Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 129 (1978)

Heft: 10

Artikel: Le verglas et la pluie congelante

Autor: Primault, B.

DOI: https://doi.org/10.5169/seals-764382

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schweizerische Zeitschrift für Forstwesen Journal forestier suisse

129. Jahrgang Oktober 1978 Nummer 10

Le verglas et la pluie congelante

Par B. Primault, ISM, Zurich

Oxf.: 111.789

Méfaits de l'hiver 1977—1978

Au matin du 22 décembre 1977, la radio de la Suisse alémanique a lancé des appels répétés aux automobilistes les avertissant que de nombreux et longs tronçons du réseau routier étaient rendus glissants par du verglas. On a appris ensuite que les dégâts provoqués par les accidents de la route se chiffraient à plusieurs centaines de milliers de francs en tôle froissée, barrières enfoncés, etc. Pour ceux qui se sont promenés dans les forêts de l'est du Plateau en ce même 22 décembre, la vision qu'ils en ont gardé était celle de nombreux glaçons pendant aux arbres. Dans la soirée, ils ont même pu remarquer certains bris d'arbres du sous-étage.

Un même phénomène, mais dont l'ampleur a été plus accentuée encore, principalement dans la région de Bâle, s'est produit le 19 février 1978. A ce moment-là des mas entiers de jeunes forêts ont été plaqués au sol par la carapace de glace qui s'y était formée. Même de très vieux arbres ont cédé ou, tout au moins, ont perdu des branches maîtresses.

Vu la répétition de dégâts non négligeables durant le même hiver, on peut se demander si ce phénomène est exceptionnel ou non.

En parcourant les relevés des stations météorologiques où tous les phénomènes sont soigneusement notés, on constate que le verglas ou la pluie congelante se produisent chaque année à plusieurs reprises. Pourtant, l'intensité et surtout la durée du phénomène sont en général beaucoup moins importantes que cet hiver. Du verglas ou de la pluie congelante ne se rencontrent généralement que localement et ne durent guère plus de 3 à 4 heures.

Durant l'hiver 1977—78, le phénomène a été observé sur de vastes régions englobant la totalité du nord des Alpes. En décembre il s'est prolongé durant 28 heures dans l'est du pays et en février durant 36 heures dans la région de Bâle. Il s'est donc bien agi dans les deux cas d'un fait exceptionnel.

Explication météorologique du phénomène

Les changements de temps que l'on observe au cours de l'année sont dus à la succession de masses d'air d'origines différentes et, partant, de température et d'humidité variables.

Ces masses d'air sont généralement entraînées autour de dépressions évoluant d'ouest en est au travers de l'océan et de l'Europe.

Elles sont séparées par des perturbations qui peuvent être de trois types différents: le front chaud, le front froid, l'occlusion (voir figure 1). La perturbation qui nous intéresse ici est celle qu'on appelle «front chaud».

Lorsque une masse d'air plus chaud et le plus souvent plus humide, donc de densité plus faible s'avance vers une masse d'air froid, elle s'élève sur cette seconde comme sur un plan incliné (voir figure 2). Il s'ensuit un mouvement ascendant qui détend la masse d'air et, par conséquent, en diminue la température et en augmente l'humidité relative. Au point de saturation (100 % d'humidité relative), la condensation apparaît et, vu la présence de quantités importantes de gouttelettes d'eau dans l'atmosphère, des précipitations se mettent à tomber.

Ces précipitations se forment généralement à des températures inférieures à zéro degré, c'est à dire sous forme d'eau congelée, cristallisée, c'est à dire de neige. Cette neige tombe et si elle franchit l'isotherme de zéro degré, elle fond. On a alors de la pluie au sol.

Pourtant, et comme le montre la figure 2, cette pluie peut tomber au travers de la masse d'air froid précédant la masse relativement chaude où elle a pris naissance, c'est à dire que sa température sera de nouveau abaissée. Cet abaissement de température peut être tel que la limite de zéro degré est de nouveau franchie. Pourtant, comme il s'agit d'un mouvement régulier — sans choc mécanique — la précipitation garde sa forme liquide bien que sa température soit inférieure à zéro degré (eau en surfusion). Il suffit alors du moindre choc pour qu'elle se congèle. Ce choc est donné lorsque la goutte frappe le sol, un bâtiment ou une plante. La congélation est alors immédiate.

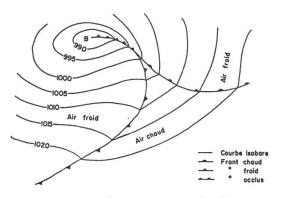


Figure 1. Système de perturbation.

