Zeitschrift: Technique agricole Suisse **Herausgeber:** Technique agricole Suisse

Band: 60 (1998)

Heft: 7-8

Artikel: Esters d'huiles végétales suisses utilisées comme carburant pour

moteurs diesel : les premiers résultats d'exploitations sont positifs

Autor: Rinaldi, Manfred / Herger, Eric

DOI: https://doi.org/10.5169/seals-1084694

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rapports FAT

Station fédérale de recherches en économie et technologie agricoles (FAT)

CH-8356 Tänikon TG Tél. 052-368 31 31

Fax 052-365 11 90

Esters d'huiles végétales suisses utilisées comme carburant pour moteurs diesel

Les premiers résultats d'exploitations sont positifs

Manfred Rinaldi, Station fédérale de recherches en économie et technologie agricoles (FAT), CH-8356 Tänikon Eric Herger, Eco Energie Etoy, CH-1163 Etoy (VD)

La première et, jusqu'à présent l'unique, installation produisant de l'ester méthylique de colza (biodiesel, EMC) en Suisse a produit 1,801 millions de litres de biodiesel à partir de 4853 tonnes de graines de

colza, depuis sa mise en service au début novembre 1996 jusqu'à fin juin 1997. 3013 tonnes de tourteaux de colza de première qualité ont également été produites ainsi que 265 tonnes de phase glycérique, avec 60% de glycérine pure. Le résultat d'exploitation est équilibré car les récoltes de colza de deux ans (1995 et 1996) étaient à disposition de l'installation qui a ainsi pu produire à pleine capacité.

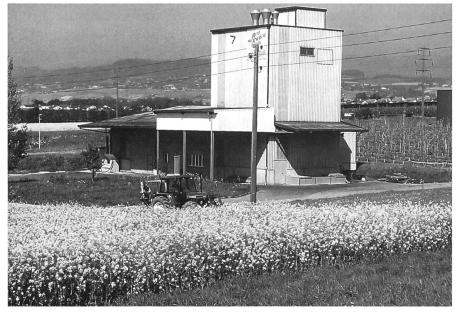


Fig. 1. Vue d'ensemble de l'installation d'Etoy au printemps 1997.

Sommaire	Page
Problématique	19
Solution	19
Installation de transesté-	
rification EMC à Etoy	19
Description du	
fonctionnement	21
Résultats	24
Bibliographie	28

Problématique

Il reste encore de nombreuses recherches à faire et beaucoup d'actions à entreprendre en ce qui concerne la production d'énergie à partir de matières premières renouvelables. La fabrication d'agents énergétiques de qualité comme le carburant pour moteurs diesel est particulièrement importante.

Or les huiles végétales, en Suisse principalement l'huile de colza, peuvent tout à fait être utilisées à ces fins.

Les propriétés du carburant pour moteurs diesel sont définies très précisément par les normes SN 181160-1, SN EN 590. Quant aux propriétés de l'EMC, elles sont définies par les normes ÖNORM C 1190 et DIN V 51 606 (tab. 3). Le fabricant ne garantit le bon fonctionnement du moteur diesel que lorsque le carburant utilisé est conforme à la norme. Sachant que pour de nombreux paramètres, l'huile de colza se situe nettement en dehors de la norme, il faut soit adapter le moteur, soit modifier le carburant.

Actuellement, la transformation de l'huile de colza en carburant pour moteurs diesel se fait généralement par transestérification en ester méthylique de colza (EMC) avec du méthanol. De cette manière, on arrive généralement à adapter les spécifications des carburants aux exigences des moteurs modernes [1]. L'inconvénient de ce procédé tient au coût non négligeable de la construction et de l'exploitation d'une installation de transestérifica-

Solution

Les premières expériences relatives à l'utilisation de l'ester méthylique de colza comme carburant diesel ont été effectuées en Autriche au milieu des années 80. La Station fédérale de technique agricole de Wieselburg an der Erlauf a joué un rôle de pionnier en la matière. En collaboration avec des universités et des partenaires de l'industrie, elle a mis au point une installation pilote pour l'EMC, et réalisé les premiers essais du nouveau carburant baptisé biodiesel, sur une flotte de véhicules.

