Zeitschrift: Technique agricole Suisse **Herausgeber:** Technique agricole Suisse

Band: 35 (1973)

Heft: 9

Artikel: Le choix des machines vu sous l'angle de l'économie du travail

Autor: Schönenberger, A.

DOI: https://doi.org/10.5169/seals-1083780

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le choix des machines vu sous l'angle de l'économie du travail

par A. Schönenberger

Celui qui veut acheter aujourd'hui une machine agricole à grande capacité de travail devrait tout d'abord posséder de solides connaissances sur ses principes de construction et de fonctionnement ainsi que sur la façon correcte de l'employer, Nous renonçons à nous étendre ici sur ce sujet. Il faudrait ensuite que l'acheteur soit en mesure d'évaluer aussi exactement que possible, du point de vue de l'économie du travail, les valeurs indiquées ci-après:

- Les temps de main-d'œuvre probables exigés par unité de surface ou unité de quantité.
- Les laps de temps à disposition pour la mise en œuvre de la machine.
- La capacité de travail totale de la machine durant une campagne par rapport au nombre d'unités de surface ou de quantité entrant en considération.

Calcul des temps de main-d'œuvre nécessaires

Les temps en question figurent sur des tableaux établis par la FAT, la Centrale de vulgarisation agricole (ASCA), le Service consultatif cantonal, etc. Ils sont conditionnés par une série de facteurs divers. Ainsi qu'on peut le voir d'après les Tableaux 1, 2 et 3 reproduits plus bas, tous les «Eléments de calcul» mentionnés exercent une influence déterminée sur la totalité des temps de main-d'œuvre nécessaires (GAZ). La machine prise ici comme exemple est une moissonneuse-batteuse automotrice avec trémie à grain. Trois modèles, soit un petit (barre de coupe: 2 m), un moyen (barre de coupe: 3 m) et un grand (barre de coupe: 4 m 20) sont comparés entre eux sur les trois tableaux dont il s'agit.

La totalité des temps de main-d'œuvre exigés a été calculée pour chaque moissonneuse-batteuse avec un champ d'une longueur de 100 m, 150 m et 200 m. On peut constater que ces temps sont nettement inférieurs sur les parcelles plus longues. Les temps de main-d'œuvre nécessaires lors du passage d'un champ à l'autre — ils sont plus spécialement importants dans les cas où l'on utilise la machine

également en dehors de l'exploitation — ne peuvent toutefois être déterminés d'avance. Il faut par conséquent les évaluer en se basant sur la grandeur de la parcelle et la distance existant d'un champ à l'autre puis les ajouter à la totalité des temps de main-d'œuvre exigés (GAZ).

La largeur utile de la machine (largeur de travail effective) est toujours d'environ 30 cm inférieure à la largeur de travail théorique telle qu'elle a été mesurée sur la barre de coupe. Dans le cas d'une barre de coupe de grande longueur, la largeur de travail effective est proportionnellement plus importante qu'avec une barre de coupe plus courte.

En ce qui concerne la vitesse de travail sur le champ, nous avons choisi les trois allures suivantes:

- a) 2,5 km/h pour un travail lent dans des conditions assez difficiles (blé versé).
- b) 5,0 km/h pour un travail normal avec de moyens ou bons rendements.
- c) 7,5 km/h pour un travail rapide avec des moissonneuses-batteuses de conception moderne, des rendements moyens, du blé debout et une proportion de paille pas trop élevée.

Les calculs des Tableaux 1, 2 et 3 sont basés sur un temps de main-d'œuvre de 8 h par jour, lequel comprend toujours un temps de préparation de ½ h et un temps de déplacement d'environ ¼ h. Le temps mort de 7% se rapporte aux incidents mécaniques et aux petites interruptions. Précisons par ailleurs que le temps d'approvisionnement concerne le vidage de la trémie à grain. Cette opération, de même que le transport du grain à son lieu de destination, doivent être bien organisés. Il ne faut pas que cela occasionne des temps d'attente pour la moissonneuse-batteuse.

