Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 142 (1991)

Heft: 11

Artikel: Technologische Konsequenzen verschlossener Gefässe, insbesondere

für das Buchenholz

Autor: Bonsen, Karel J.M.

DOI: https://doi.org/10.5169/seals-766512

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Technologische Konsequenzen verschlossener Gefässe, insbesondere für das Buchenholz

Von Karel J. M. Bonsen

FDK: 176.1 Fagus: 811: 841

1. Einleitung

In Bäumen werden die Gefässe der inneren Stammteile bei der Umwandlung von Splint- zu Kernholz regelmässig, in Holzarten mit weitlumigen Gefässen sogar schon im inneren Splintholz verschlossen. Auch Verletzungen des Holzkörpers, wozu als Extremfall gefälltes Holz gehört, rufen Gefässverschlüsse hervor. Gefässe können durch Thyllen oder Gummistoffe verschlossen werden. Thyllen werden umschrieben als Auswüchse benachbarter Markstrahl- oder Längsparenchymzellen durch die gemeinsamen Tüpfel mit den Gefässen. Gummistoffe sind sekundäre Metabolite, welche wiederum aus Parenchymzellen durch die Tüpfelung in die Gefässlumina eingelagert werden (Bonsen und Kucera, 1990 und Bonsen, 1991). Der Gefässverschluss ist für die Baumpflanze von grosser physiologischer Bedeutung (Unterbrechung von Leitbahnen). In technologischer Hinsicht haben verschlossene Gefässe meist negative Konsequenzen, indem dadurch beispielsweise die Holztrocknung, die Imprägnierung, der chemische Holzaufschluss (Streslis und Green, 1962) oder die Herstellung von Streichhölzern (Toit, 1964) wesentlich erschwert werden; einzig in der Fassherstellung ist Gefässverschluss erwünscht.

In einem vom Schweizerischen Nationalfonds unterstützten Forschungsprojekt «Gefässverschluss-Mechanismen in Laubbäumen» (Bonsen, 1990) wurden unter anderem Vorkommen, Anatomie und Physiologie von Gefässverschlüssen untersucht. Nachfolgend werden Ergebnisse dieser Untersuchungen, insofern sie sich auf die holztechnologischen Aspekte der Gefässverschlussbildung beziehen, ergänzt durch Literaturdaten, besprochen.

2. Verminderung der Wegsamkeit des Holzes

Gefässverschlüsse verursachen eine Verminderung der Wegsamkeit des Holzes für Flüssigkeiten und Gase. Diese Verminderung ist abhängig vom:

- Gefässverschluss-Typus
- Anteil der verschlossenen Gefässe
- Grad des Gefässverschlusses, das heisst davon, wie stark ein einzelnes Gefäss verschlossen ist (siehe auch *Hayashi* und *Nishimoto*, 1965). Durch die Gefässvernetzung reicht ein einziger Gefässverschluss nicht aus, um das ganze Gefäss zu verstopfen.

Die Gefässe können ganz oder teilweise durch Gummipfropfen oder durch Thyllen in verschiedenen Wachstumsstadien verschlossen sein. Es ist nicht bekannt, welchen Einfluss der Gefässverschluss-Typus auf die Wegsamkeit hat. Um einen Vergleich machen zu können, müsste man beide Gefässverschluss-Typen in der gleichen Holzart untersuchen, was selbstverständlich unmöglich ist. Thyllenverschluss kommt meistens in Hölzern mit grösseren Gefässdurchmessern vor; deshalb ist der Einfluss auf die Wegsamkeit auch bei nur wenigen verstopften Gefässen viel grösser (ein grosses Gefäss kann viel grössere Flüssigkeitsmengen leiten als viele kleine Gefässe) als bei Gummiverschluss.

Abbildung 1. Verteilung von Splintholz und Rotkernholz in der untersuchten Buche. Der Rotkern ist unterteilt, das heisst, er hat nach aussen zwei verthyllte Zonen.

