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«Le hasard fait bien les choses»:
statistische Methoden fiir die Waldinventur!

Von Daniel Mandallaz

Keywords: Forest inventories, optimization, inclusion probabilities, geostatistics.
FDK 524.6: 945.4: UDK 519.22

1. Einfithrung

Sicherheit und «Beherrschung» der Natur sind Urbedirfnisse der Mensch-
heit. Die meisten von uns empfinden daher eine tiefe Abneigung gegen den
Zufall, von Gliickspielen abgesehen, und dulden die Ungewissheit nur in Aus-
nahmefillen, zum Beispiel beziiglich des Zeitpunktes des eigenen Todes.

In den Naturwissenschaften wurde der Zufall dank der Wahrscheinlich-
keitstheorie salonféhig (au sens du marquis Pierre Simon de Laplace), aber
nur sofern er quantifizierbar ist; im Prinzip ist er nur als Spiegelbild unserer
immer kleiner werdenden Ignoranz zu deuten: «Gott wiirfelt nicht», sagte
Albert Einstein, als er die so erfolgreiche wahrscheinlichkeitstheoretische
Deutung der Quantenmechanik kritisierte. Heute glauben einige namhafte
Physiker, dass Gott doch wiirfelt; fiir die Medien ist Ordnung «out» und Chaos
«in» (fiir den Mathematiker ist es nicht so einfach: es gibt chaotische determi-
nistische Systeme). Die Diskussion bleibt, gelinde gesagt, offen. Das franzgsi-
sche Sprichwort «le hasard fait bien les choses» kdnnte man demnach als hoff-
nungsvolle Resignation oder religiose Beschworung auffassen.

Das Thema dieses Referats ist selbstverstdndlich viel bescheidener. Ich
mochte die Lesenden (frither: LeserInnen, noch frither: Leser) davon iiber-
zeugen, dass der Zufall, und damit die Statistik, fiir die Waldinventur ein
unentbehrliches, nahezu ideales Werkzeug ist. Allerdings miissen dabei die
Begriffe «Zufall» und «Waldinventur» genau definiert werden, was im néch-
sten Kapitel erfolgt.

I Leicht abgednderte Version der Antrittsvorlesung vom 14, November 1994 an der ETH
Ziirich.
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Zur erkenntnistheoretischen Standortbestimmung der Statistik mochte ich
noch folgendes anfithren: mit Zahlen zu liigen, ist einfach (sogar Politiker
schaffen das, jedoch meistens nur voriibergehend), ohne Zahlen zu liigen, ist
noch einfacher (die Scharlatane aller Gattungen haben nicht nur erfolgreiche
Jahrtausende hinter sich, sondern auch eine rosige Zukunft vor sich).

2. Die Ziele der klassischen Waldinventur

Unter dem Begriff der klassischen Waldinventur verstehe ich die Erhe-
bung von Daten, welche an individuellen Bdumen in bestimmten Fldachen zu
bestimmten Zeitpunkten beobachtet, gemessen oder geschétzt werden (z.B.
Stammzahl, Grundfliche, Volumen, Klassifikationsmerkmale wie Baumart,
Gesundheitszustand).

Unter dem Begriff der nicht-klassischen Waldinventur versteht man zur
Zeit die Erhebung aller relevanten Informationen iiber Zustand und Ent-
wicklung des Okosystems «Wald» und dessen Wechselwirkungen zum gesell-
schaftlichen Umfeld.

Ich werde hier nur die klassische Waldinventur (und dies weitgehend fiir
einen bestimmten Zeitpunkt) behandeln, weil wir fiir diese heute iiber klare
und einheitliche Konzepte verfiigen. Schlecht konzipierte klassische Waldin-
venturen sind leider, wie die Erfahrung zeigt, vom Aussterben noch nicht
bedroht. Dieses Referat soll als kleine Sterbehilfe dienen.

Fiir die nicht-klassische Waldinventur sind klare einheitliche Konzepte
noch nicht verfiigbar — und werden es vermutlich nie sein. Die Fragestellungen
sind unzdhlig, oft innerlich vag und komplex, mit den entsprechenden statisti-
schen Nachteilen. Wortiiber man noch nicht klar reden kann, sollte man, dem
Rat von Ludwig Wittgenstein folgend, eher schweigen (allein schon aus Zeit-
und Platzgriinden).

Mathematisch ldsst sich das Problem der klassischen Waldinventur wie
folgt formulieren.

Gegeben selen:

Waldflache F mit Flicheninhalt A(F) (in ha)

Wohldefinierte Population von N Bédumen in F, mit zugeordneten Ziel-
grossen Y¥ i=12.N,k=12.p

Gesucht sind:

(2.1)
T :iwﬂm, Totale; Y* = )L;—F) T, Hektarendichten
(=l

T(k)
1?k[:'?ﬁ—a

Quotienten
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Beispiel:
Y/” = Grundfliche des i-ten Baumes, falls der i-te Baum krank ist, sonst 0.