Le temps d'exécution, le temps de préparation et le temps de déplacement forment ensemble la totalité des temps de main-d'œuvre, que nous prendrons comme base dans nos exposés en tant que donnée numérique relative à la main-d'œuvre nécessaire.

Afin que les temps de déplacement et les temps de préparation puissent être répartis de manière pro-

Moissonneuse-batteuse, travail lent, 2,5 km/h

Calcul prévisionnel des temps de main-d'oeuvre nécessaires			Genre de mac	hine: Moissonn	euse-batteuse	automotrice av	ec trémie à gra	in, largeur d	e travail en m:		
Eléments de calcul admis			2.0	2.0	2.0	3.0	3.0	3.0	4.2	4.2	4.2
Longueur du champ	L	m	100.	150.	200.	100.	150.	200.	100.	150.	200.
Largeur du champ	В	m	10000.	6666.	5000.	10000.	6666.	5000.	10000.	6666.	5000.
Largeur utile de la machine	Ь	cm	170.	170.	170.	270.	270.	270.	390.	390.	390.
Vitesse de travail sur champ	vf	km/h	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Temps de virage	и	cmn	60.	60.	60.	60.	60.	60.	60.	60.	60.
Distance de la ferme au champ	е	km	1.	1.	1.	1.	1.	1.	1.	1.	1.
Vitesse d'avancement sur chemin	VW	km/h	9•	9•	9.	9-	9.	9.	9.	9•	9.
Temps de préparation par passage (g)	r	h	•5	•5	•5	•5	•5	•5	•5	•5	•5
Durée d'un passage	g	h	8.	8.	8.	8.	8.	8.	8.	8.	8.
Temps mort (par GZ)	Vn	1/2	7.	7.	7.	7.	7.	7.	7.	7.	7.
Temps d'approvisionnement (pour 100 ha)	NV	h	10.	10.	10.	10.	10.	10.	10.	10.	10.
Résultats (pour100 ha)											
Temps effectif	Н	h	235.29	235.27	235.29	148.15	148.13	148.15	102.56	102.55	102.56
Temps accessoire: virage	NW	h	58.81	39.20	29.40	37.03	24.68	18.51	25.63	17.08	12.81
Temps de base (H + NW + NV)	6Z	h	304.11	284.47	274.70	195.18	182.81	176.66	138.20	129.64	125.37
Temps d'exécution (GZ + Vn)	AZ	h	325.40	304.39	293.92	208.84	195.61	189.02	147.87	138.71	134.15
Temps de déplacement (a · w)	W	h	10.00	9.33	9.11	6.44	6.00	5.78	4.67	4.44	4.22
Temps de préparation (a · r)	R	h	22.5	21.0	20.5	14.5	13.5	13.0	10.5	10.0	9.5
	na GAZ	h	357.90	334.72	323.54	229.78	215.11	207.80	163.04	153.16	147.87