Der Einfluss der Quantität der Thyllen-Bildung auf die Wegsamkeit des Holzes für Flüssigkeiten kann am Beispiel von Durchlässigkeitsversuchen an einer Buche mit einem zweischichtigen Rotkern (Abbildung 1) deutlich

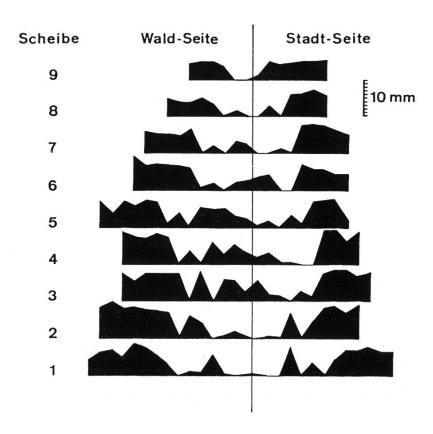


Abbildung 2. Durchlässigkeit des Buchenholzes für Wasser, wobei der Zusammenhang mit Rotkerngrenzen, das heisst Verthyllungsgrad und Durchlässigkeit, deutlich wird (1 mm vertikal = 100 cc Wasser/Minute).

gemacht werden. Die Untersuchungen wurden mit der von Buchmüller (1986) konzipierten Vorrichtung für die Permeabilitätsprüfung von Holz in axialer Richtung ausgeführt. Die Resultate der Durchlässigkeitsprüfungen (Abbildung 2) und der Jahrringbreite-Messungen (Abbildung 3) zeigen, dass die Durchlässigkeit mit dem Anteil der verthyllten Gefässe, der Höhe im Stamm und der Jahrringbreite negativ korreliert ist (Abbildung 3). Die Rotkerngrenzen sind in Abbildung 2 deutlich erkennbar. Das Rotkerninnere ist weniger oder fast nicht verthyllt (siehe auch Hösli und Bosshard, 1975). Hierbei muss berücksichtigt werden, dass die Probeklötzchen nur kleine Abmessungen aufwiesen und dass ein einziger Gefässverschluss schon einen grossen Teil eines Gefässes für Flüssigkeitsleitung untauglich machen kann. Grössere Holzkörper, wie Eisenbahnschwellen, können daher geringere Durchlässigkeiten aufweisen, als aus den hier vorgestellten Daten hervorgeht.

3. Verminderung oder Verhütung der Gefässverschlussbildung

Gefässverschluss-Bildung im *stehenden* Baum kann man nur teilweise beeinflussen. Obligatorische Gefässverschlussbildung finden wir im Farbkernholz von Bäumen und in makroporen Splintholzgefässen, mit Ausnahme der oder des äussersten Jahrringe(s). Fakultative Gefässverschlussbildung kann während einer Trockenperiode oder nach Verletzungen durch Lufteintritt in die Gefässe (Embolie) stattfinden.

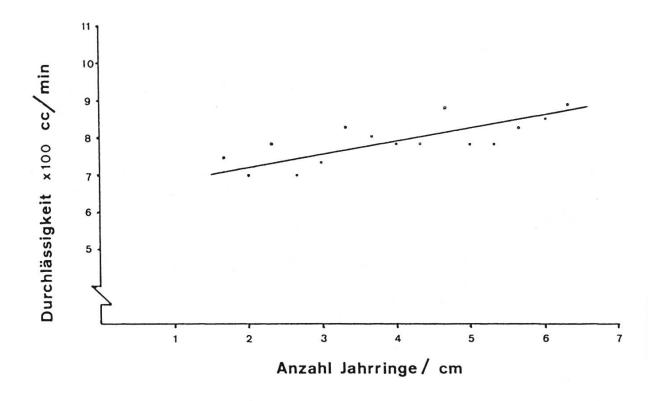


Abbildung 3. Der Einfluss der Jahrringbreite auf die Durchlässigkeit von Buchenholz.

