Zeitschrift: Technique agricole Suisse **Herausgeber:** Technique agricole Suisse

Band: 46 (1984)

Heft: 5

Artikel: L'épandage du lisier : doit-on donner la préférence aux asperseurs, aux

tuyauteries ou aux citernes à pression?

Autor: Bisnag, M.

DOI: https://doi.org/10.5169/seals-1083965

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

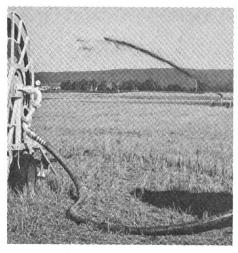
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'épandage du lisier

Doit-on donner la préférence aux asperseurs, aux tuyauteries ou aux citernes à pression?

M. Bisang, Station fédérale de recherche (FAT), 8355 Tänikon TG

Dès la venue du surpresseurpompe à vide remontant aux années soixante, l'emploi de tuyauteries de distribution a été de plus en plus abandonné. De nos jours, le développement en cours est plutôt inverse: afin de ne pas devoir parcourir les champs avec des citernes à pression pesantes, on s'efforce de découvrir des solutions plus appropriées. C'est ainsi que l'on a parfois recours à des installations d'irrigation. Le plus souvent, il s'agit cependant de lances à lisier à attelage troispoints montées sur un tracteur qui remorque simultanément une conduite d'alimentation (un tube en matière plastique) sur toute la surface traitée. Quant au transport du lisier de la ferme au bord des champs, il a lieu au moyen de conduites posées soit en surface ou sous terre ou, plus rarement, moyennant une citerne routière.


Ces procédés peuvent être mécanisés sans autre pour d'assurer une exécution du travail par un seul opérateur.

Parmi les innombrables possibilités de combinaisons imposant l'emploi de conduites souterraines plus ou moins longues, de tuyauteries en plastique de diamètres variés, de diverses pompes, etc., nous nous proposons de décrire plus en détail des frais causés par trois procédés différents et de les comparer avec celui basé sur l'emploi d'une citerne à pression. Dans deux de ces cas, il s'agit de lances à lisier portées, et dans le troisième d'un asperseur automatique. Il importe toutefois de relever tout d'abord quelques faits d'une importance générale et d'ordre technique.

La citerne à pression: problématique sur terrains déclives ou détrempés

L'épandage de lisier sur un sol mouillé au moyen d'une citerne à pression peut être fort problématique. On sait qu'il est difficile de juger à quel point la rentabilité d'un terrain peut être compromise par la compression répétée du sol et par l'effet de glissement des roues. Mais il est néanmoins indubitable que le sol peut subir une détérioration dont la gravité augmente avec l'inclinaison du terrain traité. Par contre, l'emploi de lances à lisier portées ou d'asperseurs automatiques a le grand avantage d'éviter des endommagements du sol même pendant des périodes de mauvais temps.

Sur des terrains déclives, un épandage de lisier au moyen d'une citerne à pression est déjà dangereux alors qu'un tracteur portant un dispositif à lance de distribution ne présente pratiquement aucun problème. C'est pourquoi on devrait donner la préférence soit à ce procédé ou même à l'ancien système d'épandage au moyen d'une lance à main.

Après quelques modifications sur le dispositif de rentrée du tuyau, les asperseurs automatiques peuvent aussi être utilisés pour l'épandage du lisier.

Afin que les tuyaux en plastique ne soient pas laissés au bord d'un champ après avoir été utilisés, et gênent éventuellement d'autres travaux agricoles, mais puissent être plus facilement transférés autre part, on offre depuis quelque temps des dévidoirs à tuyaux d'un prix variant entre Fr. 3000.— et Fr. 4500.—. Un tel investissement ne peut être justifié tout au plus qu'en cas d'utilisation communautaire entre voisins.

Mais même des applications de lisier au moyen d'une lance portée par un système trois-points présentent des inconvénients parce que la mise en place et le démontage subséquent des installations représentent un travail relativement considérable. C'est pouquoi ce procédé s'avère

moins avantageux que l'emploi d'une citerne à pression lorsqu'il s'agit soit de ne traiter que de petites surfaces comme, par exemple, celles fauchées journellement pour obtenir le fourrage vert présenté dirctement au bétail ou en vue de profiter de quelques heures de travail disponibles pour se débarrasser d'un certain surplus de lisier. Cette pratique devrait cependant être condamnée, car elle induit facilement l'agriculteur à appliquer des doses excessives d'engrais liquide que les cultures traitées sont hors d'état de mettre entièrement en valeur. Par temps pluvieux et sur des terrains en pente, le lisier aura en outre tendance à se perdre par des écoulements en surface aui risquent de provoquer des conflits avec les autorités chargées de la protection des eaux.