Tab. 2: Moissonneuse-batteuse, travail normal,5 km/h

Calcul prévisionnel des temps de main-d'oeuvre nécessaires		Genre de machine: Moissonneuse-batteuse automotrice avec trémie à grain, largeur de travail en m:										
Eléments de calcul admis			2.0	2.0	2.0	3.0	3.0	3.0	4.2	4.2	4.2	
Longueur du champ	L	m	100.	150.	200.	100.	. 150.	200.	100.	150.	200.	
Largeur du champ	В	m	10000.	6666.	5000.	10000.	6666.	5000.	10000.	6666.	5000.	
Largeur utile de la machine	Ь	ст	170.	170.	170.	270.	270.	270.	390.	390.	390.	
Vitesse de travail sur champ	vf	km/h	5.	5.	5.	5.	5.	5.	5.	5.	5.	
Temps de virage	u	cmn	60.	60.	60.	60.	60.	60.	60.	60.	60.	
Distance de la ferme au champ	е	km	1.	1.	1.	1.	1.	1.	1.	1.	1.	
Vitesse d'avancement sur chemin	VW	km/h	9•	9.	9.	9.	9.	9•	9.	9.	9.	
Temps de préparation par passage (g)	r	h	•5	•5	•5	.5	•5	•5	•5	·•5	•5	
Durée d'un passage	g	h	8.	8.	8.	8.	8.	8.	8.	8;	8.	
Temps mort (par GZ)	Vn	%	7.	7.	7.	7-	7.	7.	7.	7.	7.	
Temps d'approvisionnement (pour 100 ha)	NV	h	10.	10.	. 10.	10.	10.	10.	10.	10.	10.	
Résultats (pour 100 ha)										,		
Temps effectif	Н	h	117.65	117.64	117.65	74.07	74.07	74.07	51.28	51.28	51.28	
Temps accessoire: virage	NW	h	58.81	39.20	29.40	37.03	24.68	18.51	25.63	17.08	12.81	
Temps de base (H + NW + NV)	GZ	h	186.46	166.84	157.05	121.10	108.75	102.58	86.91	78.36	74.09	
Temps d'exécution (GZ + Vn)	AZ	h	199.51	178.52	168.04	129.58	116.36	109.76	93.00	83.84	79.28	
Temps de déplacement (a · w)	W	ħ	6.22	5.56	-5.33	4.00	3.56	3.56	2.89	2.67	2.44	
Temps de préparation (a · r)	R	h	14.0	12.5	12.0	9.0	8.0	8.0	6.5	6.0	5.5	
Total des temps de main-d'oeuvre pour 100 ha	GAZ	h	219.74	196.57	185.38	142.58	127.91	121.32	102.39	92.51	87.22	
			a = Nombre o	le passages (po	ur 100 ha)	w = Temps o	w = Temps de déplacement (pour g)			r = Temps de préparation (pour g)		

Tab. 3: Moissonneuse-batteuse, travail rapide, 7,5 km/h

Calcul prévisionnel des temps de main-d'oeu	re nece	ssaires	Genre de mach	ine: Moissonne	use-batteuse a	utomotrice avec	trémie à grai	n, largeur de	travail en m:		
Eléments de calcul admis			2.0	2.0	2.0	3.0	3.0	3.0	4.2	4.2	4.2
ongueur du champ	L	m	100.	150.	200.	100.	150.	200.	100.	150.	200.
Largeur du champ	В	m	10000.	6666.	5000.	10000.	6666.	5000.	10000.	6666.	5000.
Largeur utile de la machine	Ь	cm	170.	170.	170.	270.	270.	270.	390.	390.	390.
Vitesse de travail sur champ	vf	km/h	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Temps de virage	u	cmn	60.	60.	60.	60.	60.	60.	60.	60.	60.
Distance de la ferme au champ	е	km	1.	1.	1.	1.	1.	1.	1.	1.	1.
Vitesse d¹avancement sur chemin	VW	km/h	9.	9.	9.	9.	9.	9.	9.	9.	9.
Temps de préparation par passage (g)	г	h	•5	•5	•5	•5	-5	•5	•5	•5	•5
Durée d'un passage	g	h	8.	8.	8.	8.	8.	8.	8.	8.	8.
Temps mort (par GZ)	Vn	1/2	7.	7.	7.	7.	7.	7.	7.	7.	7.
Temps d'approvisionnement (pour 100 ha)	NV	h	10.	10.	10.	10.	10.	10.	10.	10.	10.
Résultats (pour 100 ha)											
Temps effectif	Н	h	78.43	78.42	78.43	49.38	.49.38	49.38	34.19	34.18	34.19
Temps accessoire: virage	NW	h	58.81	39.20	29.40	37.03	24.68	18.51	25.63	17.08	12.81
Temps de base (H + NW + NV)	GZ	h	147.24	127.63	117.83	96.41	84.06	77.89	69.82	61.27	57.00
Temps d'exécution (GZ + Vn)	AZ	h	157.55	136.56	126.08	103.16	89.94	83.34	74.71	65.56	60.99
Temps de déplacement (a · w)	W	h	4.89	4.22	4.00	3.33	2.89	2.67	2.44	2.22	2.00
Temps de préparation (a · r)	R	h	11.0	9.5	9.0	7.5	6.5	6.0	5.5	5.0	4.5
Total des temps de main-d'oeuvre pour 100 h	GAZ	h	173.44	150.28	139.08	113.99	99-33	92.01	82.65	72.78	67.49

portionnelle, nous avons admis une superficie de 100 hectares. Tous les résultats se rapportent donc à 100 ha. En se fondant sur ces derniers, il est facile de calculer la main-d'œuvre exigée pour les petites surfaces.

