
Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =
Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 146 (1995)

Heft: 12

Artikel: "Le hasard fait bien les choses" : statistische Methoden für die
Waldinventur

Autor: Mandallaz, Daniel

DOI: https://doi.org/10.5169/seals-767014

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-767014
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


«Le hasard fait bien les choses»:
statistische Methoden für die Waldinventur^

Von Dflfl/e/

/Ceyworatsv Forest inventories, optimization, inclusion probabilities, geostatistics.
FDK 524.6: 945.4: UDK 519.22

1. Einführung

Sicherheit und «Beherrschung» der Natur sind Urbedürfnisse der Mensch-
heit. Die meisten von uns empfinden daher eine tiefe Abneigung gegen den
Zufall, von Glückspielen abgesehen, und dulden die Ungewissheit nur in Aus-
nahmefällen, zum Beispiel bezüglich des Zeitpunktes des eigenen Todes.

In den Naturwissenschaften wurde der Zufall dank der Wahrscheinlich-
keitstheorie salonfähig (au sens du marquis Pierre Simon de Laplace), aber
nur sofern er quantifizierbar ist; im Prinzip ist er nur als Spiegelbild unserer
immer kleiner werdenden Ignoranz zu deuten: «Gott würfelt nicht», sagte
Albert Einstein, als er die so erfolgreiche wahrscheinlichkeitstheoretische
Deutung der Quantenmechanik kritisierte. Heute glauben einige namhafte
Physiker, dass Gott doch würfelt; für die Medien ist Ordnung «out» und Chaos
«in» (für den Mathematiker ist es nicht so einfach: es gibt chaotische determi-
nistische Systeme). Die Diskussion bleibt, gelinde gesagt, offen. Das französi-
sehe Sprichwort «le hasard fait bien les choses» könnte man demnach als hoff-
nungsvolle Resignation oder religiöse Beschwörung auffassen.

Das Thema dieses Referats ist selbstverständlich viel bescheidener. Ich
möchte die Lesenden (früher: Leserinnen, noch früher: Leser) davon über-

zeugen, dass der Zufall, und damit die Statistik, für die Waldinventur ein
unentbehrliches, nahezu ideales Werkzeug ist. Allerdings müssen dabei die
Begriffe «Zufall» und «Waldinventur» genau definiert werden, was im näch-
sten Kapitel erfolgt.

' Leicht abgeänderte Version der Antrittsvorlesung vom 14. November 1994 an der ETH
Zürich.
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Zur erkenntnistheoretischen Standortbestimmung der Statistik möchte ich
noch folgendes anführen: mit Zahlen zu lügen, ist einfach (sogar Politiker
schaffen das, jedoch meistens nur vorübergehend), ohne Zahlen zu lügen, ist
noch einfacher (die Scharlatane aller Gattungen haben nicht nur erfolgreiche
Jahrtausende hinter sich, sondern auch eine rosige Zukunft vor sich).

2. Die Ziele der klassischen Waldinventur

Unter dem Begriff der klassischen Waldinventur verstehe ich die Erhe-
bung von Daten, welche an individuellen Bäumen in bestimmten Flächen zu
bestimmten Zeitpunkten beobachtet, gemessen oder geschätzt werden (z.B.
Stammzahl, Grundfläche, Volumen, Klassifikationsmerkmale wie Baumart,
Gesundheitszustand).

Unter dem Begriff der nicht-klassischen Waldinventur versteht man zur
Zeit die Erhebung aller relevanten Informationen über Zustand und Ent-
wicklung des Ökosystems «Wald» und dessen Wechselwirkungen zum gesell-
schaftlichen Umfeld.

Ich werde hier nur die klassische Waldinventur (und dies weitgehend für
einen bestimmten Zeitpunkt) behandeln, weil wir für diese heute über klare
und einheitliche Konzepte verfügen. Schlecht konzipierte klassische Waldin-
venturen sind leider, wie die Erfahrung zeigt, vom Aussterben noch nicht
bedroht. Dieses Referat soll als kleine Sterbehilfe dienen.

Für die nicht-klassische Waldinventur sind klare einheitliche Konzepte
noch nicht verfügbar - und werden es vermutlich nie sein. Die Fragestellungen
sind unzählig, oft innerlich vag und komplex, mit den entsprechenden statisti-
sehen Nachteilen. Worüber man noch nicht klar reden kann, sollte man, dem
Rat von Ludwig Wittgenstein folgend, eher schweigen (allein schon aus Zeit-
und Platzgründen).

Mathematisch lässt sich das Problem der klassischen Waldinventur wie
folgt formulieren.

Gegeben seien:
Waldfläche F mit Flächeninhalt Z(F) (in ha)
Wohldefinierte Population von V Bäumen in F, mit zugeordneten Ziel-

grossen if / 1,2...Ai, /c 1,2.../?