Des asperseurs automatiques devraient être capables de débiter un minimum de 40 m³ de lisier à l'heure. Ils ne se prêtent toutefois guère au traitement de champs de formes irrégulières qui compliquent les travaux et rendent parfois impossible un traitement adéquat des bordures de champ. Se rappeler que l'emploi d'épandeurs automatiques par fort vent n'est pas conseillé dans le voisinage d'agglomérations!

Le pouvoir fertilisant du lisier ne devrait pas être sous-estimé, et il est aussi indispensable d'assurer une certaine régularité de distribution. Personne ne peut prétendre que les procédés mentionnés jusqu'ici – y compris celui basé sur l'emploi d'une citerne à pression – puissent garantir un degré de dispersion irréprochable, mais des travaux soigneux et bien conçus peuvent néanmoins contribuer à

Tableau 1: Valeurs indicatives pour la chute de pression causée dans des conduites lisses débitant du lisier de boeuf faiblement dilué (correspondant à une teneur en MS de 6 à 8%). Lorsqu'il s'agit de lisier d'urine, ces valeurs diminuent à raison d'environ 10%.

Débit	Pertes de pression en bar par 100 m de conduite d'un diamètre intérieur de				
	64 mm	80 mm	100 mm	125 mm	
25 m³/h	0,8	0,3	0,1	_	
40 m ³ /h	2,1	0,7	0,2	0,1	
55 m ³ /h		1,4	0,4	0,15	

l'obtention de résultats assez satisfaisants.

Des chutes de tension dans les conduites posent fréquemment des problèmes

Ces chutes de tension sont dues au frottement inévitable du liquide contre la surface intérieure des tuyaux et sont d'autant plus prononcées que le profil de la conduite est réduite, que le lisier est épais, que le débit est forcé et que la surface intérieure des tuyaux est rugueuse. Les pertes de pression qui se vérifient dans des courbures et des vannes bien concues sont inférieures à ce que l'on suppose généralement. Afin d'obtenir une largeur de travail suffisante. la pression mesurée à l'entrée de la lance à lisier devrait correspondre à environ 2 bar, mais dépasser 4 bar dans la buse de l'asperseur.

Les indications réunises das le tableau 1 proviennent de différentes sources d'information. Il est facile de démontrer par un calcul que des sections transversales de tuyaux par trop réduites causent une chute de tension de plusieurs bar dans une conduite d'une longueur de seulement quelques certaines de mètres.

Dans certains cas, on exige

beaucoup de la pompe refoulante, surtout lorsqu'il s'agit de surmonter des différences de niveau considérables (exigeant 1 bar par 10 m de surélévation). Le tableau 2 décrit quelques caractéristiques de divers genres de pompes. Les valeurs indiquées représentent un choix de modèles relativement puissants. Dans la règle, des pompes à pistons ou à vis sans fin permettent de propulser également des purins épais à condition qu'ils ne contiennent point de corps étrangers. La capacité de citernes à pression et de pompes centrifuges utilisées pour du lisier de bovins tombe perceptiblement si le liquide concerné contient moins qu'une partie d'eau pour deux parties de lisier. Quant au lisier de porcs il ne présente aucun problème de ce genre. Souvent, on devrait cependant préférer des citernes à pression équipées d'un agitateur mécanique.

Des tuyaux à bandages en acier exigent un travail bien plus considérable que la surveillance d'un asperseur automatique

Le travail que nécessite l'épandage de lisier au moyen d'une citerne à pression correspond à environ 6 à 9 minutes selon la

Tableau 2: Propriétés de pompes à pistons, à vis sans fin ou centrifuges. Selon le genre de construction préconisé, les valeurs indiquées peuvent être supérieures ou inférieures.

	Pompe à pistons	Pompe à vis sans fin	Pompe centrifuge
Zone de pression	passé 16 bar	13 – 16 bar	4 – 9 bar
Débit maximal Débit en cas d'une augmentation de la pression	18 – 45 m³/h	48 – 66 m³/h diminuant éventuel- lement lors d'un dé-	48 – 108 m³/h
contraire Chute de tension en cas d'une diminution du	invariable	passement de 8 bar	diminuant
régime de rotation Puissance nécessaire Prix sans moteur, Fr.	faible 11 – 28 kW 7000 – 14 000	faible 20 – 34 kW 5000 – 6500	considérable 13 – 30 (–50) kW 3000 – 5000

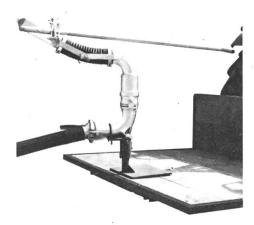
taille de la citerne plus 10 min. par km d'éloignement du terrain. L'épandage de, par exemple, 40 m³ de lisier moyennant une citerne d'une contenance de 1000 litres sur un champ situé à 500 m de la ferme dure par conséquent à peu près deux heures.