Damit Gefässverschlussbildung stattfinden kann, müssen sowohl auslösende Faktoren (Sauerstoff, Wundreiz, Infektion durch Mikroorganismen, pflanzeneigene Hormone oder entwässerte Gefässe) als auch bestimmte Voraussetzungen (Stärke, Wasser und Temperatur) erfüllt sein (Bonsen, 1991). Gefässverschluss-Verhütung im gefällten Holz heisst, dafür zu sorgen, dass mindestens eine der Voraussetzungen nicht erfüllt ist oder dass kein auslösender Faktor vorhanden ist. Das Nichterfüllen einer Voraussetzung bedeutet, dass entweder zu wenig Stärke oder Wasser im Holz anwesend sind oder dass die Temperatur zu hoch oder zu niedrig ist. Beim Wässern (Wasserlagerung) des Holzes wird der Stärkegehalt im Holz, solange genügend Sauerstoff vorhanden ist, vermindert; die Stärke wird verbraucht. Während die Parenchymzellen ihren Stärkevorrat verbrauchen, bleiben durch das Wässern die Gefässe mit Wasser gefüllt; eine Pilzinfektion wird so verhütet und die Gefässverschlussbildung bleibt aus. Bei Sauerstoffmangel sterben die Parenchymzellen ab, wodurch Gefässverschlussbildung unmöglich wird. Der Wassergehalt des Holzes kann vermindert werden. Freiluft-Trocknung von Stamm- und Schwellenholz dauert relativ lange (Schulz, 1969). Broese van Groenou (1940) und vor ihm auch Völte (1891) haben versucht, Bäume nach dem Fällen mit der gesamten Krone in der Sonne liegen zu lassen. Durch die Transpiration wurde das Holz genügend entwässert, wodurch massive Gefässverschlussbildung verhütet wurde. Trotz diesen vielversprechenden Resultaten wurde dies nie in der Praxis angewandt. Um Gefässverschlussbildung zu verhindern, sollen Stämme im Winter bei tiefen Temperaturen gefällt, aufgesägt und getrocknet werden, bevor die Temperatur ansteigt. Hohe Temperaturen können anderseits benützt werden, um die Parenchymzellen zu töten, was auch mit Hilfe von Mikrowellen oder Gamma-Strahlen (*Jokel* und *Paserin*, 1980) geschehen kann. Leider sind die meisten der hier beschriebenen Möglichkeiten in der Praxis nicht oder noch nicht anwendbar.

4. Die Verthyllung von Buchenholz

Seit 150 Jahren tränkt man Eisenbahnschwellen aus Buchenholz mit Teeröl, um eine möglichst lange Gebrauchsdauer zu erzielen. Diese Tränkung wird erschwert, wenn das Holz verthyllt ist. Verthyllte Holzteile trocknen langsamer und verhindern das Eindringen von Teeröl ins Holzinnere. Diese Teile bleiben unimprägniert oder unvollständig imprägniert, was einen vorzeitigen Ausfall durch Pilzbefall zur Folge haben kann. Es ist darum von grosser wirtschaftlicher Bedeutung, das Buchenholz möglichst thyllenfrei zu halten.

Wie vorher beschrieben, können Thyllen im stehenden Baum und im gefällten Holz entstehen.

In einer stehenden Buche entstehen Thyllen nach Verletzungen. Wird nur das äussere Splintholz verletzt, dann werden nur die Gefässe im Bereich der Wunde verstopft. Reicht die Wunde bis ins innere Stammholz, kann ein Rotkern (fakultatives Farbkernholz) entstehen, das heisst, das innere Stammholz verfärbt sich durch Sauerstoffeintritt. Wenn die Parenchymzellen im Stamminneren wenig vital oder sogar tot sind, werden hier keine Thyllen gebildet. Die Verfärbung breitet sich am schnellsten in axialer Richtung aus. Zentrifugal breitet sie sich aus, bis sie auf reaktionsfähige, vitale Parenchymzellen stösst, welche nun Thyllen bilden. Hieraus erklärt sich, dass die meisten Buchen mit einem Rotkern eine Schicht mit Thyllen an der Grenze zwischen gesundem Holz und Rotkern besitzen (Abbildung 4c). Wird ein Rotkern später nochmals vergrössert, dann können mehrere verthyllte Schichten entstehen.

Im gefällten Buchenholz können Thyllen als Folge von Wundreaktion, Sauerstoffeintritt, entwässerten Gefässen oder Infektion entstehen.

Die Wundreaktion kommt sofort nach dem Fällen an den Stirnflächen in Gang. Unter optimalen Umständen werden die ersten Thyllen nach vier bis fünf Stunden sichtbar, und die betroffenen Gefässe sind zwei Tage später völlig verschlossen.