Gesucht sind:

1
(2.1)

F*' =Y VT Totale; V FT Flektarendichten
VF)

7W _Quotienten
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Beispiel:
YjW Grundfläche des i-ten Baumes, falls der i-te Baum krank ist, sonst 0.

Grundfläche des i-ten Baumes.

/?, 2 Grundflächenanteil kranker Bäume.

Meistens stellt sich das obige Problem für verschiedene Teilgebiete von F
und für verschiedene Zeitpunkte. Im folgenden werden wir aus Platzgründen
nur Hektarendichten für eine einzige Zielgrösse betrachten, womit wir auf den

hochgestellten Index verzichten können.
In der überwiegenden Mehrheit der Fälle ist AI so gross, dass eine Voll-

kluppierung nicht in Frage kommt. Es müssen somit Stichprobenverfahren
eingesetzt werden.

Im nächsten Kapitel wird der stichprobentheoretische Ansatz in einer all-
gemeinen und modernen Darstellung präsentiert, welche es ermöglicht, im
Kapitel 4 mathematische Richtlinien für die optimale Planung aufzustellen.
Interessant ist vor allem, dass der hier gewählte Ansatz auf Grund von einfa-
chen Prinzipien zu klaren Regeln führt, die zum Teil empirisch schon lange als

optimal gelten. Die mathematischen Beweise und die komplizierteren explizi-
ten Formeln werden zu einem späteren Zeitpunkt publiziert.

3. Der stichprobentheoretische Ansatz

Wir gehen zunächst von der einfachsten Methode aus
wird ein Punkt x zufällig uniform gezogen, d.h.

Pr(x eß)= A(BnF) ^ jg^es Gebiet ß^
A,(F)

Der Zufall ist somit hier ein menschliches Erzeugnis: die Koordinaten des

Punktes werden von einem geeigneten Computerprogramm geliefert.
Um den Punkt x wird ein Kreis K gezogen und die in diesem Kreise zur

Population gehörenden Bäume aufgenommen (MbMrAmg 7). Diese Aus-
wahlregel kann man ebensogut dual definieren, nämlich: um jeden Baum i
wird ein Kreis if, mit konstantem Radius /? gelegt, und der i-te Baum wird
genau dann aufgenommen, wenn der Punkt x in Kreis if, fällt (Abb/Mzmg 2).
Die duale Betrachtung liefert uns sofort eine weitreichende Verallgemeine-
rung. Wir können nämlich jedem Baum einen Kreis if, mit individuellem
Radius R, zuordnen; der i-te Baum wird genau dann aufgenommen, wenn der
zufällige Punkt x in if, fällt (Mèfez'Mzmg 3).

In der Waldfläche F

(3.1)
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Ein berühmtes Beispiel für individuelle Kreisradien ist die Winkelzähl-
probe von Bitterlich, bei der die Kreisradien von dem Baumdurchmesser
abhängen (mit Zählfaktor k beim Grenzwinkel a):

(3-2)

Ä,[in m] ^ k 10*sin'%

Wir führen nun für jeden Baum die fndikatorvariablen ein:
7,(,rj 1,0 je nachdem ob der Baum vom Punkte x aus aufgenommen wird

oder nicht.
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/löfci'Wwng 5. Die verallgemeinerte Auswahlregel.

Die Aufnahmewahrscheinlichkeiten sind die Erwartungswerte
(3.3)

Pr(/j (jc) l) 7t; - £(/, «)

Wenn der i-te Baum kein Randbaum ist gilt AT, ç F und daher 7t, =-^7^
A(F)

Die erwartete Anzahl aufgenommener Bäume ist dann
(3-4)

Zw A w

£ =5>,-
k ;=i / i=i

Für die Berechnungen von Varianzen spielen die paarweisen Aufnahme-
Wahrscheinlichkeiten eine wesentliche Rolle:

(3.5)
/ \ / \ W,.nï,nF)Pr(/,-(Jc) U,U) 1) £(/,. U)7, w)

In dem hier besprochenem Ansatz sind die Aufnahmewahrscheinlichkei-
ten 7T/ bekannt (meistens erst nach der Aufnahme der Bäume und der Ver-
messung des Waldrandes). Wie wir sehen werden, ist dies die condhzo «'«e

non für die Herleitung biasfreier Schätzungen. Gewisse Auswahlverfahren
(darunter jene die von einem Punkt aus eine konstante Anzahl Bäume auf-
nehmen) führen zu unbekannten 7C; und sind mit zahlreichen statistischen
Komplikationen und Nachteilen verbunden. Man sollte sie meines Erachtens
möglichst vermeiden.
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Wir wenden uns jetzt den Schätzverfahren zu. Die lokale Hektarendichte
Y(x) im Punkte * wird mittels des «Horwitz-Thompson»-Schätzers definiert:

(3-6)

tt,

(A,fF)7ti)"' ist der sogenannte Hochrechungsfaktor).
Es gilt nach Konstruktion

1 1 - ^
Die lokale Dichte ist wegen der zufälligen Lage des Punktes x eine Zufalls-

variable, dessen Erwartungswert gerade den erwünschten räumlichen Mittel-
wert liefert. In der Definition der lokalen Dichte werden Randeffekte theore-
tisch korrekt behandelt, die einzige Schwierigkeit besteht in der Definition
und der Erfassung des Waldrandes, und eventuell in der Berechnung von
A,(7£,-nF). Wir haben dabei stillschweigend angenommen, dass alle topogra-
phischen Angaben durch geeignete Projektion in einer Ebene vorliegen (was
in der Praxis nicht immer einwandfrei erreicht werden kann, z.B. Hangnei-
gungskorrekturen bei Probeflächen in Kretenlage).

Der Zufall liefert uns somit eine biasfreie Schätzung. Er ist sozusagen der
unsichtbare Faden, welcher von den erfassten zu den nicht erfassten Bäumen
führt und somit für die «Repräsentativität» sorgt. Die Varianz ergibt sich leicht
aus:

Im Gegensatz zum Erwartungswert hängt die Varianz, über die 7t,y, von der
räumlichen Verteilung der Bäume im Wald ab.

Der lineare biasfreie Horwitz-Thompson-Schätzer wurde 1952 in die Stich-

probentheorie eingeführt. 1955 konnte der indische Statistiker Godambe folgende
bahnbrechende Resultate beweisen (übersetzt in die Sprache der Waldinventur):
(1) Y(x) ist zulässig, d.h. es gibt keinen anderen linearen biasfreien Schätzer,

welcher für alle Wälder eine kleinere Varianz hat (Y(x) ist keine schlechte
Schätzung!).

(2) Es gibt keinen linearen biasfreien Schätzer, der für alle Wälder die kleinste
Varianz hat (es gibt keine beste Schätzung!).

Die Interessierten finden einen ausgezeichneten Überblick über die
modernen Grundlagen der Stichprobentheorie, insbesondere auf die obigen
Resultate in Sm/Fp FFM, 1976.
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Die Suche nach dem universell besten Schätzer ist somit illusorisch, und
wir müssen unsere Ansprüche reduzieren:

erstens, indem wir uns auf die Klasse der Horwitz-Thompson-Schätzer,
und somit der damit verbundenen lokalen Dichten, einschränken (sie sind ein-
fach und zulässig).

zweitens, indem wir die Aufnahmewahrscheinlichkeiten 7t, so einrichten,
dass das Kosten/Varianz-Verhältnis «im Mittel» für eine grosse Klasse von
Wäldern «optimal» ist.

Die vage Formulierung «im Mittel» soll nun präzisiert werden. Wir gehen
von einem stochastischen Modell L aus, welches bei vorgegebenen V, V) z

1,2.JV die Lage der Bäume im Wald erzeugt. Die effektive Lage der Bäume
wird somit als die Realisierung eines stochastischen Prozesses angesehen. Der
Zufall ist jetzt als Gedankenexperiment oder als Glückspiel der Natur zu ver-
stehen. Die zwei einfachsten Lagemodelle sind:

L,: Der PoAvcw-VkaM
Die A Bäume sind unabhängig uniform verteilt in F

L2: Der/o/cfl/e FoiWon-WflW
Der Wald besteht aus Teilgebieten («Straten»), in welchen L, gilt.

Ein Plenterwald kann in erster Näherung als ein Poisson-Wald gesehen
werden, während ein Wald mit verschiedenen Entwicklungsstufen als lokaler
Poisson-Wald gesehen werden kann. Rottenartige Wälder wären Gegenbei-
spiele. Selbstverständlich sind diese Modelle nur grobe Approximationen der
Realität; sie sind jedoch die analytisch einfachsten Modelle, welche vernünf-
tige Ansätze liefern. Die Resultate sind exakt unter L, und gelten bis auf die
Vernachlässigung der Stratenrandeffekten unter Lj.

«Im Mittel» soll nun bedeuten, dass wir anstelle der Varianz die anfz'zz/üerte
Varzarzz

(3.9)

betrachten, d.h. den Erwartungswert der gewöhnlichen Varianz unter allen
möglichen Lagen (unter den oben beschriebenen Modellen) der Bäume.

Die Aufgabe besteht nun darin, die 7t, so zu bestimmen, dass die antizi-
pierte Varianz bei vorgegebenen Kosten - oder die Kosten bei vorgegebener
antizipierter Varianz - minimiert wird.
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4. Mathematische Richtlinien für die Optimierung

4.7 e/npTias/ge /«verzfur

Wir gehen von n, Punkten x, aus, welche in F unabhängig uniform
verteilt sind. Als biasfreien Schätzer nehmen wir den Mittelwert der lokalen
Dichten

(4-1.1)

y -£ru,)
- «2 1=1

Varianz und antizipierte Varianz diese Schätzers sind dann:

Vur(f) — Var(rU))
(4.1.2)

AV
«jX (F) t/ tt

wobei <t)(yi,3^,...y^) nicht von den 7t, abhängt und unter Modell Lj sogar 0 ist.
Man merke, dass der Übergang zur antizipierten Varianz die 7t,y-Terme zum
Verschwinden bringt.

