Zeitschrift: Technique agricole Suisse **Herausgeber:** Technique agricole Suisse

Band: 77 (2015)

Heft: 9

Artikel: Un éclairage efficace et économique

Autor: Gnädinger, Ruedi

DOI: https://doi.org/10.5169/seals-1085832

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Un éclairage efficace et économique

Les lampes à LED sont considérées comme l'innovation majeure dans le domaine de l'éclairage à faible consommation. Toutefois, si ce point de vue se vérifie par rapport aux ampoules traditionnelles, les lampes à décharge telles les lampes à vapeur métallique et lampes fluorescentes ont quant à elles encore toute leur place sur le marché du fait de leur rendement et de leur rentabilité compétitifs. En outre, d'autres facteurs interviennent également dans la conception d'un tel éclairage.

Ruedi Gnädinger

Un maximum de lumière du jour est l'idéal pour l'homme et les animaux. Des étables ouvertes avec une hauteur de toiture considérable et de grands avant-toits procurent de l'ombre en été. Elles sont également intéressantes sur le plan de la clarté en cas de mauvais temps et à la nuit tombante. (Photos: Ruedi Gnädinger)

La cour, l'étable, la salle de traite, l'atelier et le bureau requièrent tous un éclairage totalement différent, le besoin de visibilité variant d'un endroit à l'autre. Ainsi, dans la cour, l'éclairage sert avant tout à prévenir les chutes, tandis que dans l'atelier, il doit être suffisant pour permettre d'insérer la tête d'un tournevis dans la fente d'une petite vis sous une machine. Pour des raisons économiques, on se limite souvent à équiper une pièce d'un éclairage de base, à compléter par un éclairage spécial pour la zone de travail au sens strict.

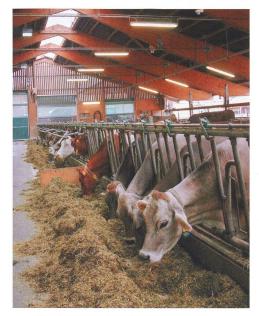
Un maximum de lumière naturelle

Tout le monde en a déjà fait l'expérience: parvenir à retirer une écharde fichée dans la peau à la lumière du jour après avoir raté « l'opération » sous une

lampe. En effet, il est pratiquement impossible d'obtenir l'intensité et la répartition de la lumière naturelle à l'aide d'un éclairage artificiel dont le prix reste dans des limites raisonnables. Dès lors, la grandeur des fenêtres, la profondeur des pièces, la luminosité des peintures intérieures et la proximité de la table de travail avec une fenêtre gardent une importance prépondérante lors de la conception de bâtiments et d'aménagements intérieurs. Ces éléments sont également à prendre en considération à l'égard des étables, car il est prouvé que la lumière du jour a une influence bénéfique sur le dynamisme et la vitalité des animaux.

Luminosité des peintures

Il est toujours impressionnant de voir la différence d'éclairage entre une chaussée


sombre et une route couverte de neige. Des teintes claires constituent dès lors l'un des éléments déterminants quant à la qualité de l'éclairage d'une pièce. De fait, alors que ces dernières reflètent la lumière et en assurent une répartition uniforme, les couleurs sombres, elles, l'absorbent et sont de ce fait considérées comme « photophages ». Par conséquent, il est pratiquement impossible d'éclairer correctement une salle de traite ou un atelier dont les murs, les plafonds et les sols ne sont pas de couleur claire, car les ombres projetées par les objets se trouvant entre les lampes et la zone de travail y sont trop intenses.

Positionnement et utilisation des luminaires

La première chose à faire est de déterminer si un seul éclairage est suffisant pour l'ensemble de la pièce ou si la zone de travail a besoin de davantage de lumière. Dans un atelier, il est recommandé d'installer des plafonniers afin d'obtenir une luminosité de fond modérée et de monter des luminaires supplémentaires au-dessus des établis et des machines. Ainsi, en allumant uniquement les luminaires dont on a besoin, on peut obtenir le niveau de luminosité désiré dans la zone de travail tout en réalisant des économies d'électricité.

Les luminaires adéquats

Certains luminaires, comme les lampes halogènes, les lampes économiques et les lampes fluorescentes, diffusent la lumière dans plusieurs sens, et donc dans de nombreuses directions inutiles. Par contre, si l'on choisit un luminaire adéquat, les réflecteurs contenus dans celui-ci focaliseront la lumière sur la zone désirée. Si elles sont bon marché, les lampes fluorescentes sans réflecteur de qualité présentent en revanche une effi-

Combinaison d'une lampe fluorescente et d'une lampe à vapeur métallique. Une fois enclenché, ce dispositif permet au besoin d'améliorer le faible éclairage de base. Actuellement, les lampes à vapeur métallique sont aussi disponibles avec une veilleuse intégrée.

cacité énergétique réduite, et dès lors une utilité à long terme limitée.