Y/? = Grundfliche des i-ten Baumes.
R,, = Grundflichenanteil kranker Baume.

Meistens stellt sich das obige Problem fiir verschiedene Teilgebiete von F
und fiir verschiedene Zeitpunkte. Im folgenden werden wir aus Platzgriinden
nur Hektarendichten fiir eine einzige Zielgrosse betrachten, womit wir auf den
hochgestellten Index verzichten konnen.

In der iiberwiegenden Mehrheit der Fille ist N so gross, dass eine Voll-
kluppierung nicht in Frage kommt. Es miissen somit Stichprobenverfahren
eingesetzt werden.

Im néchsten Kapitel wird der stichprobentheoretische Ansatz in einer all-
gemeinen und modernen Darstellung prisentiert, welche es erméglicht, im
Kapitel 4 mathematische Richtlinien fiir die optimale Planung aufzustellen.
Interessant ist vor allem, dass der hier gewéhlte Ansatz auf Grund von einfa-
chen Prinzipien zu klaren Regeln fiihrt, die zum Teil empirisch schon lange als
optimal gelten. Die mathematischen Beweise und die komplizierteren explizi-
ten Formeln werden zu einem spéteren Zeitpunkt publiziert.

3. Der stichprobentheoretische Ansatz

Wir gehen zunéchst von der einfachsten Methode aus. In der Waldfldche F
wird ein Punkt x zuféllig uniform gezogen, d.h.
(3.1)

Pr(xe B) = %‘?}3—[’) fiir jedes Gebiet B

Der Zufall ist somit hier ein menschliches Erzeugnis: die Koordinaten des
Punktes werden von einem geeigneten Computerprogramm geliefert.

Um den Punkt x wird ein Kreis K gezogen und die in diesem Kreise zur
Population gehdérenden Bidume aufgenommen (Abbildung I1). Diese Aus-
wahlregel kann man ebensogut dual definieren, ndmlich: um jeden Baum i
wird ein Kreis K; mit konstantem Radius R gelegt, und der i-te Baum wird
genau dann aufgenommen, wenn der Punkt x in Kreis K; fillt (Abbildung 2).
Die duale Betrachtung liefert uns sofort eine weitreichende Verallgemeine-
rung. Wir konnen nidmlich jedem Baum einen Kreis K; mit individuellem
Radius R; zuordnen; der i-te Baum wird genau dann aufgenommen, wenn der
zufillige Punkt x in K; fillt (Abbildung 3).
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X Punkt
* Baum

Abbildung 1. Die einfache Kreisprobe.

x Punkt
* Baum

Abbildung 2. Die duale Betrachtung zur einfachen Kreisprobe.

Ein berithmtes Beispiel fiir individuelle Kreisradien ist die Winkelz&hl-
probe von Bitterlich, bei der die Kreisradien von dem Baumdurchmesser
abhidngen (mit Zihlfaktor k beim Grenzwinkel o):

D[in cm] 5

24k

Wir fiithren nun fiir jeden Baum die Indikatorvariablen ein:

Ii(x) = 1,0 je nachdem ob der Baum vom Punkte x aus aufgenommen wird
oder nicht.

R[in m]= . k=10"sin’ %)
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() ®
e N @ (Y

* Baum

Abbildung 3. Die verallgemeinerte Auswahlregel.

Die Aufnahmewahrscheinlichkeiten sind die Erwartungswerte

MK.NF) (3:3)
N
Pr(I.(x)=1)=n. = E(I.(x)) =———=
f(f,(x)=1) =, = E(1;(0) ===
Wenn der i-te Baum kein Randbaum ist gilt K; ¢ ' und daher :—%g{)
Die erwartete Anzahl aufgenommener Bdume ist dann

(3.4)

E(i I,.(x)) = EN} T,

i=1

Fiir die Berechnungen von Varianzen spielen die paarweisen Aufnahme-

wahrscheinlichkeiten eine wesentliche Rolle:
(3.9)
MK, NK,NF)

A(F)

Pr(7,(x)=11,(x) =1) =n, = E(L,(0)],(x)) =

In dem hier besprochenem Ansatz sind die Aufnahmewahrscheinlichkei-
ten m bekannt (meistens erst nach der Aufnahme der Bidume und der Ver-
messung des Waldrandes). Wie wir sehen werden, ist dies die conditio sine qua
non fir die Herleitung biasfreier Schidtzungen. Gewisse Auswahlverfahren
(darunter jene die von einem Punkt aus eine konstante Anzahl Bdume auf-
nehmen) fithren zu unbekannten m; und sind mit zahlreichen statistischen
Komplikationen und Nachteilen verbunden. Man sollte sie meines Erachtens
moglichst vermeiden.
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Wir wenden uns jetzt den Schétzverfahren zu. Die lokale Hektarendichte
Y(x) im Punkte x wird mittels des «Horwitz-Thompson»-Schétzers definiert:

(3.6)
Y(x)=——= ) L(x)—*
()= ( 772 2 (x)
( (MF)m,)! ist der sogenannte Hochrechungsfaktor).
Es gilt nach Konstruktion
(3.7)

1 N
( (x ))—1—('1;,_)_“ (X)dx-—-?\.—);y: Y

Die lokale Dichte ist wegen der zufélligen Lage des Punktes x eine Zufalls-
variable, dessen Erwartungswert gerade den erwiinschten raumlichen Mittel-
wert liefert. In der Definition der lokalen Dichte werden Randeffekte theore-
tisch korrekt behandelt, die einzige Schwierigkeit besteht in der Definition
und der Erfassung des Waldrandes, und eventuell in der Berechnung von
A(K,NF). Wir haben dabei stillschweigend angenommen, dass alle topogra-
phischen Angaben durch geeignete Projektion in einer Ebene vorliegen (was
in der Praxis nicht immer einwandfrei erreicht werden kann, z.B. Hangnei-
gungskorrekturen bei Probefldchen in Kretenlage).

Der Zufall liefert uns somit eine biasfreie Schédtzung. Er ist sozusagen der
unsichtbare Faden, welcher von den erfassten zu den nicht erfassten Baumen
fiihrt und somit fiir die «Représentativitidt» sorgt. Die Varianz ergibt sich leicht
aus:

I Jryed=m) o (m—mmy) (3.8)
Var(Y(x)) = ——
(Y =5 {): 2 }

Im Gegensatz zum Erwartungswert hingt die Varianz, iiber die 7, von der
raumlichen Verteilung der Badume im Wald ab.

Der lineare biasfreie Horwitz-Thompson-Schitzer wurde 1952 in die Stich-
probentheorie eingefiihrt. 1955 konnte der indische Statistiker Godambe folgende
bahnbrechende Resultate beweisen (iibersetzt in die Sprache der Waldinventur):
(1) Y(x) ist zuldssig, d.h. es gibt keinen anderen linearen biasfreien Schitzer,

welcher fiir alle Wilder eine kleinere Varianz hat (Y(x) ist keine schlechte

Schitzung!).

(2) Es gibt keinen linearen biasfreien Schétzer, der fiir alle Wélder die kleinste

Varianz hat (es gibt keine beste Schatzung!).

Die Interessierten finden einen ausgezeichneten Uberblick iiber die
modernen Grundlagen der Stichprobentheorie, insbesondere auf die obigen

Resultate in Smith, T.EM, 1976.
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Die Suche nach dem universell besten Schitzer ist somit illusorisch, und
wir miissen unsere Anspriiche reduzieren:

erstens, indem wir uns auf die Klasse der Horwitz-Thompson-Schitzer,
und somit der damit verbundenen lokalen Dichten, einschrinken (sie sind ein-
fach und zulissig).

zweitens, indem wir die Aufnahmewahrscheinlichkeiten m, so einrichten,
dass das Kosten/Varianz-Verhiltnis «<im Mittel» fiir eine grosse Klasse von
Wildern «optimal» ist.

Die vage Formulierung «im Mittel» soll nun prézisiert werden. Wir gehen
von einem stochastischen Modell L aus, welches bei vorgegebenen N,Y,i =
1,2..N die Lage der Bdume im Wald erzeugt. Die effektive Lage der Biaume
wird somit als die Realisierung eines stochastischen Prozesses angesehen. Der
Zufall ist jetzt als Gedankenexperiment oder als Gliickspiel der Natur zu ver-
stehen. Die zwei einfachsten Lagemodelle sind:

L. Der Poisson-Wald

Die N Baume sind unabhingig uniform verteilt in F
L,: Der lokale Poisson-Wald

Der Wald besteht aus Teilgebieten («Straten»), in welchen L, gilt.

Ein Plenterwald kann in erster Ndherung als ein Poisson-Wald gesehen
werden, wihrend ein Wald mit verschiedenen Entwicklungsstufen als lokaler
Poisson-Wald gesehen werden kann. Rottenartige Wilder wiren Gegenbei-
spiele. Selbstverstandlich sind diese Modelle nur grobe Approximationen der
Realitét; sie sind jedoch die analytisch einfachsten Modelle, welche verniinf-
tige Anséitze liefern. Die Resultate sind exakt unter L, und gelten bis auf die
Vernachlidssigung der Stratenrandeffekten unter L.

«Im Mittel» soll nun bedeuten, dass wir anstelle der Varianz die antizipierte
Varianz

(3.9)
AV = E,(Var(Y(x)))

betrachten, d.h. den Erwartungswert der gewdhnlichen Varianz unter allen
moglichen Lagen (unter den oben beschriebenen Modellen) der Baume.