Die erwarteten Kosten werden gemäss
(4.1.3)

C n, ü.O+c*5>,
•=1 z

+ T(n,)

modelliert, wobei:
c,.o : Einrichtungskosten pro Stichprobenpunkt
Cj.i : Aufnahmekosten pro Baum zur Bestimmung von ü
rfn,) : Transportkosten

Die feine Modellierung der Transportkosten ist äusserst schwierig, wenn
nicht illusorisch. Aus geometrischen Gründen nimmt x(«2) etwa wie v/nTzu.

In der Praxis genügt es, für eine qualitative Untersuchung eine lineare
Approximation zwischen unterer und oberer Schranken für n, zu betrachten;
für die Optimierung ist nur die Steigung dieser linearen Approximation mass-
gebend. Lineare Transportkosten haben zudem den Vorteil, dass man die-
selben Regeln (bis auf Konstanten) bekommt, egal ob man die antizipierte
Varianz bei vorgegebenen Kosten oder die Kosten bei vorgegebener antizi-
pierter Varianz minimiert, was im allgemeinen nicht gilt und somit universelle
Richtlinien verunmöglicht. Wenn die Transportkostenfunktion numerisch
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bekannt wäre (meines Erachtens eine Illusion), so wäre eine numerische Opti-
mierung im Prinzip kein Problem.

Die Minimierung der antizipierten Varianz bei vorgegebenen Kosten führt
zu folgenden Regeln:
(1) Für jedes ^ d.h. Probability Proportional to Size, PPS-Regel

(2) «2 möglichst klein, weil £; (VurKjX)
a/72

Regel (2) muss vom praktischen Standpunkt aus relativiert werden.
Erstens müssen Varianzen immer geschätzt werden, was eine minimale Anzahl
Stichprobenpunkte erfordert; zweitens hängt die Proportionalitätskonstante
in Regel (1) noch von den vorgegebenen Kosten und «2 ab; kleine ta führen zu

grossen Kreisen und daher zu praktischen Schwierigkeiten bei der Feldarbeit.
Ferner will man oft Schätzungen für Teilgebiete. Die korrekte Interpretation
von (2) ist somit: ta so klein wie möglich unter Berücksichtigung der
Randbedingungen; es ist nicht sinnvoll, viele sehr kleine «Probeflächen» zu
wählen, weil dann die Transportkosten im Vergleich zur Abnahme der Varianz
übermässig steigen.

Der Beweis von Regel (1) erfolgt über die Cauchy-Schwartz-Ungleichung.
Wenn die Zielgrösse die Grundfläche ist, so führt Regel (1) direkt zur
Winkelzählprobe, deren «Optimalität» somit theoretisch gerechtfertigt
wäre.

Für andere Zielgrössen, z.B. Volumen, ist Regel (1) schwierig zu impie-
mentieren. Zudem sind die Kosten für die genau Bestimmung von y, oft recht
hoch (z.B. zwei Durchmesser- und eine Flöhenmessung). Aus diesem Grunde
erscheint es sinnvoll, die 7i, proportional zu einer billigen Approximation (Pro-
gnose) k( von k) zu wählen (z.B. Volumen über BHD-Einwegtarif), was im
Abschnitt 4.2 skizziert wird.

4.2 Die ernp/zö.s7ge-zwmm//ge /«venta/-

Wie in 4.1 gehen wir von «2 Punkten aus, welche in P unabhängig
uniform verteilt sind. In jedem dieser Punkte wird die lokale Dichte (Horwitz-
Thompson-Schätzer) mit den Prognosenkjmittels den ti, bestimmt. Unter allen
im Punkte ;t erfassten Bäumen werden einige, unabhängig voneinander und
mit individuellen Aufnahmewahrscheinlichkeiten /?,, zur Bestimmung der
exakten Zielgrösse kf ausgewählt; die entsprechende Indikatorvariable soll mit
/• bezeichnet werden. Die Abweichung zwischen exaktem Wert und Prognose,
kurz Residuum, ist per definitionem R, k^-kj.