Le projet de construction d'une installation de transestérification en Suisse a vu le jour en mai 1993, après que des essais réalisés à la FAT aient montré que l'ester méthylique de colza pouvait être utilisé comme carburant pour les moteurs diesel des tracteurs et qu'une «petite» installation gérée en coopérative, avec une capacité annuelle de 1000 à 2000 tonnes d'EMC (ce qui représente une surface de culture de 1000 à 2000 ha) était la solution qui correspondait le mieux à la réalité suisse.

Une pré-étude réalisée par Elektrowatt Ingenieurunternehmung AG Zurich et Novamont SpA, Milan [2] datée d'octobre 1992, à laquelle la FAT a largement participé, a beaucoup contribué à ce résultat.

Une coopérative entreprenante d'Etoy au bord du Léman a réalisé la construction et assure l'exploitation d'une installation de pressage et de transestérification (fig. 5). L'exploitation a été organisée de telle manière que les fournisseurs de graines de colza deviennent membres de la coopérative. Les graines, les tourteaux de colza et l'EMC restent toujours la propriété des coopérants. Les fournisseurs de colza payent la transformation de leur produit à la coopérative.

A la demande de cette coopérative, la FAT participe à l'évaluation de l'installation et au relevé des résultats.

Pour la planification de l'installation, on peut se référer aux expériences étrangères, notamment à l'Autriche. Une visite des petites installations de Mureck, Starrein et Asperhofen a été organisée. A Etoy, l'installation a été réalisée par l'entreprise autrichienne Heid Saattechnik Ges.m.b.H., Stockerau

Depuis l'automne 1996, l'installation d'Etoy fonctionne à pleine capacité. Les premiers résultats peuvent déjà être présentés dans ce rapport.

Installation de transestérification EMC à Etoy

L'ancien bâtiment d'Etoy de l'Association suisse des sélectionneurs, composé d'un silo et d'une halle de stockage, était idéal pour abriter une installation de transestérification.

L'intérieur du silo a été transformé. Il contient à présent tout le dispositif nécessaire à l'extraction de l'huile de colza.

Fig. 4. Les trois citernes de stockage du méthanol, du biodiesel et de la phase glycérique sont en place.

Fig. 5. Chef d'exploitation (à gauche) et deux membres du comité en discussion.

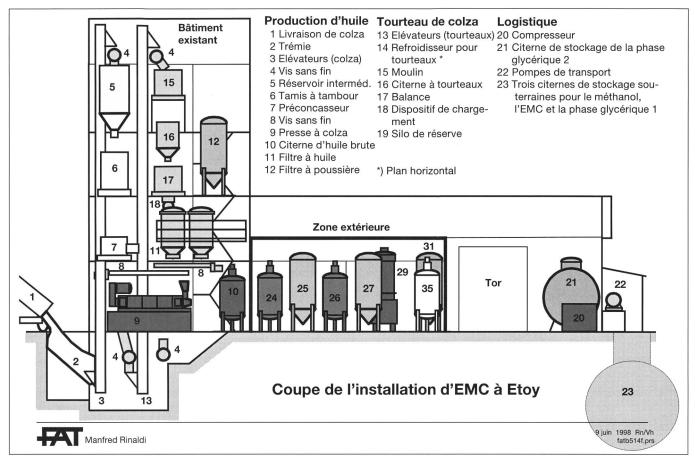


Fig. 2. Coupe de l'installation EMC à Etoy.

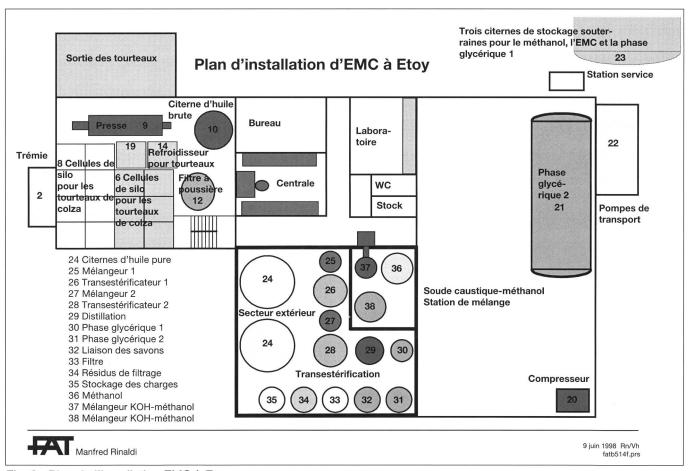


Fig. 3. Plan de l'installation EMC à Etoy.