Die Aufgabe besteht nun darin, die m, so zu bestimmen, dass die antizi-
pierte Varianz bei vorgegebenen Kosten — oder die Kosten bei vorgegebener
antizipierter Varianz — minimiert wird.
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4. Mathematische Richtlinien fiir die Optimierung

4.1 Die einphasige Inventur

Wir gehen von n, Punkten x, x,....x,, aus, welche in F unabhingig uniform
verteilt sind. Als biasfreien Schédtzer nehmen wir den Mittelwert der lokalen
Dichten

- (4.1.1)
Y=—> Y(x)
.y =
Varianz und antizipierte Varianz diese Schéitzers sind dann:
) (4.1.2)
Var(?) == Var(¥(x))
n,
1 E&rXd-n) 1
V= ' = - —¢(Y,Y,,...Y
nglz(F) ; T n, (Y, Y, N)

wobei ¢(Y,,Y,,...Yy) nicht von den m; abhéingt und unter Modell L, sogar 0 ist.
Man merke, dass der Ubergang zur antizipierten Varianz die T;-Terme zum
Verschwinden bringt.

Die erwarteten Kosten werden gemass

(4.1.3)

N
C= nz(cm +65y Zni)+'c(n2)

modelliert, wobel:

¢,y : Einrichtungskosten pro Stichprobenpunkt

¢,; :Aufnahmekosten pro Baum zur Bestimmung von Y]
T(n,) : Transportkosten

Die feine Modellierung der Transportkosten ist dusserst schwierig, wenn
nicht illusorisch. Aus geometrischen Griinden nimmt t(n,) etwa wie \n, zu.

In der Praxis geniigt es, fiir eine qualitative Untersuchung eine lineare
Approximation zwischen unterer und oberer Schranken fiir n, zu betrachten;
fiir die Optimierung ist nur die Steigung dieser linearen Approximation mass-
gebend. Lineare Transportkosten haben zudem den Vorteil, dass man die-
selben Regeln (bis auf Konstanten) bekommt, egal ob man die antizipierte
Varianz bei vorgegebenen Kosten oder die Kosten bei vorgegebener antizi-
pierter Varianz minimiert, was im allgemeinen nicht gilt und somit universelle
Richtlinien verunmdoglicht. Wenn die Transportkostenfunktion numerisch
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bekannt wire (meines Erachtens eine Illusion), so wire eine numerische Opti-
mierung im Prinzip kein Problem.

Die Minimierung der antizipierten Varianz bei vorgegebenen Kosten fiihrt
zu folgenden Regeln:
(1) Fiir jedes n,: me<| Y[, d.h. Probability Proportional to Size, PPS-Regel

(2) n, moglichst klein, weil a% E, (Var?)>0
2

Regel (2) muss vom praktischen Standpunkt aus relativiert werden.
Erstens miissen Varianzen immer geschétzt werden, was eine minimale Anzahl
Stichprobenpunkte erfordert; zweitens hiingt die Proportionalitdtskonstante
in Regel (1) noch von den vorgegebenen Kosten und n, ab; kleine n, fithren zu
grossen Kreisen und daher zu praktischen Schwierigkeiten bei der Feldarbeit.
Ferner will man oft Schédtzungen fiir Teilgebiete. Die korrekte Interpretation
von (2) ist somit: n, so klein wie mdoglich unter Beriicksichtigung der
Randbedingungen; es ist nicht sinnvoll, viele sehr kleine «Probeflichen» zu
wihlen, weil dann die Transportkosten im Vergleich zur Abnahme der Varianz
ibermaissig steigen.

Der Beweis von Regel (1) erfolgt iiber die Cauchy-Schwartz-Ungleichung.
Wenn die Zielgrosse die Grundflache ist, so fithrt Regel (1) direkt zur
Winkelzdhlprobe, deren «Optimalitdt» somit theoretisch gerechtfertigt
ware.

Fiir andere Zielgrossen, z.B. Volumen, ist Regel (1) schwierig zu imple-
mentieren. Zudem sind die Kosten fiir die genau Bestimmung von Y oft recht
hoch (z.B. zwei Durchmesser- und eine Héhenmessung). Aus diesem Grunde
erscheint es sinnvoll, die ; proportional zu einer billigen Approximation (Pro-
gnose) Y, von Y, zu wihlen (z.B. Volumen tiber BHD-Einwegtarif), was im
Abschnitt 4.2 skizziert wird.

4.2 Die einphasige-zweistufige Inventur

Wie in 4.1 gehen wir von n, Punkten x| x,....x, aus, welche in F unabhingig
uniform verteilt sind. In jedem dieser Punkte wird die lokale Dichte (Horwitz-
Thompson-Schétzer) mit den Prognosen Y, mittels den m; bestimmt. Unter allen
im Punkte x erfassten Biumen werden einige, unabhéingig voneinander und
mit individuellen Aufnahmewahrscheinlichkeiten p;, zur Bestimmung der
exakten Zielgrosse Y ausgewihlt; die entsprechende Indikatorvariable soll mit
J; bezeichnet werden. Die Abweichung zwischen exaktem Wert und Prognose,
kurz Residuum, ist per definitionem R, = Y- Y.