Der verallgemeinerte Horwitz-Thompson-Schätzer im Punkte x ist wie
folgt definiert:
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rV-)- * i
(4.2.1)

À(F)tr «, wtr 7t,A

und
(4.2.2)

Der vera//gememerfe //orw/lz-r/zowzpson-Sc/zflfzer /za? f/erz Vorfe/7, das5 er
/ür <Pe exa/tfe Zze/gTmse èias/ret is/. Die Varianz ist dann:

wobei V(x) VbrF* fx) die Varianz der zweistufigen Ziehung in x bezeichnet.
Wir modellieren die erwarteten Kosten gemäss:

wobei:
C2.0 : Einrichtungskosten pro Stichprobenpunkt
Cjj : Aufnahmekosten pro Baum zur Bestimmung von (erste Stufe)
c, 2 : Aufnahmekosten pro Baum zur Bestimmung von Vj (zweite Stufe)
if«,) : Transportkosten

Die Minimierung der antizipierten Varianz führt nun zu den Regeln:
(1) Für jedes ^ d.h. Probability Proportional to Prediction,

PPP-Regel
(2) Für jedes /Zj: 7C,p,<>c|P,l, d.h. Probability Proportional to Error, PPE-Regel

(3) «2 möglichst klein, weil (VarF*)>0
C7/?2

Regel (2) ist auch gültig,wenn die 7t, vorgegeben sind.
Somit hätten wir die Pseudo-Gleichung PPS PPP + PPE (weil eben

S P + £)
Die Approximation von Regel (1) durch Treppenfunktionen führt, am

Beispiel des Volumens, zu den bekannten konzentrischen Kreisproben oder
zur Winkelzählprobe.

Der verallgemeinerte Florwitz-Thompson-Schätzer wurde 1993 für die
zweite schweizerische Landesforstinventur bereits erfolgreich implementiert

(4.2.3)

(4.2.4)
/ S N \

C — 77j c? 0 + C7 1 7t, + C, 2 7t; p, +1(772)
V ;=i i=i 7
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(verglichen mit der ersten Landesinventur kann man, bei gleicher Genauigkeit
und mit rund 10 000 Probeflächen, die Anzahl der (3-Weg-)Tarifbäume von
rund 40 000 auf 10 000 reduzieren, und dazu noch den Bias stark verkleinern).

Das optimale Verhältnis der Anzahl Bäume in der ersten und jener in der
zweiten Stufe ergibt sich aus:

Bis jetzt haben wir die rein terrestrischen Inventuren betrachtet. Bekannt-
lieh kann mit der Verwendung von Hilfsinformation (durch Fernerkundung,
Bestandeskarten, frühere Inventuren, okulare Schätzung usw.) die Effizienz
noch verbessert werden, oft durch einfache Stratifizierung. Wir werden
im Abschnitt 4.3 den verallgemeinerten Horwitz-Thompson-Schätzer auf
die zweiphasigen Inventuren erweitern, und dies in einer sehr allgemeinen
Form.

<0 Zwe/p/zas/ge/zweLtir/zge /«venture«

Die Hilfsinformation wird in «, Punkten „res, erhoben, welche wir als unab-
hängig uniform verteilt in Fannehmen. Für jeden Punkt xes, wird mittels eines
Modells die Hilfsinformation zur Berechnung einer Prognose F(x) der lokalen
Dichte yf.r) verwendet («wie» soll uns hier nicht kümmern!). In jedem Punkt
xes, wird mit Wahrscheinlichkeit p(x) und unabhängig von jedem anderen
Punkt entschieden, ob in diesem Punkt Aufnahmen zur Ermittlung des ver-
allgemeineren Horwitz-Thompson-Schätzers durchgeführt werden; pfx) soll
nur von der Hilfsinformation abhängen, z.B. von Ê(x). Die so ausgewählten
«2 Punkte bilden die Unterstichprobe Sj. Man merke, dass «2 eine Zufallsva-
riable ist.

Der verallgemeinerte zweiphasige/zweistufige Horwitz-Thompson-Schät-
zer wird dann wie folgt definiert:

(4.2.5)

(4.3.1)

mit Varianz
(4.3.2)

r*(x)(l-p(x))t/r
^

1 r V(x)<&
^

1

p(x) «iA,(F)| p(x) «i
J — VarF(x)
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wobei r(x) Y(x)-Y(x) die wahren Residuen (nicht beobachtbar) sind.
Die erwarteteten Kosten werden recht allgemein durch

(4.3.3)

(4.3.4)

modelliert, wobei:
q(x) : Erhebungskosten der Hilfsinformation im Punkte x

G W G.O U) + Cj (x)]T TT. + Cj 2 U)X "iPi
1=1 j=l

C2.o(x) : Einrichtungskosten samt linearisierter Transportkosten
Cj.ifx) : Aufnahmekosten der ersten Stufe, pro Baum
C2 2W : Aufnahmekosten der zweiten Stufe, pro Baum

Die globale Optimierung nach allen Parametern scheint, zur Zeit, ausser
Reichweite. Wenn p(x) konstant ist, kann man zeigen, dass die Regeln (1) bis

(3) vom Abschnitt 4.2 weiterhin gelten. Wir gehen daher davon aus, dass

7t„p, vorgegeben sind, und optimieren dann nur nach p(x) und bekommen die
optimale Lösung als:

(4.3.5)
r~? j- vtvt

wobeie, fx)
^

c,(x)rfx.
A(FF

1 p(x) + V(x)
1 VarT(x)

Mit anderen Worten ist das optimale Verfahren wieder eine Art PP£.
Obige Formel verallgemeinert die bekannte optimale Stratifizierung für belie-
bige Prognosemodelle und zweistufige Verfahren.