Si on utilise une lance à lisier portée, ou un asperseur automatique, la dépense de travail qu'exigent des travaux auxiliaires (tels que l'équipement et le remisage de l'outil) est bien supérieure à celle que nécessite une citerne à pression. Selon les conditions locales et l'habileté ou le talent organisateur du chef d'exploitation, il est parfaitement possible que, en certains cas, les temps figurant

Tableau 3: Moyennes de la durée des travaux auxiliaires occasionnés par des purinages exécutés au moyen d'une lance portée ou d'un asperseur automatique. Les temps de circulation sont inclus jusqu'à la limite de 500 m.

	Minutes d'UMO	Minutes d'UT
Périodes de préparation à la ferme		
avant et après l'épandage	40	20
Montage et démontage de 100 m		
de conduite (2 UMO)	60	30
Remorquage de 250 m de tubes		
en plastique (1 à 2 UMO)	50	25
Montage et démontage de 100 m		
de conduite posée en surface		
entre la ferme et le champ (1 UMO*)	10	10
Mettre en position et remiser		
l'asperseur automatique (1 à 2 UMO)	30	15
Rajuster l'asperseur automatique (1 UMO)	20	10
Surveillance de l'aspérseur automatique	⅓ de la durée de pompage	

^{*)} en admettant qu'il ne faille pas rétablir entièrement la conduite posée en surface.


dans le tableau 3 s'avèrent respectivement supérieurs ou inférieurs à ceux énumérés dans ce tableau à raison d'une marge de 30%

Les trois exemples qui vont suivre sont basés sur des exploitations de 15 ha et de 45 ha bien arrondies produisant annuellement 600 m³ et 1800 m³ de lisier. On présuppose un degré de mécanisation modeste à moyen, mais on utilise par contre des tuyaux à bandages en acier déjà usagés afin de pouvoir se passer d'une acquisition de tuyaux en plastique additionnels.

Exemple A: Conduite posée en surface, asperseur automatique porté

- Une conduite en surface est disponible.
- Pompe à piston 30 m³/h.
- Conduite d'amenée reliant la prise d'eau au champ au moyen de 50 à 100 m de tuyaux à lisier.
- Epandage du lisier au moyen d'un tracteur, d'un asperseur porté, 250 m de tuyaux en plastique (d'un diamètre de 64 mm).

Frais de travaux auxiliaires par opération: 120 minutes d'UMO; 60 minutes d'UT.

Ce modèle d'asperseur à 3 points est actionné à la main.

Exemple B: Conduite posée en surface, asperseur automatique

- Pompe à vis sans fin actionnée par prise de force et débitant 40 m³/h.
- Asperseur automatique.
 Comparable à A en ce qui concerne les autres facteurs.
 Frais de travaux auxiliaires par opération: 130 minutes d'UMO; 65 minutes d'UT.

Exemple C: Conduite en surface, asperseur porté

Exemple comparable à A sauf en ce qui concerne une conduite

d'amenée reliant la ferme au champ au moyen de 300 m de tuyaux en plastique d'un diamètre de 80 mm:

Montant des travaux auxiliaires par opération: 120 minutes d'UMO; 75 minutes d'UT.

Ces exemples sont basés sur une grandeur de parcelle de 1 ha. Des parcelles plus grandes exigent généralement des prolongations de conduites et/ou des ajustages appropriés de l'asperseur automatique. Par hectare d'augmentation d'une parcelle desservie par une même prise d'eau, on peut admettre les surcroîts de temps suivants:

Exemple A: 20 minutes d'UMO, 10 minutes d'UT.

Exemple B: 40 à 50 minutes d'UMO, 20 à 25 minutes d'UT. Exemple C: 5 minutes d'UMO, 5 minutes d'UT.

Si on prévoit des applications de lisier d'environ 60 m³/ha chacune au printemps et en automne augmentées de deux ou trois épandages (de 30 à 40 m chacun) et en tenant compte de grandeurs de parcelles inéga-

les, on arrive à des totaux annuels de 600 m³ + 1800 m³ de lisier exigeant respectivement 17 à 20 et 22 à 25 heures pour les opérations auxiliaires.

