Zeitschrift: Technique agricole Suisse **Herausgeber:** Technique agricole Suisse

Band: 82 (2020)

Heft: 1

Artikel: Des robots pour lutter contre les limaces

Autor: Thomsen, Astrid

DOI: https://doi.org/10.5169/seals-1085378

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Entièrement assemblé pour la première fois, tel est le robot «MSRBot» au terme de la première phase du projet. Photos: Astrid Thomsen

Des robots pour lutter contre les limaces

Des chercheurs allemands sont en train de mettre au point le «MSRBot», un robot capable de combattre les limaces de manière autonome. Le projet est ambitieux et exige de nombreux essais pratiques.

Astrid Thomsen*

Il y a trois ans, un groupe de chercheurs et d'entreprises basé en Allemagne a obtenu des fonds pour mettre au point un robot piloté par GPS capable de sillonner les champs pour détecter les limaces dans leurs points de rassemblement et les exterminer. Le département d'ingénierie agricole de l'Université de Kassel, l'Institut de technologie appliquée en protection des plantes de l'Institut Julius Kühn (JKI) de Braunschweig et la société KommTek d'Osterburken (Bade-Wurtemberg) collaborent étroitement à la réalisation de cet objectif. La société Rapid de Killwangen a, dans l'intervalle, pris une participation majoritaire dans la société KommTek, qui a développé le véhicule porteur du robot.

Plusieurs variantes testées

Jobst Gödeke, collaborateur scientifique et expert en protection des plantes au

*Domiciliée à Kiel (D), Astrid Thomsen est une journaliste spécialisée en agriculture.

JKI, avait pour tâche de développer un dispositif capable de tuer efficacement les limaces. Diverses méthodes ont été testées en laboratoire. La lutte avec des nématodes s'est avérée trop coûteuse pour une utilisation à grande échelle et la lutte chimique a également été abandonnée parce qu'il aurait fallu transporter un réservoir sur le robot, ce qui aurait rendu la machine trop lourde et le rendement de surface trop faible.

Matrice à clous

Les développeurs ont également essayé d'éliminer les limaces en les déchiquetant, mais les lames étaient trop sensibles à la saleté. Ils ont donc décidé d'utiliser une sorte de barre à clous avec un grattoir. Les limaces sont perforées et abandonnées sur le sol. Les ramasser n'est pas possible, car le robot deviendrait alors trop lourd. Cependant, les cadavres attirent des congénères cannibales. Les

Dès que les limaces sont localisées, le bras articulé positionne la matrice à clous.

limaces convergent ensuite en masse vers ce « hotspot », qui est la cible du robot. Christian Höing, qui travaille sur le projet pour le compte du département d'ingénierie agricole de l'Université de Kassel en tant qu'assistant de recherche, est fatigué de devoir se justifier d'avoir mis au point cette méthode. Son système a notamment été vivement critiqué par les visiteurs d'un congrès numérique. « Pour moi, une limace a la même valeur qu'un concombre », tient-il à préciser, mais il se dit également ravi de ne pas avoir à participer aux essais sur les limaces. Christian Höing a développé la caméra ainsi que le logiciel qui traite les données de la caméra frontale dans l'ordinateur de bord et les transmet au navigateur. Dès que celuici dispose de toutes les coordonnées nécessaires pour la localisation des limaces, le robot démarre et étend son bras pour les exterminer.

Encore trop lent

Un problème crucial subsiste à ce niveau, car la caméra est trop lente. En l'état actuel du projet, le « MSRBot » doit prendre des photos individuelles et ne peut pas détecter les limaces dans la vidéo, car différents filtres sont placés devant la lentille de l'objectif et doivent être changés pendant la prise de vue. Dans une application de série, le changement de filtre pourrait être supprimé si la caméra était dotée de plusieurs capteurs dotés chacun d'un filtre différent.

La caméra pose le plus grand défi

Pour Christian Höing, le développement d'une caméra fonctionnant pour la détection des limaces était et reste le plus grand défi du projet. L'idée et le procédé technique pour la localisation des limaces sont issus d'une étude anglaise, mais n'ont pas fonctionné en pratique. Seules les limaces de couleur claire ont pu être détectées. La caméra utilisée actuellement prend deux photos du sol en réfléchissant la lumière incidente dans différentes gammes de longueurs d'onde. Les limaces et le sol ayant des spectres de réflexion différents, les images sont ensuite comparées. Cela permet d'éviter toute confusion avec des végétaux et d'exclure les escargots. La position de la limace est mémorisée pour que le robot puisse revenir à cet endroit plus tard.

Détermination du seuil de tolérance

L'institut JKI a développé un modèle de prédiction pour identifier les zones particu-

La caméra avec quatre spots halogènes est le plus grand défi de ce projet.

lièrement sujettes à des attaques de limaces dans les champs. La prévision est basée sur les résultats d'études, la météo, les conditions du sol, le type de culture et l'expérience de l'agriculteur. Dès que le seuil de tolérance de 20 limaces par mètre carré est dépassé dans une zone, l'ordinateur dirige le robot vers le hotspot. Pour le colza, 10 à 30 limaces par mètre carré sont considérées comme critiques; 20 gastéropodes par mètre carré est une valeur moyenne qui doit encore être testée lors des prochains essais en plein champ. Le robot cible précisément ces zones et néglige celles qui ne sont pas exposées à une menace. Cela augmente la performance de surface du véhicule.

Station de charge en bordure de

Le fichier électronique des parcelles renseigne également le robot sur les zones à inspecter. À défaut d'un tel fichier, le champ doit être parcouru une première fois avant l'opération. Le robot est alimenté en énergie par une «station de charge diesel-électrique » placée en bordure de champ, où les accumulateurs sont chargés pendant la journée. Une

Après de nombreux essais, le choix s'est porté sur cette matrice à clous pour tuer les limaces.

charge d'accumulateur suffit pour huit heures de fonctionnement. Le robot peut être utilisé depuis la récolte de la culture précédente jusqu'au stade de quatre feuilles de la nouvelle culture. À partir d'une période de fonctionnement de 6 ans, il revient moins cher que l'utilisation de granulés anti-limaces. Pour le moment, il faut compter avec un prix de vente de 20000 euros.

D'autres essais sont nécessaires

Les agriculteurs demandent régulièrement à Christian Höing combien coûte le robot, s'il n'endommage pas les végétaux et ce qui se passe s'il est volé pendant la nuit. Et si les limaces grignotent les parties souterraines des plantes et ne remontent pas à la surface? De nombreux essais pratiques sont encore nécessaires pour que les chercheurs puissent clarifier ces points dans une étape ultérieure du projet.

Le «MSRBot» en chiffres

Entraînement: deux moteurs électriques 24 V 300 W, châssis à chenilles Détection: détecteur de limaces avec caméra spectrale composée d'un capteur « CMOS » (société IDS, 2,12 mégapixels) et filtres passe-bande étroits d'Edmund Optics

Structure: bras articulé pour la lutte contre les limaces avec entraînements linéaires électriques (société Igus) Procédé: extermination des limaces par une matrice à clous avec grattoir Vitesse d'avancement: 4 km/h Rendement: 0,8 ha/h (en théorie)

Largeur de travail: 2 m Poids: 120 kg