Der Vollständigkeit halber sollte erwähnt werden, dass biasfreie Varianz-
Schätzungen für 4.1., 4.2 und 4.3 erhältlich sind und dass die Theorie auf Trakt-
Stichproben erweitert werden kann.

Anhand dieser drei Beispiele können wir im stichprobentheoretischen
Ansatz die vier Gebote der Forstinventur etwa wie folgt formulieren:
I. Messe nur das, was schlecht modelliert werden kann und nicht zuviel

kostet!
II. Traue nur bedingt deinen Modellen und korrigiere mit den Residuen!
III. Beschränke die Feldaufnahmen auf möglichst wenige «grosse» Probe-

flächen, soweit es die Randbedingungen erlauben!
IV. Verwende PPS-, PPP-, PP£- Verfahren!
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Unter gleichzeitiger Verwendung dieser vier Regeln können die Kosten,
bei gleicher Genauigkeit, nicht selten um mehr als 50% im Vergleich zu einer
einfachen terrestrischen Inventur reduziert werden, was den Titel dieses Refe-
rats rechtfertigt. Allerdings sollte nun klar sein, dass «zufällig» gar nicht
«irgendwie» bedeutet.

Der stichprobentheoretische Ansatz beruht wesentlich auf der Annahme,
dass die Beobachtungspunkte unabhängig voneinander verteilt sind. In der
Praxis liegen aber die Punkte meistens auf einem systematischen Gitter, des-

sen Startpunkt und Orientierung zufällig, wenn überhaupt, gewählt sind, was
die Unabhängigkeitsannahme zunichte macht. Theorie und Praxis sind somit
in einem wesentlichen Punkt unversöhnlich. Dieses Problem ist seit «Urzei-
ten» bekannt, und die empirische Erfahrung weist darauf hin, dass die Aus-
wertung einer systematischen Stichprobe, als ob sie zufällig wäre, in der Regel
zu überschätzten Varianzen führt. Einige «Zwitteransätze» (z.B. Paardiffe-
renzformel) werden gelegentlich verwendet, sind aber vom theoretischen
Standpunkt aus nicht überzeugend.

Hinzu kommt, dass der stichprobentheoretische Ansatz (design-based
inference), auch wenn alle Annahmen erfüllt wären, für die Schätzung von
kleinen Gebieten, wegen der kleinen Anzahl Beobachtungspunkte, oft unge-
eignet ist. Design-based-Inferenz ist zwar im Prinzip immer gültig (bis auf den
oben erwähnten Vorbehalt für systematische Stichproben), egal ob die ver-
wendeten Prognosemodelle richtig oder falsch sind (die Residuen korrigieren
den Modellbias). Diese «Modell-Unabhängigkeit» muss jedoch bei lokalen
Schätzproblemen mit grossen Varianzen teuer bezahlt werden. Der Ausweg
aus diesem Dilemma erfordert einen grundsätzlich neuen Ansatz, und daher
einen neuen Zufallsbegriff, der im Kapitel 5 kurz erläutert wird-.

5. Der geostatistische Ansatz

Im stichprobentheoretischen Ansatz ist der Wald fest: die lokale Dichte
Y(x) ist eine Zufallsvariable, weil der Punkt x zufällig ist.

Im geostatistischen Ansatz (model-dependent inference) sind die Beob-
achtungspunkte x, fest (wie sie erzeugt werden, spielt bei der Auswertung
keine Rolle, bei der Planung schon); und dafür wird die lokale Dichte Y(x) als

die Realisierung eines stochastischen Prozesses aufgefasst. Der gegebene
Wald ist somit ein zufälliges Erzeugnis der Natur. Um weiter zu kommen, muss

vorausgesetzt werden, dass dieses Glückspiel der Natur eine minimale Gesetz-

mässigkeit aufweist. Die Grundfrage bleibt dieselbe: wie kann von den beob-

- Für eine detaillierte Abhandlung der hier skizzierten Resultate siehe £>. A/ö«rfa//nz, 1993,
für eine ausgezeichnete, aber anspruchsvolle Einführung in die Geostatistik siehe tV. Oesst'e, 1991.
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achteten Punkten auf die nicht beobachteten geschlossen werden? In der
design-based-Inferenz geschieht dies über die «Repräsentativität», induziert
durch die zufällige Ziehung, während es in der model-dependent-Inferenz
über die «Stationarität» erfolgt, nämlich:

Für alle Ortsvektoren x und Verschiebungsvektoren /1 gelten
(5.1)

£(yfx + /i)-yfx)j o

£(y(x + /z)-y(x)/ 2y(F)

Die Funktion y(/î) heisst das (semi-)Variogramm. Falls die stationäre
räumliche Autokovarianzfunktion c(7j) covfyfx + /i),y(x)j existiert, so gilt:

(5.2)
y(7z) c(0)-c(/i)

In der Regel werden benachbarte Punkte stärker korrelierte lokale Dich-
ten haben als weit entfernte Punkte. In der Praxis wird oft angenommen, dass

die räumliche Korrelation ab einem gewissen Abstand (Reichweite) ver-
schwindet. Wir betrachten nun ein Teilgebiet £q ^ Wegen der Biasfreiheit
des Horwitz-Thompson Schätzers gilt:

(5.3)

—Y F —f F(xMx:= F

Das Schätzen einer endlichen Summe wird somit auf das Schätzen eines

Integrals zurückgeführt.
Für die einphasige Inventur geschieht dies über «ordinary kriging». Man

bestimmt Koeffizienten À.,, so dass der Schätzer

- ^ (5-4)

lJj

biasfrei ist und einen minimalen quadratischen Fehler hat, d.h.
(5.5)

£(y„-yJ o

£(y«-y/ min

Die optimalen Gewichte sind dann Lösungen eines linearen Gleichungs-
systems, dessen Koeffizienten numerisch relativ aufwendig sind (Integrale des

Variogrammes über das Gebiet). Der quadratische Fehler kann ebenfalls
geschätzt werden. Die Verallgemeinerung auf die zweiphasige Inventur erfolgt
über «double kriging»:
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(5.6)
£ X ^ + XVU >

> 'U) ^U - ^U
;ei, leij

Die (i, erhält man durch ordinary kriging der Prognosen und die X, durch
ordinary kriging der Residuen. Man merke, dass bei «double kriging» das Pro-
gnosemodell nicht «richtig» zu sein braucht (die Korrektur erfolgt automatisch
über die Residuen). Falls die Hilfsinformation in allen Punkten des Gebietes
erhältlich ist und das Prognosemodell «richtig» ist (d.h.: das räumliche Mittel
der Residuen ist Null), geht «double kriging» in «universal kriging» über. Die
Theorie kann auf zweistufige Verfahren erweitert werden.

Im Prinzip sind Kriging-Verfahren, bis auf den numerischen Aufwand, ein-
fache Prozeduren, wenn die entsprechenden Variogramme bekannt sind. In
der Praxis müssen diese zunächst geschätzt werden, was, vor allem für die
Residuen, eine anspruchsvolle statistische und numerische Aufgabe ist.

Zur Illustration geben wir die Resultate einer Betriebsinventur (mit Trak-
ten zu je nominal 5 Punkten). Das ganze Gebiet umfasst etwa 218 ha, davon
wurde ein kleines Teilgebiet von 17 ha vollkluppiert. Die Hilfsinformation
bestand aus einer vereinfachten Bestandeskarte, das Prognosemodell war eine

multiple lineare Regression mit sechs (0/1)-Indikatorvariablen (Tahe/fen 7 und 2).

7. Ganzes Gebiet, 218 ha. Punktschätzung/(Standardfehler).

etnp/iastg zwetp/tostg
des/gn-èased/Ifcr/gmg

Stammzahldichte 321 325 325 326

(18) (15) (12) (H)
Grundflächendichte 31,9 31,9 31,2 31,4

(1.1) (0,7) (0.9) (0,7)
ztnza/t/ 7ra£re 772

73 Tratte rc, 29S 7>a/cfe n_, 73 7Vakte

7a6e//e2. Kleines Gebiet, 17 ha. Punktschätzung/(Standardfehler).

emp/iasig ztvei/t/tas/g
tfcign-öam/Arigmg tfestgn-öasenl/ÄTigt'ng

Stammzahldichte 246 294 257 282
wahrer Wert: 280 (66) (41) (49) (27)

Grundflächendichte 24,5 27.7 24,0 29,5
wahrer Wert: 29.6 (3,6) (2,1) (3,7) (1.4)
ZtazaM 7ra&re 77, /9 7>a*re /t, 92 7ra/Ue /9 7rate

N.B. Beim Kriging wurden immer alle Datenpunkte verwendet.