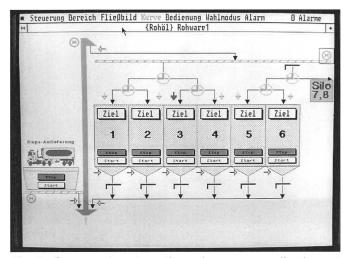


Fig. 6. Commande automatique du processus: livraison et installation d'ensilage de colza.

Fig. 7.
Presse à vis
pour la production d'huile, audessus vis
d'amenée
pour les graines
de colza.

Dans l'ancienne halle de stockage, on a construit une zone à l'épreuve des explosions. Elle contient l'installation de transestérification, laboratoire et locaux annexes compris.

Trois réservoirs souterrains servent au stockage du méthanol, de l'EMC et de la phase glycérique 1 (fig. 4). Sur le silo, on a installé deux trémies de réception couvertes pour les graines de colza et une station de chargement pour les tourteaux de colza.

Les pompes et les raccords pour la livraison d'EMC et des phases glycériques se trouvent à gauche à l'entrée de la halle de stockage et sont facilement accessibles.

L'installation est bien située pour le transport, à peine à cent mètres de la gare CFF d'Etoy. En voiture, l'installation est également facile d'accès depuis l'autoroute Lausanne-Genève, sortie Aubonne.

Descriptiondu fonctionnement

Production d'huile

La production d'huile commence au niveau de la trémie de réception des graines de colza (pos. 2 dans les fig. 2 et 3). Les graines sont ensuite réparties dans les huit cellules du silo (fig. 6) via un toboggan basculant, un élévateur (3) et une vis sans fin (4). La capa-

cité totale de stockage est de 100 t, ce qui suffit pour cinq jours.

Les graines de colza sont acheminées des différentes cellules du silo vers la presse, mais passent d'abord dans un réservoir intermédiaire (5) via la vis sans fin placée sous les cellules du silo (4), l'élévateur (3) et une autre vis sans fin. Le réservoir intermédiaire est pourvu de capteurs de niveau et commande les installations de convoyage placées en amont. Depuis le réservoir intermédiaire, les graines de colza passent par un tamis à tambour (6). Les impuretés ainsi recueillies sont ensuite vendues à un moulin à fourrage. Puis les graines passent dans un séparateur magnétique, qui retient et élimine tous les éléments métalliques. Après un passage dans un préconcasseur (7) prévu pour simplifier le processus de pressage, les graines arrivent enfin dans la presse via des vis sans fin (8) (pos. 9 dans les figures 2 et 3 et fig. 7). A l'issue de ce processus, on obtient d'une part de l'huile de colza brute (fig. 8) et d'autre part des tourteaux de colza.

L'huile de colza brute est pompée dans un réservoir tampon (10) d'où elle est envoyée dans deux stations de filtrage automatiques (pos. 11 dans les fig. 2 et 3 et fig. 9) qui éliminent tous les dépôts de l'huile de colza.

Les dépôts sont renvoyés dans la presse et finissent dans les tourteaux. L'huile purifiée est pompée dans la

zone de transestérification à l'épreuve des explosions, où elle est stockée temporairement dans deux réservoirs tampons (24).

La poussière qui se dégage lors de la production d'huile est aspirée par air, évacuée dans un séparateur à cyclone et collectée dans un container.

Tourteaux de colza

Les tourteaux obtenus lors de la fabrication d'huile constituent un important sous-produit, et un aliment de qualité pour les bovins et les porcs. Les plaques de tourteau, de la taille de la paume de la main, produites par la presse à colza (9) arrivent dans le refroidisseur (14) via la vis sans fin (4) et l'élévateur (13).

Le tourteau de colza est ensuite envoyé dans un moulin (pos. 15 dans fig. 2 et 3 et fig. 10) puis dans un silo réservoir (19) d'une capacité de 10 t. Les étapes de «refroidissement» et de «broyage» sont nécessaires pour l'amélioration des capacités de stockage et d'utilisation. Pour le stockage intermédiaire, on dispose encore de six autres cellules d'une capacité totale de 75 t. Si nécessaire, les tourteaux de colza peuvent être transportés depuis les cellules dans un camion en passant par une balance (pos. 16, 17 sur les fig. 2 et 3 et fig. 11) et un dispositif de convoyage (18) (fig. 12).