Sauerstoff in erhöhten Konzentrationen gibt Anlass zur Thyllenbildung. Solange die Gefässe mit Wasser gefüllt sind, kann der Sauerstoff nur langsam vordringen, weil die Löslichkeit von Sauerstoff in Wasser sehr niedrig ist und dieser durch das stillstehende Wasser diffundieren muss. Dies ist der Fall im

äusseren Splintholz. Wenn die Gefässe vollständig mit Wasser gefüllt sind, ist der Holzfeuchtegehalt höher als 100% (Kollmann und Côté, 1968) doch auch bei Holzfeuchtegehalten unter 100%, bis ungefähr 60%, sind die Gefässe noch teilweise mit Wasser gefüllt und kann der Sauerstoff nur langsam vordringen. Im Stamminneren ist das Holz meistens weniger nass, der Sauerstoff kann hier leichter eindringen und dort, wo vitale Parenchymzellen anwesend sind, diese zur Thyllenbildung veranlassen (Abbildung 4b, d). Wenn das Holz trocknet, kann immer mehr Sauerstoff immer tiefer eindringen.

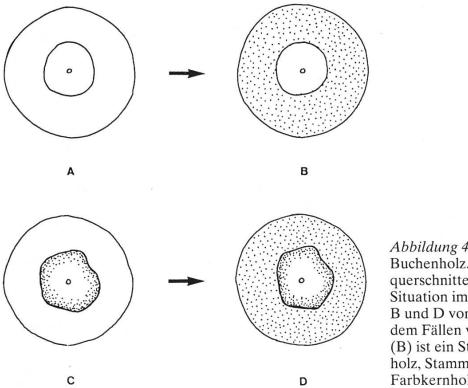


Abbildung 4. Die Verthyllung von Buchenholz. A bis D sind Stammquerschnitte, A und C geben die Situation im stehenden Baum, B und D von Bäumen, welche nach dem Fällen verthyllt sind. Stamm A (B) ist ein Stamm mit hellem Kernholz, Stamm C (D) hat fakultatives Farbkernholz (Rotkern).

In embolierten Gefässen können als Folge des osmotischen Druckes der Parenchymzellen auch Thyllen gebildet werden, ohne dass Sauerstoff oder Mikroorganismen eintreten oder ohne dass eine Wundreaktion vorhanden ist.

Eine nicht dauerhafte Holzart, wie Buchenholz, wird, wenn die Umstände günstig sind, rasch von Mikroorganismen (meist Weissfäulepilze) befallen, und die Infektion breitet sich schnell aus. Die Mikroorganismen lösen Gefässverschlussbildung aus und ändern die mechanischen Eigenschaften des Holzes.

Die Geschwindigkeit, mit der eine Parenchymzelle Thyllen bilden kann, ist abhängig von der Vitalität der Parenchymzellen und der Temperatur. Die Geschwindigkeit, mit der ein Stamm oder Teile davon verthyllen, hängt von folgenden Faktoren ab:

- Abmessungen, Verarbeitungsart (Faserrichtung; Querschnitte trocknen schneller als Längsflächen) und Entrindungsgrad;
- Feuchtigkeitsverteilung und deren Änderung;
- Vitalität der Parenchymzellen;
- Temperatur;
- Relative Luftfeuchtigkeit;
- _ Energieverbrauch der Parenchymzellen;
- Anatomie (Aufbau) des Holzes;
- Verletzungen (Rotkern) und Infektionen.

Thyllenbildung in einer stehenden Buche kann einerseits minimalisiert werden durch das Verhüten von Verletzungen am stehenden Baum (gemeint sind Verletzungen an Wurzeln, Ästen und Stamm, unter anderem verursacht durch Maschinen, Sonnenbrand, Absterben oder Entfernen von grösseren Ästen), andererseits durch grosszügigere Raumzuteilung für die grösseren Bäume. Buchen, welche von anderen Bäumen bedrängt werden, haben weniger Energiereserven als nicht bedrängte Buchen. Die Parenchymzellen im Stamminneren werden dadurch mit weniger Energie versorgt, wodurch diese ihre Vitalität verlieren, so dass bei Verletzung ein Rotkern entstehen kann. Schon Grössler (1943) stellte fest, ohne die Ursache zu kennen, dass die Bildung des roten Kerns durch starke Beherrschung begünstigt wird. Die Bäume müssten auch rechtzeitig gefällt werden, um zu verhüten, dass die Parenchymzellen im Bauminneren ihre Vitalität verlieren, wodurch ein Rotkern entstehen kann. Es gibt einen Zusammenhang zwischen Rotkernbildung, Alter und Stammdurchmesser (Racz et al., 1961). Ältere Bäume und Bäume mit einem grösseren Durchmesser haben vielfach ein Stamminneres mit weniger vitalen Parenchymzellen, wodurch sie anfälliger für Rotkernbildung