En outre, il faut également garder présent à l'esprit que les luminaires des bâtiments d'exploitation doivent être protégés contre l'eau et la poussière. Par conséquent, on ne peut monter des tubes luminescents dépourvus de protection dans une grange ou une étable.

L'éclairement adapté

Le lux (lx) est l'unité de mesure de l'éclairement lumineux. Il caractérise le flux lumineux (lm) reçu par unité de surface (m²). Le tableau ci-après expose des valeurs types d'éclairement lumineux tirées de la littérature. Il faut noter qu'il convient non seulement de tenir compte des normes, mais aussi des besoins personnels. En effet, les lieux lumineux mé-

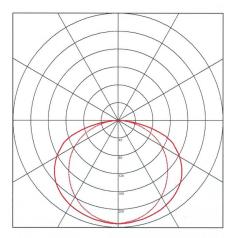
Tableau 1. Intensités d'éclairage recommandées

Fonction d'éclairage	Lux
Eclairage extérieur / cour	5-10
Eclairage de base de la salle de séjour	80-100
Couloirs, corridors	100
Escaliers	130
Locaux d'entreposage	150-300
Etablis d'un atelier de réparation	400-500
Bureaux de dessin	750
Travail de précision	1000

liorent le bien-être, et un éclairement lumineux accru est bénéfique en cas de déclin de l'acuité visuelle. L'idéal est de pouvoir choisir la luminosité voulue dans la zone de travail en allumant uniquement les luminaires dont on a besoin et ainsi éviter de consommer inutilement de l'électricité. Cet allumage sélectif est préférable à un réglage par gradation, car il s'agit d'une installation durable et moins coûteuse présentant une faible consommation électrique par rapport à la lumière produite (efficacité).

Des calculateurs disponibles sur Internet permettent de mesurer l'éclairement lumineux. Adaptés aux luminaires équipés de réflecteurs concentrant la lumière de manière uniforme, ils ne conviennent guère pour concevoir l'éclairage d'une étable avec une grande quantité de lumière diffuse. Il est recommandé à cet égard de visiter des bâtiments neufs pour déterminer le flux lumineux de tous les luminaires installés ainsi que la surface de la pièce. Le rendement lumineux (lumen/m²) qui y est observé peut alors servir de point de référence pour la conception de notre installation.

Dans le cas d'une étable, il convient également de tenir compte de l'influence de l'éclairage sur les animaux. Ainsi, l'éclairage de nuit doit être inférieur à 10 lux, afin de ne pas perturber la phase nocturne.


Choix des sources lumineuses

S'il ne fait aucun doute que la consommation électrique et l'efficacité énergétique sont les principaux critères présidant au choix des lampes, l'adéquation d'une source lumineuse est également déterminée par sa durabilité, la diminution du flux lumineux pendant la durée de vie et son prix. Le remplacement et le nettoyage des lampes suspendues à une hauteur élevée occasionne beaucoup de travail, qu'il est trop dangereux d'exécuter sans l'équipement approprié.

L'éclairage LED est optimal sur le plan de la consommation électrique et du rendement lumineux, allant de 60 à 140 lumens par watt selon la littérature. Etant donné que cette valeur varie également dans les données des fabricants, on conseille généralement de respecter les indications figurant sur l'emballage. Une focalisation adéquate et ciblée des lampes et

des projecteurs LED et une durée de vie élevée sont également intéressants. De manière générale, il convient de noter que les sources lumineuses présentant une puissance élevée affichent un meilleur rendement lumineux.

De nos jours, les lampes LED sont déclinées en différents types de douilles. De la sorte, il est possible de remplacer par des luminaires LED la plupart des lampes à incandescence, qui ne sont plus disponibles sur le marché, ainsi que les lampes halogènes, encore commercialisées, mais à l'efficacité limitée. Il convient toutefois de s'assurer que l'installation de lampes LED n'est pas uniquement motivée par la faible puissance requise (watt) et de vérifier si le flux lumineux (lumen) de la lampe LED

Répartition de la lumière par une lampe TL équipée de réflecteurs (trait continu = ligne transversale à l'axe longitudinal, trait en pointillé = ligne parallèle à l'axe longitudinal). Sans réflecteur, près de la moitié du flux lumineux serait projeté sur le plafond, sans réelle utilité. Grâce à un réflecteur de qualité, près de 90 % du flux lumineux est redirigé dans la bonne direction. (Source de l'illustration Tulux)

Tableau 2. Définitions

Luminaire: appareil composé d'une douille, d'un réflecteur, d'un couvercle (dispositif antipoussière et antiprojection) et d'une source lumineuse

Source lumineuse: les lampes à incandescence, les lampes à décharge et des lampes LED, principalement

Flux lumineux (lumen, lm): débit lumineux total d'un émetteur de lumière. C'est cette valeur qui est généralement donnée pour les sources lumineuses.