Ce qui frappe, concernant les résultats obtenus, c'est que le temps effectif (fauchage seul) diminue dans une très large mesure avec une barre de coupe plus longue. Il en va de même du temps de virage, lequel est d'ailleurs encore influencé par la longueur du champ. En effet, plus une parcelle de même superficie est longue, moins il y a de virages à exécuter. Enfin on n'est guère surpris de constater l'importante influence exercée par la vitesse d'avancement lors des travaux de moissonnage-battage. Aussi importe-t-il, pour la planification du travail, de disposer de points de repère valables - grâce à des évaluations fréquentes et des contrôles ultérieurs de la vitesse d'avancement - en ce qui concerne les conditions existant dans chaque cas ainsi que les temps de main-d'œuvre probables.

2. Estimation du laps de temps disponible par campagne pour la mise en œuvre de la machine

Après qu'on a calculé les temps de main-d'œuvre nécessaires à l'unité de surface, il importe encore de savoir pendant combien d'heures une machine peut être utilisée pour l'exécution de travaux dans les champs. Contrairement à ce qui se passe en matière de production industrielle, les possibilités de mise en œuvre des machines dans l'agriculture s'avèrent très limitées en raison du rythme de croissance des plantes et des fluctuations des conditions météorologiques. Dans le secteur du moissonnage-battage, il faudrait que l'on connaisse le nombre d'heures probable à disposition dans l'année pour l'emploi de la moissonneuse-batteuse. Ce laps de temps varie dans une large mesure vu les conditions climatiques très différentes qui existent en Suisse d'une région à l'autre et d'un été à l'autre. L'étude d'un projet d'expérimentations est actuellement en cours à la FAT aux fins d'élucider le nombre d'heures dont

les praticiens disposent annuellement pour le moissonnage-battage. A l'aide d'une moissonneuse-batteuse de type ordinaire, on tentera de déterminer quand la récolte du blé se montre de nouveau, exécutable après une humidification de ce dernier et pendant combien de temps il est encore possible de moissonner lors de chutes de pluie ou dans la soirée (formation de la rosée) avant que des incidents mécaniques se produisent.

Il sera procédé en même temps au contrôle constant des facteurs d'ordre climatique tels que la température, le taux d'humidité de l'air, la durée de l'insolation, le rayonnement, la force du vent, etc., afin d'établir ultérieurement la relation existant entre les résultats des expérimentations en question et les valeurs des facteurs précités. Si nous réussissons à tirer au clair ces interdépendances, nous serons alors en mesure d'exploiter les données enregistrées par les stations météorologiques de notre pays et de calculer le nombre d'heures dont on dispose par an pour mettre la moissonneuse-batteuse en œuvre. Pour le moment, nous sommes obligés de nous contenter encore d'évaluations.

3. Estimation de la somme de travail pouvant être exécutée par la machine durant une campagne

Les explications données plus haut permettent de déterminer la capacité de travail totale de la machine dans l'année. On la calcule comme suit:

Capacité de travail moyenne (en ha/h) x Laps de temps disponible par an (en h) = Capacité de travail totale par campagne (en ha)