Fig. 8. L'huile brute coule de la presse.



Fig. 10. Moulin à broyer les tourteaux de colza.

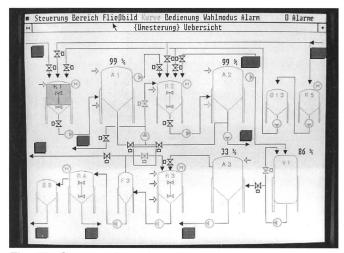


Fig. 13. Commande automatique du processus: transestérification.

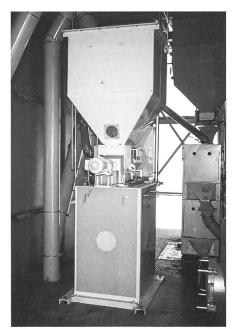


Fig. 11. Balance automatique pour le chargement des tourteaux (à l'avant) et tamis à tambour pour nettoyer le colza avant le broyage (à l'arrière).

Fig. 12. Chargement des tourteaux.

Fig. 15. Citernes de transestérification.

Fig. 14. Station de mélange de la soude caustique.

Zone de transestérification

Le secteur de transestérification a été installé dans une zone à l'épreuve des explosions à cause de la présence éventuelle de vapeurs de méthanol. Le processus chimique dont le principe est simple prend des proportions considérables aux dimensions industrielles. L'installation - tout comme la production d'huile - est gérée et contrôlée électroniquement par la centrale (fig. 13). Toutes les soupapes fonctionnent à l'air comprimé, produit par un compresseur (20). La seule activité manuelle consiste à préparer et remplir la station de mélange de soude caustique (fig. 14). La photo 15 représente deux citernes de transestérification et

de décantation. La figure 16 représente elle l'évaporateur utilisé pour séparer l'EMC du méthanol et de l'eau. Après le filtrage, l'EMC, produit fini, est stocké provisoirement dans les citernes souterraines placées devant l'installation (fig. 4). Il est prêt à être transporté chez les clients.

Les phases glycériques 1 et 2 qui résultent de la transestérification sont collectées dans des citernes séparées. La phase 1 contient env. 60% de glycérine pure et peut être vendue pour la purification. La phase 2 est une solution aqueuse contenant encore un peu de glycérine, de sciure, de savon et d'impuretés. Elle est épandue dans les champs par les membres de la coopérative.

Fig. 16. Evaporateur.

Description du processus de transestérification

Pour la transestérification de l'huile de colza en ester méthylique de colza, il faut non seulement de l'huile de colza mais aussi de la soude caustique, du méthanol, de l'eau, de l'énergie électrique et de la sciure.

Le méthanol est stocké dans une des citernes souterraines (23). La soude caustique (KOH) se présente sous forme de chips solides et est livrée par sacs sur des palettes. Une dose quotidienne de méthanol est pompée dans la citerne de stockage (36) au moyen de la pompe de transport (22). La solution potassique est versée dans le mélangeur (37) à travers une trémie (fig. 14). Ce dernier doit être re-

froidi à l'eau, étant donné que le processus de dissolution libère beaucoup d'énergie. Le mélange une fois achevé est stocké dans une citerne (38).

Le processus de transestérification proprement dit commence dans un mélangeur placé sur une balance (25). Les différents composants, huile de colza, mélange KOH - méthanol et eau, sont pesés dans le respect des proportions et mélangés intensivement à l'aide d'un brasseur. La transestérification s'effectue à température ambiante et à la pression atmosphérique. Une première séparation de l'ester méthylique de colza et de la phase glycérique 1 a lieu dans la citerne de décantation (26). Pour que la transestérification soit complète, les étapes précédentes sont répétées dans le mélangeur (27) et la citerne de décantation (pos. 28 dans les fig. 2 et 3 et fig. 15). La phase glycérique 1 ainsi obtenue est stockée dans une des citernes extérieures souterraines après un stockage intermédiaire (30).