Rendement lumineux (lumen par watt): rapport entre le flux lumineux transmis par un émetteur de lumière et la puissance électrique absorbée par celle-ci. Plus le flux lumineux par watt de puissance absorbée d'une source lumineuse est important, plus le rendement lumineux ou l'efficacité énergétique de celle-ci sont élevés.

Intensité lumineuse (candela, cd): flux lumineux émis par une source d'éclairage dans une direction donnée (puissance rayonnée par unité d'angle solide). Un émetteur de lumière rayonnant de manière uniforme dans toutes les directions avec un flux lumineux de 12,6 lumens présente une intensité lumineuse de 1 candela. Une bougie de ménage a une intensité lumineuse d'environ 1 candela.

Pouvoir éclairant (lux, lx): flux lumineux (lm) reçu par unité de surface (m²). Un pouvoir éclairant de 100 lux correspond à un flux lumineux de 200 lumens couvrant une surface de 2 m².

Facteur de réflexion ou réflectance

Grandeur énergétique exprimant le rapport de l'intensité de l'onde incidente à celle de l'onde réfléchie. Pour simplifier, il s'agit de la proportion de lumière réfléchie par les surfaces rugueuses (« non réfléchissantes »). Les pièces peintes en couleurs claires présentent un facteur de réflexion élevé la lumière est répartie de manière uniforme. A l'inverse, les couleurs sombres l'absorbent et sont de ce fait considérées comme « photophages ».

L'éclairage indirect est très agréable pour travailler à l'écran, car il produit moins d'ombre. En général, une lampe LED de 30 watts est suffisante.

atteint la valeur de la source lumineuse à remplacer.

Les tubes fluorescents (lampes TL) et les lampes économiques (variante compacte d'une lampe fluorescente) sont des lampes à décharge. Elles sont dépourvues de filament incandescent. Le gaz qu'elles contiennent est transformé en lumière visible par le revêtement intérieur de l'ampoule (d'où l'appellation « lampe fluorescente »). Ces deux types de lampe requièrent un ballast (intégré dans les lampes économiques), à savoir un composant servant à réduire le courant électrique afin d'assurer un éclairement uniforme. Le ballast classique, constitué d'une bobine d'inductance et d'un démarreur, présente une consommation électrique légèrement supérieure à celle du ballast électronique. Les réflecteurs occupent une fonction importante dans les tubes fluorescents et les lampes économiques, car ils permettent d'éviter qu'une grande quantité de lumière ne soit émise dans des directions inutiles.

Le vocable « lampe économique » induit en erreur, car le rendement lumineux de ces luminaires est inférieur à celui des tubes fluorescents. Ce terme n'est pas non plus adapté pour désigner les lampes LED.

Les lampes à vapeur métallique (lampes aux halogénures métalliques) appartiennent également à la catégorie des lampes à décharge. Si elles sont aussi équipées de ballast, leur ampoule est néanmoins dépourvue de revêtement fluorescent. Leur rendu des couleurs fiable, leur rendement lumineux élevé (environ 100 lumens par watt) et leur haute durée de vie en font des luminaires adaptés à l'éclairage des étables.

Pour les étables, on propose en général des lampes aux halogénures métalliques ayant une puissance d'au moins 250 watts et des réflecteurs à large spectre lumineux. Etant donné qu'un appareil suffit pour un vaste espace, ce type d'éclairage requiert un nombre limité de lampes et entraîne des coûts d'installation réduits.

Les lampes à incandescence halogène présentent un rendement lumineux légèrement supérieur à celui des ampoules sans charge halogène, qui ne sont plus com-

Tableau 3. Efficacité énergétique, ou rendement lumineux, des sources lumineuses les plus courantes

Type de lampe	Rendement lumineux (lumen/watt)
Lampe à incandescence	5-16
Lampe à incandescence halogène	15-25
Lampe économique (lampe fluorescente compacte)	40-80
Lampes TL (tubes fluorescents)	50-95
Lampes LED	25-110
Lampes aux halogénures métalliques	60-110

mercialisées. Ainsi, on peut remplacer une ampoule classique de 60 watts par une lampe à incandescence halogène de 40 watts et garder la même intensité lumineuse. Toutefois, l'éclairage halogène est dépassé, car son rendement lumineux se situe entre 15 et 25 lumens par watt. En outre, dans des gammes de puissance élevées, ces lampes chauffent considérablement et deviennent dangereuses. Il est donc prudent de les remplacer à l'occasion par des lampes LED.

Bien qu'avantageux, les projecteurs avec source lumineuse halogène sont dépassés en raison de leur efficacité limitée. En outre, ils sont une source de danger, car ils génèrent de la chaleur. Il est conseillé de les éliminer avant qu'une personne se brûle les doigts ou provoque un incendie.