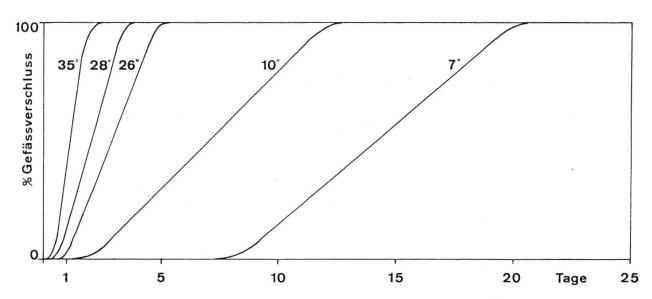


Abbildung 5. Geschwindigkeit der Gefässverschlussbildung in Abhängigkeit von der Temperatur (°C), ausgedrückt in Prozenten des maximalen Gefässverschlusses.

sind. Sobald eine Buche gefällt ist, lässt sich die Bildung von Thyllen minimieren, indem man die Stämme sofort nach dem Fällen wässert oder mit Wasser besprüht, bis sie verarbeitet werden oder bis ihre Stärke verbraucht ist. Als letztes sei hier erwähnt, dass Bäume, die bei Temperaturen unter 10 °C gefällt, gelagert und verarbeitet werden, vor Verthyllung geschützt sind.

Eigentlich müsste hier 2 °C stehen, denn das ist die höchste Temperatur, bei welcher keine Thyllenbildung beobachtet worden ist (Abbildung 5). Doch auch bei etwas höheren Temperaturen läuft die Thyllenbildung nur langsam ab, auch deswegen, weil das Holz bei diesen Temperaturen nur langsam trocknet und Mikroorganismen sich nur langsam entwickeln. Die von Zycha (1965) genannte untere Grenze von 13 °C ist, wie aus Abbildung 5 hervorgeht, vielleicht etwas zu hoch. Darum wird hier die arbiträre Obergrenze von 10 °C empfohlen.

5. Der Verthyllungsvorgang in gefällten Buchenstämmen

Bei einer Beschreibung des Verthyllungsvorganges in einem Buchenstamm ist es wichtig, den Ausgangszustand zu kennen. Es sind drei Ausgangszustände zu unterscheiden:

- I Der Stamm enthält ausschliesslich Holz mit einem Holzfeuchtegehalt über rund 60% (Abbildung 6.I).
- II Der Stamm enthält einen inneren Teil, welcher einen Holzfeuchtegehalt unter rund 60% aufweist und einen peripheren Teil, welcher einen Holzfeuchtegehalt über rund 60% hat (Abbildung 6.II).
- III Der Stamm besitzt einen Rotkern (fakultatives Farbkernholz) (Abbildung 6.III).

Ausgangszustand III ist leicht zu erkennen. Durch die rötliche Farbe unterscheidet sich der Rotkern deutlich vom umliegenden Holz. Dieser Unterschied wird noch verstärkt durch die Abgrenzung des Rotkerns durch eine dunkelrot bis schwarz gefärbte, meistens schmale Zone. Diese Zone ist stark verthyllt und bekommt ihre Farbe durch den hohen Anteil an Inhaltstoffen. Nehmen wir für jeden der drei Ausgangszustände je einen Buchenstamm als Beispiel. Stamm I beginnt sofort nach der Fällung zu trocknen, wobei Sauerstoffeintritt stattfindet. Sobald die Holztemperatur hoch genug ist, findet Thyllenbildung statt. Thyllen entwickeln sich über den ganzen Querschnitt des Stammes, in den peripheren Teilen aber meistens schneller und intensiver. Dies weil die kambiumnahen Holzteile jünger und vitaler sind und dementsprechend intensiver reagieren. In Stamm II findet sofort nach dem Fällen Sauerstoffeintritt im zentralen Stammbereich (IIC) statt, weil der Holzfeuchtegehalt hier unter 60% liegt. Der Sauerstoff diffun-