L'EMC doit encore être débarrassé de l'eau, des restes de méthanol, des savons et des impuretés qu'il contient. L'évaporateur chauffé électriquement élimine l'eau et les résidus de méthanol (pos. 29 sur la fig. 2 et 3 sur la fig. 16). Le produit distillé est ensuite acheminé vers la citerne de stockage (21) via le tank (31) sous forme de phase glycérique 2. Le mélangeur (32) brasse l'EMC avec de la sciure de bois. Les savons présents dans l'EMC se fixent sur les particules de bois. Le biodiesel en tant que produit fini est ensuite obtenu par filtration (33). Les résidus qui se déposent dans le filtre gagnent la citerne de stockage (21) sous forme de phase glycérique 2 via le tank (34).

Le produit fini, stocké dans la citerne (35) est acheminé vers une des citernes extérieures souterraines après le contrôle final. Il est enfin prêt à être utilisé comme carburant pour moteur diesel.

Tableau 1. Spécifications techniques de l'installation

No	Paramètre	Dimen- sion	10 mois	par 1000 I d'EMC
1	Données de production pour dix mois			
2	Graines de colza	10 kg	4 853 000	2 695
3	Biodiesel EMC	1	1 801 000	1 000
4	Tourteaux de colza	kg	3 013 000	1 673
5	Phase glycérique 1	kg	265 000	147
6	Phase glycérique 2	I	180 000	100
7	Dépenses en dix mois			
8	Charge de travail (deux personnes)	h	3 356	1,9
9	Heures de fonctionnement des machines	h	5710	3,2
10	Puissance électrique max.	kW	86	0,0
11	Degré de démarrage max.	%	44	
12	Energie électrique	kWh	436 280	242,2
13	Eau	m³	4 052	2,2
14	Méthanol	kg	248 000	137,7
15	Soude caustique	kg	25 400	14,1
16	Données relatives à l'installation			
17	Puissance électrique installée	kW	196	
18	Machines et installations, masse	t	123	
19	Surface occupée par la production d'huile	m²	408	
20	Volume occupé par la production d'huile	m³	1 497	
21	Surface occupée par la transestérification	m²	109	
22	Volume occupé par la transestérification	m³	546	
	Surface occupée par les bureaux et le laboratoire	m²	100	
	Volume occupé par les bureaux et le laboratoire	m³	300	
25	Surface occupée par les stock de KOH	m²	100	
26	Volume occupé par le stock de KOH	m³	200	
27	Surface occupée par le stock couvert	m²	204	
28	Volume occupé par le stock couvert	m³	1 224	
29	Surface occupée par la réception du colza	m²	54	
30	Volume occupé par la réception du colza	m³	324	
	Surface occupée par le transport des tourteaux	m²	55	
	Volume occupé par le transport des tourteaux	m³	331	
33	Superficie totale des bâtiments	m ²	1 030	
34	Volume total des bâtiments	m³	4 422	
35	Citerne de stockage EMC	m³	220	
36	Citerne de stockage phase glycérique 1		75	
37	Citerne de stockage phase glycérique 2	m³	30	
38	Citerne de stockage méthanol	m³	35	

Résultats

par t. de

colza

1 000

371

621

55

37

0,7

1.2

0,0

89,9

0,8

51,1

5,2

Si l'on considère comme limites du système la trémie de réception des graines de colza et le pistolet distributeur de la station service, pour l'ensemble du processus de traitement, l'installation ne consomme que 0,242 kWh (0,871 MJ) d'énergie électrique par litre d'EMC (tab. 1). Pour produire 9,2 kWh (33,1 MJ) par litre d'EMC, cette consommation de 0,25 kWh (0,9 MJ) pour un litre d'EMC ne représente que 2,7% de la valeur calorifique du produit. L'installation travaille avec un taux d'efficacité mécanique très satisfaisant de 97,3%. Il faut cependant savoir que ce chiffre ne prend pas en compte les processus en amont, tels que la culture du colza, la mise en place de l'installation ainsi que les processus en aval, tels que le transport, etc. Le taux d'efficacité calculé de l'installation, soit = 1-0.25/9.2 = 0.973porte exclusivement sur l'énergie consommée lors de la transformation des graines de colza en EMC par rapport à la teneur énergétique de l'EMC.