Admettons que la récolte principale des céréales puisse être effectuée dans une région déterminée, à l'aide de la moissonneuse-batteuse, pendant dix jours et huit heures par jour en moyenne. Le praticien disposerait ainsi de 80 heures pour cette récolte. En utilisant par exemple durant 80 heures une moissonneuse-batteuse dont la capacité de travail horaire (rapportée à la totalité des temps de main-d'œuvre nécessaires) est de 0,50 ha, on arrive à une capacité de travail totale par an de 40 ha pour la récolte principale des céréales. Si la capacité de travail à l'heure est de 1,0 ha, la capacité de travail

totale à l'année (récolte principale des céréales) atteint alors le chiffre de 80 ha. La capacité de travail totale par campagne de trois moissonneuses-batteuses automotrices à trémie à grain est indiquée sur la Figure 1 pour différentes valeurs de la vitesse de fauchage, de la longueur de la barre de coupe et de la longueur du champ. Cette capacité de travail oscille entre 22 et 118 ha. Les diverses valeurs sont représentées graphiquement et la hauteur des colonnes montre l'importance de la capacité de travail totale par an des moissonneuses-batteuses en cause.

A relever que la récolte des plantes à maturité précoce (colza, orge d'hiver) et de celles à maturité tardive (maïs-grain) n'est pas comprise dans la récolte principale des céréales. Par ailleurs, l'extension des superficies consacrées à ces cultures augmente le nombre d'heures disponibles pour la récolte et on a alors la possibilité de récolter de plus grandes surfaces.

D'un autre côté, il y a lieu de remarquer que les capacités de travail par campagne telles qu'elles ont été calculées s'avèrent trop élevées pour les cas où les parcelles sont de moindres dimensions, les distances d'un champ à l'autre plus importantes, etc. Si cette dépense de temps supplémentaire (il s'agit principalement de temps de déplacement) peut être comptée partiellement ou totalement en dehors des 8 heures de travail journalier prévues, la capacité de travail totale de la machine par campagne ne s'en trouve toutefois pas fortement diminuée.

En plus de la détermination de la capacité de travail précitée, il faut également élucider à fond pour quelles quantités ou surfaces une nouvelle machine devra être mise en œuvre.

4. Le choix de la machine optimale

Lorsque la superficie qu'une nouvelle machine aura à travailler est connue avant qu'on fasse l'acquisition de cette dernière, les Tableaux 1, 2 et 3, ainsi que le graphique de la Figure 1, peuvent aider à choisir la moissonneuse-batteuse qui convient le mieux du point de vue de sa capacité de travail totale par an.

A ce propos, il est nécessaire de connaître tout

d'abord les conditions de parcellement des exploitations des agriculteurs qui se sont annoncés pour le moissonnage-battage afin de pouvoir évaluer la longueur moyenne des champs de blé entrant en considération. De plus, il faut absolument connaître aussi les rendements des cultures en grain et en paille dans la région en question, ainsi que la fréquence de la verse du blé, pour qu'on ait une idée de la vitesse moyenne de fauchage possible. Enfin on ne doit pas oublier de tenir compte des conditions climatiques ni de se renseigner auprès de conducteurs de moissonneuses-batteuses expérimentés de la région pour savoir à combien d'heures disponibles pour la récolte principale des céréales il faut s'attendre au cours de huit à dix ans. En se fondant sur ces différentes données, on peut alors trouver la moissonneuse-batteuse optimale en consultant les tableaux et le graphique mentionnés plus haut.

5. Les frais occasionnés par la machine et la méthode

Les considérations relatives à l'économie du travail ne peuvent être limitées aux temps de main-d'œuvre nécessaires. Elles doivent aussi s'étendre au problème de la rentabilité. Les éléments qui jouent un rôle important à cet égard sont les suivants:

- a) Les frais de machines
- b) Les charges du travail
- c) L'importance des pertes de récolte

En ce qui concerne les **frais de machines**, ils sont indiqués dans la publication de la FAT consacrée au coût de revient des matériels agricoles (Bulletin de la FAT 6/72 dans «Technique Agricole» 6/72, Documentation de technique agricole no. 35). On constatera que la capacité de travail totale de la machine par campagne avec une vitesse d'avancement de 5 km/h et un champ d'une longueur de 150 m (conditions moyennes) — dont il vient d'être