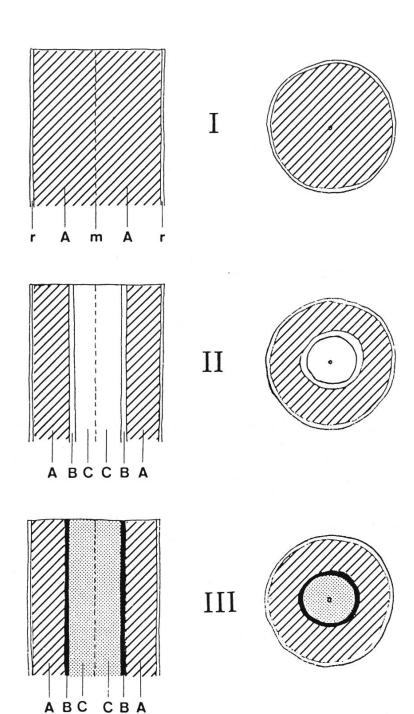


Abbildung 6. Schematische Längs- (links) und Querschnitte (rechts) von Buchenstämmen. Die drei Typen stehen für die wichtigsten Ausgangszustände, in welchen Buchenstämme sich befinden können. A = Holzfeuchtegehalt über rund 60%, B = Übergangszone, C = Holzfeuchtegehalt unter rund 60%, m = Mark, r = Rinde. Typus III gibt einen Stamm mit fakultativem Farbkernholz (Rotkern) wieder.

diert langsam in den zentralen Stammteil hinein. Langsam, weil das in diesem Teil vorhandene Gas nicht in Bewegung ist und der Sauerstoff nur durch Diffusion verlagert werden kann. Der Sauerstoff erreicht dabei auch die um den zentralen Stammteil (IIC) gelegene Holzschicht (IIB) mit einem Holzfeuchtegehalt über 60%. In dieser Schicht findet dann Thyllenbildung statt. Der periphere Stammbereich (IIA) trocknet an den Stirnflächen aus, wie für Stamm I beschrieben. In Stamm II aber trocknet der Stammbereich IIB auch aus. Da der zentrale Stammbereich (IIC) ziemlich rasch über die mit Gas gefüllten Gefässe austrocknet, kann das Wasser aus Stammbereich IIB über Stammbereich IIC entweichen. Hierbei verschiebt sich Stammbereich IIB nach aussen in Richtung Stammbereich IIA. In Stamm II findet die Verthyl-

lung also axial von aussen nach innen (von den Stirnflächen aus) und radial von innen nach aussen (vom zentralen Stammbereich Richtung Peripherie) statt. In Stamm III waren schon beim Fällen des Baumes Thyllen vorhanden, hauptsächlich in der dunkel gefärbten Zone (IIIB) oder in den dunkel gefärbten Zonen des Rotkernes. Der einheitlich oder unregelmässig verfärbte, innere Rotkernbereich (IIIC) kann nahezu ohne Thyllen (Hösli und Bosshard, 1975, Bonsen, 1990) bis nahezu vollständig verthyllt sein. Meistens aber ist das Rotkerninnere nur wenig verthyllt. Das Trocknen von Stamm III fängt sofort nach dem Fällen an. Hierbei trocknet Stammbereich IIIA wie bei Stamm I beschrieben. Stammbereich IIIC, der Rotkern, trocknet auch, wobei die Trocknungsgeschwindigkeit vom Grad der Verthyllung abhängt. Weil das Rotkernholz keine lebende Zellen enthält, findet nach dem Fällen keine zusätzliche Verthyllung statt. Das Austrocknen von Stammbereich IIIA über Bereich IIIC wird behindert durch die dunkel gefärbte Zone IIIB, welche stark verthyllt und voller Inhaltstoffe ist. Thyllenbildung findet in Stamm III nur im Bereich IIIA, von den Stirnflächen aus, statt. Der Grad der Verthyllung im Rotkern entspricht demnach demjenigen im stehenden Baum. Abschliessend kann gesagt werden, dass Typus I langsam aber vollständig, Typus II schneller, aber nur im peripheren Teil und Typus III langsam und nur im peripheren Teil verthyllt werden kann.