Selon le tableau 2, durant la période d'observation, l'installation a transformé 4853 tonnes de graines de colza en 3013 tonnes de tourteaux de colza et en 1589 tonnes de biodiesel (avec une densité de 882,5 g/l, cela représente 1,801 millions de litres). Pour la production, on a utilisé 248 tonnes de méthanol, 25,4 tonnes de soude caustique et 4052 mètres cubes d'eau. Parallèlement 445 tonnes de phase glycérique ont également été produites, dont 265 tonnes de phase 1 destinée à la vente.

L'installation transforme 850 kg de graines de colza en 528 kg de tourteaux de colza et en 278 kg (ou 315 l) de biodiesel par heure.

Le rapport final du projet «Evaluation des matières premières renouvelables en Suisse» [3] et le compte-rendu de la FAT N°46 [4] comprend une évaluation complète de l'EMC en tant que matière première renouvelable.

L'évaluation globale comporte plusieurs indicateurs. L'EMC s'avère favorable sur le plan de l'épuisement des ressources énergétiques, le bilan énergétique absolu est déjà positif. En ce qui concerne les autres indicateurs, comme l'effet de serre, l'acidification,

Tableau 2. Flux des matières lors de la transestérification

Production d'huile et transestérification	Heures de f dix mois:	5710	
	% t. par 10 mois		kg/h
Colza	100,0	4853	849,9
Tourteaux	62,1	3013	527,7
Huile pure	37,9	1840	322,2
ч			
Huile pure	100,0	1840	322,2
Méthanol	13,5	13,5 248	
Soude caustique	1,4	25	4,4
Eau	220,2	4052	709,6
Total	335,1	6165	1079,8
Huile pure	100,8	1840	322,2
EMC	86,4	1589	278,4
Phase glycérique	24,2	445	77,9
Phase glycérique	100,0	445	77,9
Phase glycérique 1	59,6	265	46,4
Phase glycérique 2	40,4	180	31,5

Les frais d'investissement élevés sont liés en partie à l'installation entièrement automatique, gérée par ordinateur, dont le fonctionnement est particulièrement confortable et qui exige peu d'interventions manuelles. Il s'avère que le processus chimique de transestérification, simple en principe, est relativement onéreux et requiert des installations coûteuses et complexes lorsque qu'il est exploité rationnellement et à grande échelle. Il existe encore des points qui pourront être rationalisés à l'avenir.

Du point de vue de l'agriculteur, si l'on compare ce processus à l'utilisation du colza industriel pour la fabrication d'huiles lubrifiantes (tab. 5), le résultat n'est pas favorable à l'EMC. Les coûts de transestérification de Fr. 0.20 par kg de colza, ou de Fr. 0.54 par l de biodiesel sont encore trop élevés. Une meilleure rentabilisation de l'exploitation pourrait être utile. Une baisse du coût à Fr. 0.17 au lieu de 0.20 par kg de colza transformé permettrait déjà d'atteindre une situation semblable à celle de la fabrication des huiles lubrifiantes.

la toxicité, etc., l'évaluation dépend principalement du scénario de comparaison et n'est réellement négative que pour la toxicité pour l'eau et le sol en raison des résidus de métaux lourds et de pesticides. Dans l'ensemble, les impacts sur l'environnement sont très variables. L'appréciation des impacts environnementaux est en premier lieu une question sociale qui ne peut pas être réglée uniquement à l'échelle scientifique [5].

Pour garantir la qualité du biodiesel produit, des échantillons de carburant ont été envoyés à l'Institut fédéral d'essai des matériaux (EMPA) à Dübendorf le 14 août 1996 et le 24 janvier 1997 pour y être analysés. Il a été constaté que les deux échantillons correspondaient largement aux exigences énoncées dans la norme ÖNORM C 1190 et la norme DIN V 51 606 et convenaient pour les moteurs diesel modernes (tab. 3). Il faut mentionner tout spécialement le taux de méthanol résiduel qui peut à peine être identifié et le taux assez bas de glycérine totale. Ces deux paramètres prouvent que la transestérification est irréprochable. La température limite de filtrabilité (CFPP) de moins 13 à moins 15 °C montre que l'EMC n'est pas très bien adapté aux conditions hivernales, ce qui s'explique cependant par ses propriétés chimiques.

Pendant la période d'observation de dix mois, le résultat financier de la comptabilité d'Eco Energie Etoy est équilibré (tab. 4). L'exploitation est organisée de telle manière que les fournisseurs de graines de colza sont membres de la coopérative. Les graines de colza, les tourteaux et l'EMC restent toujours la propriété des différents membres de la coopérative. Les fournisseurs de colza payent à la coopérative le coût de la transformation. Le déficit de l'exploitation est quasiment compensé par ces paiements.