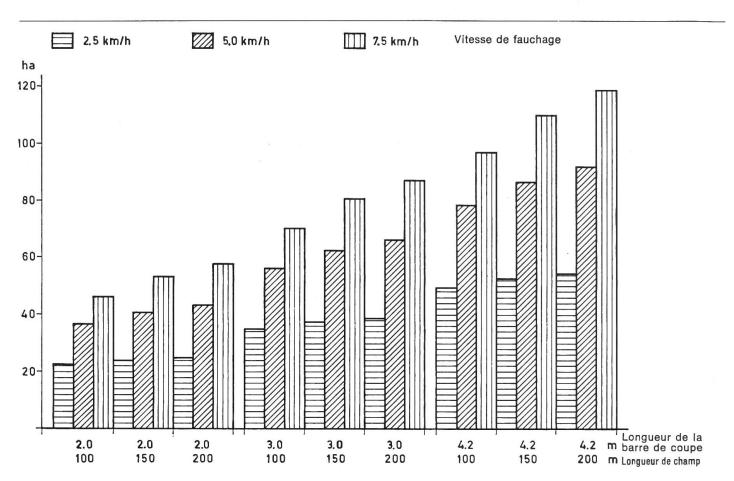


Fig. 1: Capacité de travail totale de trois moissonneuse-batteuse automotrices à trémie à grain avec différentes vitesses de fauchage, longueurs de barre de coupe et longueurs de champ.

question plus haut — concorde bien avec les superficies travaillées à l'année qui ont été prises comme base pour le calcul des frais de machines. Si la capacité de travail totale de la machine par campagne s'avère supérieure ou inférieure au chiffre cité, le coût de revient de cette dernière s'abaisse ou s'élève alors respectivement de manière correspondante. En pareil cas, et surtout si ce coût se montre plus important, il est conseillable de refaire le calcul à nouveau.

Les charges du travail viennent s'ajouter aux frais de machines. Comme on le sait, ces charges diminuent avec l'accroissement de la capacité de travail de la machine. Lorsque les frais de salaires sont élevés, il vaut donc la peine de mettre en œuvre des machines plus puissantes pour autant que le rendement de travail de chaque unité de main-d'œuvre puisse être réellement supérieur et compense ainsi le salaire élevé.

6. Inclusion des pertes de récolte lors de l'optimalisation de la méthode

A l'heure actuelle, on attache davantage d'importance que naguère aux pertes de récolte. La Figure 2 montre que certaines pertes interviennent souvent au début de la période de récolte (frais de séchage élevés, par exemple). Puis il s'écoule un laps de temps plus ou moins long avec des rendements optimaux. La maturation progressive du blé entraîne ensuite de nouvelles pertes dues à la chute de grains sur le sol, aux ennemis des cultures, aux conditions atmosphériques, etc. Des journées de mauvais temps peuvent grandement influencer le comportement de la courbe de rendement de la Figure 2. Par conséquent, il importe que l'on réfléchisse à l'importance de telles pertes exprimées en francs. En ce qui concerne les frais de séchage, ces pertes apparaîtront clairement dans les comptes. Il est par contre plus difficile d'évaluer les pertes de grain, en particulier celles qui se sont produites avant le passage de la moissonneuse-batteuse. Ainsi que les premiers essais effectués par la FAT l'ont montré, l'appareil «Monitor», qui est destiné à contrôler les pertes de grain se produisant avec la moisson-

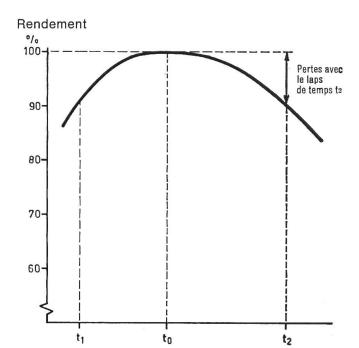


Fig. 2: Rendement en fonction du laps de temps disponible pour la récolte (d'après Hunt).

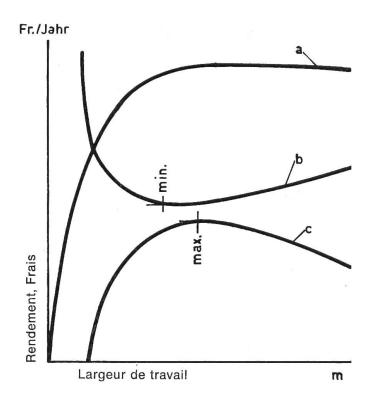


Fig. 3: Rendement et frais en fonction de la largeur de travail, prise comme valeur de remplacement pour la capacité de travail de la machine, et d'une somme de travail constante (d'après Barnes).

