Nutzeffekt.


Wartung von Breithalter-Zylindern

Eine regelmässige Wartung der Breithalterzylinder ist daher unerlässlich. Folgendes Vorgehen hat sich bewährt:

 Demontage des Zylinders in die einzelnen Bestandteile nach System (Bild 1)

- Reinigung der Rädchen und Ellipsen mit einem leicht öligen oder trockenen Tuch
- Kontrolle der Rädchen mit dem Stereomikroskop (Bild 2)

- Ersetzen der defekten Rädchen
- Montage des Zylinders
- Prüfen, ob alle Rädchen frei drehen (bei angezogenem Zylinder)

Eine regelmässige Wartung – mit geeigneten Hilfsmitteln – erhöht den Nutzeffekt und verbessert die Stoffqualität.

G. Hunziker AG, Rüti

Elektronik in der Textilindustrie

Verbesserung der Betriebsleistungen in der Textilindustrie durch den Einsatz der Elektronik

In den vergangenen Jahren wurde es immer deutlicher, dass die Grenzen technischer Neuerungen im Bereich der grundlegenden Textilfertigungsausrüstungen wie Spinn-, Web- und Strickmaschinen im wahrsten Sinne des Wortes erreicht sind, soweit es sich um kommerziell erfolgreiche Entwicklungen handelt.

Einige der bedeutenderen neuen Techniken, die in diesem Industriezweig hervorgebracht wurden, wie etwa Vielphasen-Websysteme und unorthodoxe Spinnverfah-

ren, sehen sich solange in den Hintergrund gedrückt, bis die von der Rezession betroffenen Textilherstellerfirmen es sich leisten können, die notwendigen Mittel bereitzustellen, die dafür erforderlich sind, sie zur Massenherstellung von Garnen, Geweben und Strickwaren praktisch zu nutzen.

Andererseits hat sich das Ringen um Marktanteile zwischen den Textilfabrikanten der Industrienationen infolge der weitreichenden Rezession und der von den auf dem Textilmarkt neu hinzugekommenen lohnkostenbegünstigten Auslandsunternehmen in gesteigertem Masse durchgeführten Exporte verstärkt. Dies hat die Textihersteller der westlichen Welt dazu gezwungen, für andere als die grundlegenden Garn- und Gewebefertigungsverfahren nach Verbesserungen der Wirtschaftlichkeit im Rahmen der Produktion und nach einer Steigerung der Betriebsleistung zu suchen.

Die Gewebe-Endbearbeitung bildet die natürliche Fertigungsstufe, auf der das Ausmass einer nach realistischer Einschätzung noch möglichen Verbesserung maschineller Anlagen aufgrund der vielfältigen Arbeitsgänge, die zur Endbearbeitung gehören, untersucht werden sollte. Einsparungen können offensichtlich noch im Bereich der nassen Aufbereitung durch umkonstruierte Maschinen, die mit einem geringeren Aufwand an Energie, Wasser, Dampf, Chemikalien usw. betrieben werden können, erzielt werden, und viele diese Möglichkeiten werden gegenwärtig bereits ausgenutzt.

Eine neue Dimension

Im Bereich der trockenen Endbearbeitung steht jedoch vielleicht nur noch eine einzige Möglichkeit offen: die Übernahme der neuesten elektronischen Errungenschaften für bereits vorhandene Maschinentypen, um ihre Betriebseigenschaften und ihre Leistungsfähigkeit zu verbessern. Die britischen Maschinenbauer sind schnell bei der Hand, die sich aus den Möglichkeiten der Elektronik ergebenden Vorteile zu nutzen, um – insbesondere im Bereich der Endbearbeitung – eine neue Dimension der Maschinenfunktionssteuerung und der Betriebsüberwachung und -aufzeichnung zu schaffen.

Die Maschine, die von der Texmac Ltd (1) auf den Markt gebracht werden soll, kann als Beispiel für diese Entwicklungsrichtung gelten. Die von dieser Firma hergestellte Gewebeprüfmaschine der Baureihe 200 führt eine mikroprozessorgesteuerte Gewebekontrolle, Mängelerfassung und Messung sämtlicher Gewebearten von feinem Maschenwerk bis hin zu schwerem Berufsanzugköper (Denim) durch und kann auch für solche Ware wie Strick- und Stretch-Erzeugnisse benutzt werden, deren Handhabung wesentlich problematischer ist.

Tatsächlich ist es so, das die Bezeichnung «Baureihe 200» auf eine Maschinenserie hinweist, die von einem einfachen Grundmodell mit Stoffantrieb und elektronischer Breitenmessung bis zu einem vollständig von einem Computer gesteuerten Kontrollsystem mit Materialwiegezelle und Mängelkennzeichnungsvorrichtungen reicht. Es ist jedoch das Spitzenmodell, dem sich gegen wärtig ein Grossteil der Aufmerksamkeit britischer Textilgewebe-Hersteller und Aufmacher zuwendet.

Bei diesem Modell werden über eine besonders konstruierte Datenerfassungskonsole sämtliche Einzelheiten des betreffenden Stoffes bestimmt und aufgezeichnet. Hinzu kommen Angaben über Art und Lage von Mängeln nach Länge und Breite, Länge und Breite des betreffenden Gewebes selbst und Berechnungen der Dehnung.