Lorsque les frais de fonctionnement sont entièrement couverts, la fabrication d'un litre d'EMC revient à Fr. 0.54, dont Fr. 0.20 de coûts variables. Les 63% de frais fixes sont dus aux importants frais d'investissement. C'est pourquoi il est important que l'exploitation fonctionne à pleine capacité.

Tableau 3. Valeurs de l'EMC produit selon les normes et les analyses

	Valeurs limites selon ÖNORM C 1190			Valeurs limites selon DIN V 51 606			Valeurs d'ana- lyses d'Etoy		
Propriété	Unité	Min.	Max.	Procédure de test	Min.	Max.	Procédure de test	14.8.96	14.8.96
Densité à 15 °C	g/ml	0,860	0,900	DIN 51757	0,875	0,900	ASTM D 4052	0,8823	0,8826
Viscosité climatique à 20/40 °C	mm²/s	6,5	9,0	20 °C/ ISO 3104+3105	3,5	5,0	40 °C/ ISO 3104	4,43	4,42
Point d'inflammation	°C	55		ÖNORM C 1122	100		ISO 2719	169	131
Filtrabilité/comportement au froid CFPP	°C		-8	ÖNORM EN 116			DIN EN 116	-13	-15
du 15.04. au 30.09	°C					0			
du 01.10 au 15.11	°C					-10			
du 16.11 au 28.02	°C					-20			
du 01.03 au 14.04	°C					-10			
Teneur en soufre	Masse en %		0,02	ÖNORM EN 41		0,01	ISO 8754	0,019	0,015
Résidu de coke d'après Conradson	Masse en %		0,1	DIN 51551		0,3**	EN ISO 10370	0,5	0,9
Facilité d'inflammation (indice de cétane)		48		ISO 5165	49		ISO 5165	50,4	48,7
Cendres sulfatées / cendres	Masse en %		0,02	ÖNORM C 1134		0,01	EN ISO 6245	0,001	0,004
Teneur en eau	mg/kg			*		300	ASTM D 1744	560	340
Impuretés totales	mg/kg			*		20	DIN 51419	9	54
Effet corrosif sur le cuivre				*		1	ISO 2160	1	1
Stabilité à l'oxydation (VA, D, SA, TOP)		indiqué		*	indiqué		IP 306		
Indice de neutralisation	mg KOH/g		1,0	ÖNORM C 1146		0,5	DIN 51558 1 ^{ère} partie	< 0,03	< 0,03
Teneur en méthanol	Masse en %		0,3	Chromatographe pour phase gazeuse		0,3	*	< 0,1	< 0,1
Monoglycéride	Masse en %			*		0,8	*		14.15.1
Diglycéride	Masse en %			*		0,1	*		
Triglycéride	Masse en %			*		0,1	*		
Glycérine libre	Masse en %		0,03	Détermination enzymatique		0,02	*	0,08	0,008
Glycérine totale	Masse en %		0,25	Détermination enzymatique		0,25	*	0,171	0,179
Indice d'iode	g d'iode/100 g			*		115	DIN 51558 1 ^{ère} partie		
Teneur en phosphore	mg/kg			*		10	ICP	< 0,5	1

^{*} Doit encore être normalisé

^{**} D'un résidu de distillation de 10 pour-cent volumétrique après distillation à pression réduite à 1,33 Pa (=1,33*10-2 mbar)

Tableau 4. Données économiques relatives au fonctionnement de l'installation de novembre 1996 à fin juin 1997