- a) Rendement brut
- b) Frais de machines et charges du travail
- c) Rendement net

neuse-batteuse, permet en tout cas de bien déterminer ces pertes.1)

D'après ce qui précède, on se rend certainement compte qu'il ne suffit pas de réduire seulement les frais de machines et les charges du travail à un minimum. Il faut en faire autant des pertes de récolte, qui se traduisent par des pertes d'argent. Comme le montre la Figure 3, le rendement net maximal n'est généralement pas obtenu avec des charges de travail et frais de machines minimaux mais seulement avec une plus grande largeur de travail de la machine, qui confère à cette dernière

Fig. 4: Détermination des temps de main-d'œuvre nécessaires lors du moissonnage-battage

une capacité de travail supérieure. Dans le cas de la moissonneuse-batteuse, les courbes de ce graphique devraient plus particulièrement correspondre à la réalité du fait que l'importance des pertes de récolte (frais de séchage, pertes de grain) pèse ici lourdement dans la balance. Aussi les efforts déployés dans ce domaine pour arriver à des optimums grâce à des calculs prévisionnels sont-ils très réjouissants. De tels calculs ne peuvent être toutefois valables que si l'on dispose de données numériques sûres concernant l'importance des pertes en question.

Afin de faciliter l'emploi des machines également en dehors de la propre exploitation (utilisation collective), il faudrait que les agriculteurs intéressés parviennent à s'entendre pour supporter les pertes en commun. En ce qui concerne la moissonneuse-batteuse, il n'est presque jamais possible de la mettre en œuvre chez tous les exploitants durant la période où des frais de séchage n'entrent pas en considération. C'est la raison pour laquelle une répartition égale de ces frais entre les agriculteurs intéressés serait hautement recommandable. Une entente à ce sujet ne présente pas de difficultés et a déjà été réalisée dans plusieurs cas.

7. Remarques finales

En fin de compte, le secteur de l'économie du travail appartient aussi au domaine de l'organisation du travail. Etant donné que l'objet du présent rapport ne concerne pas ce domaine, nous nous sommes abstenus d'y entrer ici de manière plus approfondie. Ce qui a été exposé plus haut montre qu'il faut en tout cas planifier la mise en œuvre journalière et saisonnière des machines. Cette planification doit englober la totalité de la méthode adoptée. Dans le cas du moissonnage-battage, par exemple, il faut qu'elle s'étende aussi au transport du grain à son lieu de destination et au séchage du grain.

A l'avenir, les agriculteurs devront utiliser des machines d'une capacité de travail toujours plus grande et également toujours plus coûteuses. Aussi une connaissance approfondie des interdépendances existant du point de vue de l'économie du travail seront-elles aussi toujours plus importantes. Il vaut donc la peine de faire des calculs en vue, premièrement, d'éviter l'achat irréfléchi de machines non rentables d'une capacité de travail excessive, secondement, d'employer les machines déjà à disposition d'une manière aussi rationnelle que possible.

Reproduction intégrale des articles autorisée avec mention d'origine.

Les numéros du «Bulletin de la FAT» peuvent être obtenus par abonnement auprès de la FAT en tant que tirés à part numérotés portant le titre général de «Documentation de technique agricole» en langue française et de «Blätter für Landtechnik» en langue allemande. Prix de l'abonnement: Fr. 24.— par an. Les versements doivent être effectués au compte de chèques postaux 30 - 520 de la Station fédérale de recherches d'économie d'entreprise et de génie rural, 8355 Tänikon. Un nombre limité de numéros polycopiés, en langue italienne, sont également disponibles.

¹⁾ Voir Bulletin de la FAT 1/72 (dans «Technique Agricole» 1/72) et Documentation de technique agricole no. 27.