La durée de pompage effective dépend à la fois de la performance horaire de la pompe et du volume de lisier appliqué. Le temps consacré à la surveillance de l'asperseur automatique correspond à environ 1/5 de la durée de pompage.

Des considération d'ordre purement économique sont nettement en faveur de l'emploi d'une citerne à pression, tandis que d'autres raisons s'y opposent

Les calculs suivants des frais de machines sont basés sur des chiffres établis pa la FAT (à l'exception de la pompe à pistons amortie en 25 ans) et se montent à

Fr. 2000. – pour un asperseur porté,

Fr. 2500.- pour une télécommande de pompe à pistons, Fr. 450.- par section de 50 m de tuyau en plastique d'un diamètre de 64 mm,

Tableau 4: Frais de travail (de main-d'oeuvre) et frais d'utilisation (main-d'œuvre et machines) pour des éloignements de champs respectifs de 300 à 500 m pour 600 m³ de lisier, et de 400 à 600 m pour 1800 m³ de lisier par an.

	Frais de main-d'œuvre par an en Fr.		Frais d'utilisation par an en Fr.	
Lisier produit par an en Fr.	600 m ³	1800 m³	600 m ³	1800 m³
Citerne à pression de 3000 l Citerne à pression de 4000 l Citerne à pression de 6000 l	400–500 340–420 280–330	1500–1800 1240–1460 1000–1150	1500–1680 1660–1800 2100–2200	3400–3900 3350–3800 3600–4000
Exemple A *) (conduite souterraine, lance)	530	1230	3000	4500
Exemple B *) (conduite souterraine, lance)	320	630	3350	4200
Exemple C *) (conduite en surface, lance)	520	1160	3650	5400

^{*)} sans frais pour conduite souterraine et tuyau à bandages en acier.

Fr. 650.- par section de 50 m de tuyau en plastique d'un diamètre de 80 mm.

Actuellement, l'enfouissement d'une conduite revient à environ Fr. 3500.— par 100 m. Vu qu'un tracteur est présent de toute façon, les charges fixes qu'il occasionne ne sont pas passées en compte et seulement la moitié des charges de la citerne à pression ou de l'asperseur automatique, du moment que ces outils peuvent être mis en œuvre sur une base communautaire.

Les tendances mises en évidence dans le tableau 4 démontrent que la citerne à pression est capable de soutenir comme par avant la concurrence économique d'autres matériels surtout si on tient compte du fait que les exemples A et B ne sont pas grevés de frais causés par la conduite souterraine déià existante. Les raisons qui justifient une renonciantion de plus en plus marquée à des citernes à pression sont dues à des réflexions auxquelles nous avons déià fait allusion au début de cet exposé.

Pour les procédés A, B, et C, l'éloignement moyen des champs a beaucoup moins d'influence sur l'importance des frais que l'emploi d'une citerne à pression. Ce qui importe le plus dans les exemples cités sont les frais causés par le capital engagé. Ils peuvent être réduits quelque peu en renonçant à une commande à distance dans les cas A et C ou en se contentant d'une pompe moins puissante.

Exposé présenté à la 12ème journée d'information de l'ASETA les 9 et 20 décembre 1983 à Schönbühl BE et Märstetten TG.

Les tracteurs-faucheurs sont-ils le «dernier cri»?

Ing. Roman Sieg, Station de recherches, Wieselburg an der Erlauf (A)

Au cours de ces deux dernières décennies. l'offre de nouvelles machines et de nouveaux outils pour les exploitations herbagères s'est accrue de façon inattendue. Il y a plusieurs raisons à cela. Tout d'abord, la culture des champs a régressé en régions de montagne car ces travaux peuvent guère y être mécanisés. En outre, la main-d'oeuvre s'est raréfiée du fait de l'exode rural dans les régions précitées. Enfin, la production herbagère s'est accrue. Les machines nécessaires à cette dernière ont dû être mises au point rapidement. A cette occasion, l'industrie a dû résoudre deux problèmes en relation avec ce changement de mode d'exploitation, soit:

- comment faucher, épandre et andainer aussi facilement que possible, en d'autres termes comment rationaliser la fenaison?
- comment transporter les produits (fourrages verts et secs, bois de feu, etc.)?

Les considérations qui suivent se rapportent principalement aux problèmes que posent les machines pour travailler les fourrages verts et pour la fenai-