Der verallgemeinerte Horwitz-Thompson-Schitzer im Punkte x ist wie
folgt definiert:
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(42.1)

* 1 LWy 1 ELx)JR,
Y(x)_x(F),z::' T, +1(F)§ m.p;

und
(4.2.2)

Ak ] A%
Y =—> 7Y (x)
nzg, 3

Der verallgemeinerte Horwitz-Thompson-Schiitzer hat den Vorteil, dass er
fiir die exakte Zielgrdsse biasfrei ist. Die Varianz ist dann:

(4.2.3)

Var?* =iVarY(x)+ L
n, n,A(F)

jV(x)dx
F

wobei V(x) = VarY* (x) die Varianz der zweistufigen Ziehung in x bezeichnet.
Wir modellieren die erwarteten Kosten gemass:

(4.2.4)
N N
= nz(cz‘o +6,, 27‘5 + 62.22 mip,.)+ T(n,)

i=1 i=]

wobel:

¢, : Einrichtungskosten pro Stichprobenpunkt X

¢,; :Aufnahmekosten pro Baum zur Bestimmung von Y; (erste Stufe)
¢,, :Aufnahmekosten pro Baum zur Bestimmung von Y, (zweite Stufe)
1(n,) : Transportkosten

Die Minimierung der antizipierten Varianz fiihrt nun zu den Regeln:
(1) Fiir jedes n,: me< ¥], d.h. Probability Proportional to Prediction,
PPP-Regel
(2) Fiir jedes n,: m,p,e<|R,|, d.h. Probability Proportional to Error, PPE-Regel

(3) n, moglichst klein, weil -a—an— E, (Varf’*)>0
2

Regel (2) ist auch giiltig,wenn die &, vorgegeben sind.

Somit hitten wir die Pseudo-Gleichung PPS = PPP + PPE (weil eben
S=P+E)

Die Approximation von Regel (1) durch Treppenfunktionen fiihrt, am
Beispiel des Volumens, zu den bekannten konzentrischen Kreisproben oder
zur Winkelzédhlprobe.

Der verallgemeinerte Horwitz-Thompson-Schédtzer wurde 1993 fiir die
zweite schweizerische Landesforstinventur bereits erfolgreich implementiert
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(verglichen mit der ersten Landesinventur kann man, bei gleicher Genauigkeit
und mit rund 10 000 Probefldchen, die Anzahl der (3-Weg-)Tarifbdume von
rund 40 000 auf 10 000 reduzieren, und dazu noch den Bias stark verkleinern).

Das optimale Verhéltnis der Anzahl Bdume in der ersten und jener in der
zweiten Stufe ergibt sich aus:

N N

2P, \/T 2R
i=] - 2,1 =l
N N

E;,m €22 }Elﬁl

i=1 .=l

(4.2.5)

Bis jetzt haben wir die rein terrestrischen Inventuren betrachtet. Bekannt-
lich kann mit der Verwendung von Hilfsinformation (durch Fernerkundung,
Bestandeskarten, frithere Inventuren, okulare Schidtzung usw.) die Effizienz
noch verbessert werden, oft durch einfache Stratifizierung. Wir werden
im Abschnitt 4.3 den verallgemeinerten Horwitz-Thompson-Schétzer auf
die zweiphasigen Inventuren erweitern, und dies in einer sehr allgemeinen
Form.

4.3 Zweiphasige/zweistufige Inventuren

Die Hilfsinformation wird in r7; Punkten xes, erhoben, welche wir als unab-
héngig uniform verteiltin Fannehmen. Fiir jeden Punkt xes, wird mittels eines
Modells die Hilfsinformation zur Berechnung einer Prognose Y(x ) der lokalen
Dichte Y(x) verwendet («wie» soll uns hier nicht kiimmern!). In jedem Punkt
xes, wird mit Wahrscheinlichkeit p(x) und unabhingig von jedem anderen
Punkt entschieden, ob in diesem Punkt Aufnahmen zur Ermittlung des ver-
allgemeinerten Horwitz-Thompson-Schitzers durchgefiihrt werden; p(x) soll
nur von der Hilfsinformation abhéngen, z.B. von Y(x). Die so ausgewihlten
n, Punkte bilden die Unterstichprobe s,. Man merke, dass n, eine Zufallsva-
riable ist.