Dieses Beispiel und qualitative theoretische Überlegungen zeigen, dass für
globale Schätzprobleme die design-based- und die model-dependent-Inferenz
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im wesentlichen dieselben Punktschätzungen liefern, mit etwas kleineren Feh-
lern für die letztere. Für lokale Schätzprobleme liefert die Geostatistik bessere

Schätzungen. Der Vorteil der zweiphasigen Verfahren ist ebenfalls unbestritten.
Der Nachteil der Geostatistik ist, dass es zur Zeit noch nicht möglich ist,

qualitative Richtlinien für die Optimierung anzugeben. Weil Optimierung
jedoch eine globale Angelegenheit ist, scheint es vernünftig, diese Aufgabe mit
dem einfacheren stichprobentheoretischen Ansatz anzupacken. Eine sorgfäl-
tige Abklärung dieser Frage bedarf noch weiterer, anspruchsvoller Forschung.
Bei der Auswertung kann die Geostatistik wertvolle Hilfe leisten, vor allem
bei lokalen Schätzproblemen oder bei Folgeinventuren mit abgeänderten
Stichprobenplänen (die Verteilung der Punkte spielt ja keine Rolle!).

6. Ausblick

Die knapperen finanziellen Mittel einerseits sowie die immer grössere
Bedeutung der Fernerkundung und der geographischen Informationssysteme
andererseits führen meines Erachtens zu folgenden Entwicklungen in der klas-
sischen Waldinventur:
1.) Bessere Koordination und Synergien (in Planung und Auswertung) zwi-

sehen nationalen, regionalen und lokalen Inventuren.
2.) Zunehmendes Bedürfnis nach modellabhängigen Schätzverfahren.

In der nichtklassischen Waldinventur (multifunctional resource assess-

ment) wird man vermutlich mit zahlreichen Ad-hoc-Fragestellungen und
-Schätzverfahren leben müssen. Ich möchte es dennoch hier nicht unterlassen

vor «all in one» Inventuren zu warnen, wo «alles» untersucht wird, mit der
Konsequenz, dass «nichts» auch nur annähernd optimal geschätzt werden
kann. Getrennte kleinere Studien scheinen hierzu vernünftiger, wenn eine

Vernetzung der Daten durch eine intelligente Koordination und Planung von
Anfang ermöglicht wird.

Diejenigen Leser, die von der Wichtigkeit effizienter und daher anspruchs-
voller statistischer Methoden in den Forstwissenschaften im allgemeinen und
in der Waldinventur insbesondere immer noch nicht überzeugt sind, werden
vielleicht durch folgenden Spruch von Mark Twain ihre Meinung ändern:

«If all you have got is a hammer then everything looks like a nail.»
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Zusammenfassung

Dieser Aufsatz gibt einen Überblick über die wahrscheinlichkeitstheoretischen
Grundlagen der modernen statistischen Verfahren, welche für die Waldinventur ver-
wendet werden. Aufnahmewahrscheinlichkeiten proportional zur Zielgrösse, zu einer
Prognose der Zielgrössen bzw. zum Fehler dieser Prognose erlauben eine Optimierung
der Stichprobenverfahren, sowohl der einphasigen oder zweiphasigen wie auch der ein-
stufigen oder zweistufigen und deren Kombinationen. Die geostatistischen Verfahren
werden ebenfalls kurz beschrieben, und ein Beispiel zeigt ihre Überlegenheit für lokale
Schätzprobleme.

Résumé

«Le hasard fait bien les choses»:
méthodes statistiques pour l'inventaire forestier

Cet article présente un survol des principes probabilistes fondamentaux pour les

techniques statistiques modernes utilisées dans l'inventaire forestier. Les probabilités
d'inclusion proportionnelles soit à la grandeur cible, soit à une prévision de celle-ci, soit
enfin à l'erreur de cette prévision, permettent à l'inventoriste d'optimiser les plans de

sondage à une ou deux phases, et avec un ou deux degrés. Les techniques géosta-
tistiques sont brièvement décrites et un exemple démontre leur supériorité pour l'esti-
mation locale.

Summary

«Le hasard fait bien les choses»:
statistical methods for forest inventory

This paper gives an overview of the probabilistic foundations of modern statistical
techniques used in forest inventory. Inclusion probabilities proportional to size, to a

prediction thereof or to the error of this prediction give the inventorist the possibility
to optimize one-phase or two-phases sampling schemes, possibly combined with one-
stage or two-stages procedures. A brief account of geostatistical techniques is also given
and an example illustrates their superiority for small area estimation.

1031



LiterafMr

Cressie, TV. (1991) Statistics for spatial data, John Wiley & Sons, Inc., New York.
A7anda//az, D. (1993) Geostatistical methods for double sampling schemes: application to combi-

ned forest inventories. Habilitationsschrift, Chair of Forest Inventory and Planning, ETH
Zürich, 133 p.

Smith, 71F.1W. (1976) The foundations of survey sampling: a review, Journal Royal Statistical
Society, series A, 739, 183-204.

Ker/imer: PD Dr. Daniel Mandallaz, Professur für Forsteinrichtung und Waldwachslum, Departe-
ment Wald- und Holzforschung der ETH Zürich, CH-8092 Zürich.

1032


	"Le hasard fait bien les choses" : statistische Methoden für die Waldinventur