Résumé

Les conséquences technologiques des vaisseaux obstrués, en particulier dans le bois de hêtre

L'obstruction des vaisseaux, causée par des thylles ou des dépôts de gommes, entrave le passage des éléments liquides et gazeux dans le bois. L'influence du type et du degré de l'obstruction ainsi que celle de la proportion des vaisseaux obstrués sur la circulation des éléments dans le bois sont examinées. Les possibilités de réduire la formation de l'obstruction des vaisseaux sont discutées. Les causes de la présence des thylles dans le bois de hêtre et le processus de leur formation sont tout particulièrement décrits.

Traduction: Stéphane Croptier

Literatur

- Bonsen, K. J. M. (1990): Gefässverschluss-Mechanismen in Laubbäumen. Schlussbericht zum Projekt Nr. 3.200-0.82 des Schweizerischen Nationalfonds und Dissertation ETH Zürich Nr. 9125, 223 pp. (with English summary).
- Bonsen, K. J. M. (1991): Gefässverschluss-Mechanismen in Laubbäumen. Viertelj. Naturforsch. Ges. Zürich, 136: 13–50.
- Bonsen, K. J. M., Kucera, L. J. (1990): Vessel occlusions in plants: Morphological, functional and evolutionary aspects. IAWA Bulletin, 11: 393–399.
- Broese van Groenou, H. (1940): Die Teeröltränkung des Buchenholzes und die Faktoren, welche darauf Einfluss haben. Internationale Auskunftstelle für Holzkonservierung, Haag, 124 pp.
- Buchmüller, K. S. (1986): Jahrringcharakteristik und Gefässlängen in Fagus sylvatica L. Viertelj. Naturforsch. Ges. Zürich 131: 161–182.
- *Grössler, W.* (1943): Holztechnologische Untersuchungen an Hochgebirgsbuchen. Holz Roh- u. Werkstoff 6: 81–86.
- Hayashi, S., Nishimoto, K. (1965): Studies on the water permeability. Bull. Wood Research Inst. Kyoto Univ. 35: 33–43.
- Hösli, J. P., Bosshard, H. H. (1975): Überprüfung der Tränkbarkeit von rotkernigem Buchenholz mit Steinkohlenteeröl: Tränkerfolg in Abhängigkeit der Thyllenhäufigkeit. Schweiz. Z. Forstwes. 126: 865–875.
- Jokel, J., Paserin, V. (1980): Einfluss der Gamma-Strahlung auf die Thyllenbildung im Buchenholz (deutsche Zusammenfassung). Drevársky Vyskum 25: 1–11.
- Kollmann, F. F. P., Coté, W. A. (1968): Principles of wood science and technology 1 Solid wood. Springer-Verlag, Berlin, 592 pp.
- Racz, J., Schulz, H., Knigge, W. (1961): Untersuchungen über das Auftreten des Buchenrotkerns. Forst- u. Holzwirtschaft 16: 1–5.
- Schulz, G. (1969): Freilufttrocknung von Buchenschwellen. Holz Roh- u. Werkstoff 27: 326-333.
- Streslis, I., Green, H. V. (1962): Tyloses and their detection. Pulp a. paper mag. Canada 63: T307-310, 330.
- Toit, A. J. du (1964): The influence of tyloses on the manufacture of matches. South African Forestry J. 50: 27–38.
- Völte, R. (1891): Die technische Verwendbarkeit des Rotbuchenholzes. Z. Forst- u. Jagdwesen 23: 738–742.
- Zycha, H. (1965): Untersuchungen über die Teeröl-Aufnahme von Buchenschwellen. ETR-Eisenbahntechnische Rundschau 2: 3–11.

Verfasser: Dr. Karel J. M. Bonsen, Professur für Holzwissenschaften, Departement Wald- und Holzforschung der ETHZ, CH-8092 Zürich.