Der verallgemeinerte zwe1phas1ge/zwelstuf1ge Horwitz-Thompson-Schit-

zer wird dann wie folgt definiert:
(4.3.1)

l XES nl XES, P(x)

mit Varianz
(4.3.2)

1 J-rz(x)(l—p(x))dx+ 1 J'V(x)dx +Lvarre
" nMF) % p(x) nA(F)y p(x) n
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wobei r(x) = Y(x)—'f’(x) die wahren Residuen (nicht beobachtbar) sind.
Die erwarteteten Kosten werden recht allgemein durch

(4.3.3)
1 1
n<——| ¢ (x)dx+ ¢, (x)p(x)dx
‘{A(F)l : l(F);[ .
modelliert, wobei:
c,(x) :Erhebungskosten der Hilfsinformation im Punkte x
(4.34)

N N
2 (X) =€y (X)+ ¢y (X)Eﬂ:i + C2,2(x)2nipi
i=1 i=1

¢,0(x) : Einrichtungskosten samt linearisierter Transportkosten
¢,.1(x) : Aufnahmekosten der ersten Stufe, pro Baum
¢»,(x) : Aufnahmekosten der zweiten Stufe, pro Baum

Die globale Optimierung nach allen Parametern scheint, zur Zeit, ausser
Reichweite. Wenn p(x) konstant ist, kann man zeigen, dass die Regeln (1) bis
(3) vom Abschnitt 4.2 weiterhin gelten. Wir gehen daher davon aus, dass
n,p; vorgegeben sind, und optimieren dann nur nach p(x) und bekommen die

optimale Losung als:
¢ [P0+ V(x)
p,{x)= <
c,(x) VarY(x)

(11:);[ ¢ (x)dx.

(4.3.5)

wobei ¢, (x) =

Mit anderen Worten ist das optimale Verfahren wieder eine Art PPE.
Obige Formel verallgemeinert die bekannte optimale Stratifizierung fiir belie-
bige Prognosemodelle und zweistufige Verfahren.

Der Vollstandigkeit halber sollte erwidhnt werden, dass biasfreie Varianz-
schitzungen fiir 4.1., 4.2 und 4.3 erhiltlich sind und dass die Theorie auf Trakt-
stichproben erweitert werden kann.

Anhand dieser drei Beispiele kdnnen wir im stichprobentheoretischen
Ansatz die vier Gebote der Forstinventur etwa wie folgt formulieren:

I. Messe nur das, was schlecht modelliert werden kann und nicht zuviel
kostet!

II. Traue nur bedingt deinen Modellen und korrigiere mit den Residuen!

[1I. Beschrinke die Feldaufnahmen auf moglichst wenige «grosse» Probe-
flichen, soweit es die Randbedingungen erlauben!

IV. Verwende PPS-, PPP-, PPE- Verfahren!
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Unter gleichzeitiger Verwendung dieser vier Regeln konnen die Kosten,
bei gleicher Genauigkeit, nicht selten um mehr als 50 % im Vergleich zu einer
einfachen terrestrischen Inventur reduziert werden, was den Titel dieses Refe-
rats rechtfertigt. Allerdings sollte nun klar sein, dass «zufillig» gar nicht
«irgendwie» bedeutet.

Der stichprobentheoretische Ansatz beruht wesentlich auf der Annahme,
dass die Beobachtungspunkte unabhéngig voneinander verteilt sind. In der
Praxis liegen aber die Punkte meistens auf einem systematischen Gitter, des-
sen Startpunkt und Orientierung zuféllig, wenn tiberhaupt, gewihlt sind, was
die Unabhingigkeitsannahme zunichte macht. Theorie und Praxis sind somit
in einem wesentlichen Punkt unverséhnlich. Dieses Problem ist seit «Urzei-
ten» bekannt, und die empirische Erfahrung weist darauf hin, dass die Aus-
wertung einer systematischen Stichprobe, als ob sie zufillig wire, in der Regel
zu liberschitzten Varianzen fithrt. Einige «Zwitteransidtze» (z.B. Paardiffe-
renzformel) werden gelegentlich verwendet, sind aber vom theoretischen
Standpunkt aus nicht iiberzeugend.

Hinzu kommt, dass der stichprobentheoretische Ansatz (design-based
inference), auch wenn alle Annahmen erfillt wéren, fiir die Schdtzung von
kleinen Gebieten, wegen der kleinen Anzahl Beobachtungspunkte, oft unge-
eignet ist. Design-based-Inferenz ist zwar im Prinzip immer giiltig (bis auf den
oben erwihnten Vorbehalt fiir systematische Stichproben), egal ob die ver-
wendeten Prognosemodelle richtig oder falsch sind (die Residuen korrigieren
den Modellbias). Diese «Modell-Unabhidngigkeit» muss jedoch bei lokalen
Schitzproblemen mit grossen Varianzen teuer bezahlt werden. Der Ausweg
aus diesem Dilemma erfordert einen grundsitzlich neuen Ansatz, und daher
einen neuen Zufallsbegriff, der im Kapitel 5 kurz erldutert wird?,

5. Der geostatistische Ansatz

Im stichprobentheoretischen Ansatz ist der Wald fest: die lokale Dichte
Y(x) ist eine Zufallsvariable, weil der Punkt x zufillig ist.