No	Indications générales		Valeurs réelles 1996/19
1	Valeur des bâtiments (valeur à neuf, terrain compris)	Fr.	1 260 000
2	Valeur des citernes (valeur à neuf, montage compris)	Fr.	365 000
3	Valeur de l'installation de transestérification		
	(valeur à neuf)	Fr.	2 415 000
4	Personnel	Nbre	2
5	Durée de fonctionnement des machines	h	5 710
6	Chiffre d'affaires en t. de colza	t	4 853
7	Chiffre d'affaires en t. d'EMC	I	1 801 000
8	Chiffre d'affaires en t. de tourteaux	t	3013
9	Chiffre d'affaires en t. de phase glycérique	t	265
10	Rendement de l'exploitation		
11	Rendement provenant des ventes de phases		
	glycériques	Fr.	19720
12	Rendement provenant des transports	Fr.	226 095
13	Rendement net de l'exploitation		245 815
14	Coûts variables		
15	Stockage (location)	Fr.	248 165
16	Transports de colza	Fr.	63 542
17	Transports d'EMC	Fr.	72 040
18	Courant électrique	Fr.	81 148
19	Eau	Fr.	2 836
20	Méthanol	Fr.	99 200
21	Soude caustique	Fr.	28 700
22	Analyses et produits chimiques	Fr.	4 000
23	Eaux usées	Fr.	1 260
24	Entretien et réparations des machines	Fr.	5 500
25	Total des frais variables	Fr.	60 6391
26	Frais fixes		
27	Salaires y comp. charges sociales et frais	Fr.	130 000
28	Amortissement calculé sur les machines	Fr.	278 000
29	Amortissement calculé sur les propriétés foncières	Fr.	50 400
30	Amortissement calculé sur les frais de fondation	Fr.	5 000
31	Intérêts calculés sur les actifs circulants	Fr.	55 000
32	Intérêts calculés sur les immobilisations	Fr.	42 550
33	Assurances	Fr.	4 750
34	Frais administratifs divers	Fr.	40 000
35	Total des frais fixes	Fr.	605 700
36	Total des frais	Fr.	1 212 091
37	Résultat d'exploitation	Fr.	-966 276
38	Produit de la transestérification	Fr.	965 350
39	Coûts de production 1996/1997		Coûts globaux
40	La transformation d'1 kg de colza coûte*:	Fr./kg	0,20
41	La production d'1 l d'EMC coûte*:	Fr./I	0,54
	*) Ne pas cumuler		
42	Coûts de production 1996/1997		Coûts marginaux
43	La transformation d'1 kg de colza coûte*:	Fr./kg	0,07
44	La production d'1 I d'EMC coûte*:	Fr./l	0,20
	*) Ne pas cumuler		

Tableau 5. Comparaison entre la fabrication d'huiles de lubrification et celle de carburant

	Fr./kg Fr./l	Fr.			
Variante A:					
Vente d'1 ha de					
colza industriel					
3000 kg	0,35*)	1050			
Variante B:					
Transestérification d'1 ha					
de colza industriel					
3000 kg	0,20	-600			
Contient 32,7% d'EMC					
11131	0,57)*)1	634			
Contient 62,1% de concentrés					
1863 kg	0,50 *)	932			
Total		966			

- *) Valeurs tirées de la littérature [3], page 154
- 1) Le prix par litre d'EMC se calcule à partir du prix équivalent diesel: prix du diesel (grosses quantités franco ferme) moins remboursement (moyenne des chiffres totaux CH par litre) multiplié par un facteur de conversion (pour la même puissance, on consomme plus d'EMC que de diesel)

Bibliographie

- [1] Wolfensberger U., Stalder E., Schiess I., 1993. Ester méthylique de colza comme carburant pour moteurs diesel. La technique actuelle permettrait une introduction à court terme. Rapport FAT 427, Tänikon
- [2] Elektrowatt Ingenieurunternehmung AG und Novamont SpA, 1992. Produktion von Raps-Methyl-Ester in der Schweiz. Vorstudie zuhanden der Bundesämter für Energiewirtschaft und Landwirtschaft
- [3] Wolfensberger U., Dinkel F., 1997. Beurteilung nachwachsender Rohstoffe in der Schweiz in den Jahren 1993–1996. Vergleichende Betrachtungen von Produkten aus ausgewählten nachwachsenden Rohstoffen und entsprechenden konventionellen Produkten bezüglich Umweltwirkungen und Wirtschaftlichkeit. Im Auftrag des Bundesamtes für Landwirtschaft.
- [4] Gaillard G., Crettaz P., Hausheer J., 1997. Umweltinventar der landwirtschaftlichen Inputs im Pflanzenbau. FAT-Schriftenreihe Nr. 46. FAT Tänikon [5] Gaillard G., 1997. Ökobilanz der Biodieselproduktion, Vortrag, gehalten an der Informationstagung Landtechnik, 14.–16.10.1997, FAT Tänikon