Im geostatistischen Ansatz (model-dependent inference) sind die Beob-
achtungspunkte x; fest (wie sie erzeugt werden, spielt bei der Auswertung
keine Rolle, bei der Planung schon); und dafiir wird die lokale Dichte Y(x) als
die Realisierung eines stochastischen Prozesses aufgefasst. Der gegebene
Wald ist somit ein zufélliges Erzeugnis der Natur. Um weiter zu kommen, muss
vorausgesetzt werden, dass dieses Gliickspiel der Natur eine minimale Gesetz-
massigkeit aufweist. Die Grundfrage bleibt dieselbe: wie kann von den beob-

2 Fiir eine detaillierte Abhandlung der hier skizzierten Resultate siehe D. Mandallaz, 1993,
fiir eine ausgezeichnete, aber anspruchsvolle Einfiihrung in die Geostatistik siehe N. Cressie, 1991.
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achteten Punkten auf die nicht beobachteten geschlossen werden? In der
design-based-Inferenz geschieht dies iiber die «Reprédsentativitdt», induziert
durch die zufillige Ziehung, wihrend es in der model-dependent-Inferenz
tiber die «Stationaritédt» erfolgt, ndmlich:
Fiir alle Ortsvektoren x und Verschiebungsvektoren £ gelten
(5.1)
E(Y(x+h)-Y(x)) =0

E(Y(x + h)=Y(x))* = 2y(h)

Die Funktion y(h) heisst das (semi-)Variogramm. Falls die stationére
raumliche Autokovarianzfunktion c(h) = cov(Y(x + h),Y(x)) existiert, so gilt:
(5.2)

¥(h) = c(0)-c(h)

In der Regel werden benachbarte Punkte stidrker korrelierte lokale Dich-
ten haben als weit entfernte Punkte. In der Praxis wird oft angenommen, dass
die rdaumliche Korrelation ab einem gewissen Abstand (Reichweite) ver-
schwindet. Wir betrachten nun ein Teilgebiet F, ¢ F. Wegen der Biasfreiheit
des Horwitz-Thompson Schitzers gilt:

1 1 | (5.3)
3y [rxax=y,
F, )

ME)S T ME)

Das Schitzen einer endlichen Summe wird somit auf das Schitzen eines
Integrals zuriickgefiihrt.

Fiir die einphasige Inventur geschieht dies liber «ordinary kriging». Man
bestimmt Koeffizienten A, so dass der Schitzer

R (5.4)
f;:=:E:AwYTA%)
ies,
biasfrei ist und einen minimalen quadratischen Fehler hat, d.h.
(5.5)

E(Y,~Y,) =0

Die optimalen Gewichte sind dann Ldsungen eines linearen Gleichungs-
systems, dessen Koeffizienten numerisch relativ aufwendig sind (Integrale des
Variogrammes iiber das Gebiet). Der quadratische Fehler kann ebenfalls
geschitzt werden. Die Verallgemeinerung auf die zweiphasige Inventur erfolgt
iber «double kriging»:
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) A ) (5.6)
Y=Y u e+ ¥ hr(x) , r(x)=Y(x)-Y(x)

j€s, i€s,

Die p; erhdlt man durch ordinary kriging der Prognosen und die A, durch
ordinary kriging der Residuen. Man merke, dass bei «double kriging» das Pro-
gnosemodell nicht «richtig» zu sein braucht (die Korrektur erfolgt automatisch
tiber die Residuen). Falls die Hilfsinformation in allen Punkten des Gebietes
erhaltlich ist und das Prognosemodell «richtig» ist (d.h.: das raumliche Mittel
der Residuen ist Null), geht «double kriging» in «universal kriging» iiber. Die
Theorie kann auf zweistufige Verfahren erweitert werden.

Im Prinzip sind Kriging-Verfahren, bis auf den numerischen Aufwand, ein-
fache Prozeduren, wenn die entsprechenden Variogramme bekannt sind. In
der Praxis miissen diese zundchst geschitzt werden, was, vor allem fiir die
Residuen, eine anspruchsvolle statistische und numerische Aufgabe ist.

Zur Illustration geben wir die Resultate einer Betriebsinventur (mit Trak-
ten zu je nominal 5 Punkten). Das ganze Gebiet umfasst etwa 218 ha, davon
wurde ein kleines Teilgebiet von 17 ha vollkluppiert. Die Hilfsinformation
bestand aus einer vereinfachten Bestandeskarte, das Prognosemodell war eine
multiple lineare Regression mit sechs (0/1)-Indikatorvariablen (7abellen I und 2).

Tabelle 1. Ganzes Gebiet, 218 ha. Punktschitzung/(Standardfehler).

einphasig zweiphasig
design-based/kriging design-based/kriging
Stammzahldichte 321 325 325 326
(18) (15) (12) (11)
Grundflachendichte 31,9 31,9 31.2 314
(1,1) (0,7) (0.9) (0.7)
Anzahl Trakte n, =73 Trakte n, =298 Trakte n,=73 Trakte

Tabelle 2. Kleines Gebiet, 17 ha. Punktschédtzung/(Standardfehler).

einphasig zweiphasig
design-based/kriging design-based/kriging
Stammzahldichte 246 294 257 282
wahrer Wert: 280 (66) (41) (49) (27)
Grundflachendichte 245 217 240 29,5
wahrer Wert: 29,6 (3.6) 2.1) (3,7) (1.4)
Anzahl Trakte n, =19 Trakte n, =92 Trakte  n,=19 Trakte

N.B. Beim Kriging wurden immer alle Datenpunkte verwendet.

Dieses Beispiel und qualitative theoretische Uberlegungen zeigen, dass fiir
globale Schétzprobleme die design-based- und die model-dependent-Inferenz
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im wesentlichen dieselben Punktschiitzungen liefern, mit etwas kleineren Feh-
lern fiir die letztere. Fiir lokale Schétzprobleme liefert die Geostatistik bessere
Schitzungen. Der Vorteil der zweiphasigen Verfahren ist ebenfalls unbestritten.
Der Nachteil der Geostatistik ist, dass es zur Zeit noch nicht moéglich ist,
qualitative Richtlinien fiir die Optimierung anzugeben. Weil Optimierung
jedoch eine globale Angelegenheit ist, scheint es verniinftig, diese Aufgabe mit
dem einfacheren stichprobentheoretischen Ansatz anzupacken. Eine sorgfil-
tige Abkldrung dieser Frage bedarf noch weiterer, anspruchsvoller Forschung.
Bei der Auswertung kann die Geostatistik wertvolle Hilfe leisten, vor allem
bei lokalen Schitzproblemen oder bei Folgeinventuren mit abgednderten
Stichprobenplédnen (die Verteilung der Punkte spielt ja keine Rolle!).

6. Ausblick

Die knapperen finanziellen Mittel einerseits sowie die immer grossere
Bedeutung der Fernerkundung und der geographischen Informationssysteme
andererseits fiilhren meines Erachtens zu folgenden Entwicklungen in der klas-
sischen Waldinventur:

1.) Bessere Koordination und Synergien (in Planung und Auswertung) zwi-
schen nationalen, regionalen und lokalen Inventuren.
2.) Zunehmendes Bediirfnis nach modellabhéngigen Schétzverfahren.

In der nichtklassischen Waldinventur (multifunctional resource assess-
ment) wird man vermutlich mit zahlreichen Ad-hoc-Fragestellungen und
-Schitzverfahren leben miissen. Ich mochte es dennoch hier nicht unterlassen
vor «all in one» Inventuren zu warnen, wo «alles» untersucht wird, mit der
Konsequenz, dass «nichts» auch nur annéhernd optimal geschétzt werden
kann. Getrennte kleinere Studien scheinen hierzu verniinftiger, wenn eine
Vernetzung der Daten durch eine intelligente Koordination und Planung von
Anfang ermoglicht wird.

Diejenigen Leser, die von der Wichtigkeit effizienter und daher anspruchs-
voller statistischer Methoden in den Forstwissenschaften im allgemeinen und
in der Waldinventur insbesondere immer noch nicht iiberzeugt sind, werden
vielleicht durch folgenden Spruch von Mark Twain ithre Meinung dndern:

«If all you have got is a hammer then everything looks like a nail.»
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Zusammenfassung

Dieser Aufsatz gibt einen Uberblick iiber die wahrscheinlichkeitstheoretischen
Grundlagen der modernen statistischen Verfahren, welche fiir die Waldinventur ver-
wendet werden. Aufnahmewahrscheinlichkeiten proportional zur Zielgrosse, zu einer
Prognose der Zielgréssen bzw. zum Fehler dieser Prognose erlauben eine Optimierung
der Stichprobenverfahren, sowohl der einphasigen oder zweiphasigen wie auch der ein-
stufigen oder zweistufigen und deren Kombinationen. Die geostatistischen Verfahren
werden ebenfalls kurz beschrieben, und ein Beispiel zeigt ihre Uberlegenheit fiir lokale
Schitzprobleme.

Résumé

«Le hasard fait bien les choses»:
méthodes statistiques pour I'inventaire forestier

Cet article présente un survol des principes probabilistes fondamentaux pour les
techniques statistiques modernes utilisées dans 'inventaire forestier. Les probabilités
d’inclusion proportionnelles soit a la grandeur cible, soit & une prévision de celle-ci, soit
enfin a 'erreur de cette prévision, permettent a I'inventoriste d’optimiser les plans de
sondage a une ou deux phases, et avec un ou deux degrés. Les techniques géosta-
tistiques sont brievement décrites et un exemple démontre leur supériorité pour ’esti-
mation locale.

Summary

«Le hasard fait bien les choses»:
statistical methods for forest inventory

This paper gives an overview of the probabilistic foundations of modern statistical
techniques used in forest inventory. Inclusion probabilities proportional to size, to a
prediction thereof or to the error of this prediction give the inventorist the possibility
to optimize one-phase or two-phases sampling schemes, possibly combined with one-
stage or two-stages procedures. A brief account of geostatistical techniques is also given
and an example illustrates their superiority for small area estimation.
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