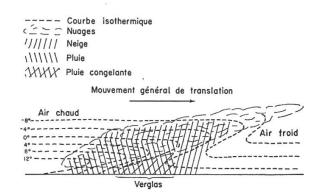


Figure 2. Front chaud d'hiver.

Si le solide sur lequel la goutte est venue choir est chaud, la glace qui se forme ainsi fond presque immédiatement et le phénomène passe quasi inaperçu. Si, par contre, le solide est froid, voire très froid parce qu'il a séjourné pendant de nombreux jours dans une masse d'air dont la température était nettement inférieure à zéro degré, alors la pellicule de glace qui se forme se maintient et s'épaissit peu à peu au gré de l'intensité de la précipitation.

Les dépressions se déplacent assez rapidement d'ouest en est sous nos latitudes et les perturbations qui les accompagnent ont un mouvement de translation en général encore plus accentué. Par conséquent, le phénomène de la pluie congelante ou du verglas ne dure pas, car les endroits ainsi recouverts d'une pellicule de glace sont très vite envahis par l'air plus chaud dont la température au sol dépasse souvent largement zéro degré.

Il se peut cependant que soit le mouvement général de la perturbation (front chaud) soit très lent, soit qu'une contrée se trouve en limite de la progression chaude, c'est à dire qu'elle n'est pas envahie directement, c'est à dire au sol, par l'air chaud, celui-ci étant cependant présent en altitude. Comme le phénomène de condensation se renouvelle malgré cela, la pluie congelante peut tomber des heures sans qu'elle soit remplacée par de la pluie «normale» (c'est à dire non congelante) et que la région ne soit pas envahie par de l'air chaud. Dans ces conditions la pellicule de glace se maintient et surtout augmente d'épaisseur jusqu'à prendre des proportions suffisantes pour provoquer des dégâts.

Comme nous l'avons déjà vu plus haut, le verglas n'est pas un phénomène rare chez nous. Ce qui est rare c'est son importance et surtout sa durée. C'est la raison pour laquelle les dégâts constatés se limitent le plus souvent à quelques membres cassés ou à des tôles froissées.

Note historique

La véritable raison de notre propos n'est pas tant de démontrer le mécanisme de la formation du verglas et de la pluie congelante, mais de rappeler qu'un tel accident météorologique se reproduit relativement souvent.

A la suite des dégâts relatés plus haut, on nous a rendus attentifs à la relation de faits analogues survenus en 1841 en un lieu mal déterminé. Il s'agit du fragment d'un livre réédité récemment (Stifter 1962, Bd. 2, Margarita, Kap. 4, Seiten 97 bis 130).

Un médecin de campagne parti visiter des patients relate ses mésaventures par une situation météorologique très analogue à celle qui s'est produite chez nous le 19 février 1978. Parti de son domicile par une froide matinée d'hiver, au ciel uniformément gris (qui laisse présager l'arrivée d'un front chaud), il est surpris avec son cocher par de la pluie, bien que les températures fussent très basses et que la neige qui recouvre la campagne soit poudreuse et gelée. Aussitôt que la pluie se met à tomber, les superstructures du traineau qui entraîne le médecin sont recouvertes de glace et le cocher ne peut plus extraire son fouet du support. Le cheval qui, au début, marchait sans peine sur le chemin se met à glisser si bien que l'on doit se rendre chez un maréchal pour le faire ferrer à glace. Arrivé chez le premier patient, on constate que le manteau du cocher est raide ainsi que la capote du traineau. Comme la visite dure peu, on ne dételle pas le cheval.

Ce n'est que chez le deuxième patient que l'on dételle et que les premières difficultés surgissent avec le harnais.

Ainsi de place en place, le traineau s'alourdit sous la couche de glace et les chemins deviennent de plus en plus malaisés. Vu ces circonstances, le médecin décide de laisser son cheval et son traineau chez le dernier patient et de regagner son domicile à pied en compagnie de son cocher, tous deux étant munis de crampons à glace et de bâtons ferrés.

Mais le chemin conduit à travers une forêt et force est aux deux hommes de constater le danger qu'il y aurait à la traverser vu que les arbres, ployant sous la charge de glace cassent et que plusieurs sont déjà couchés au travers du chemin. Les deux hommes décident alors de contourner cet obstacle et de passer par des champs bien que le terrain fusse très accidenté sur ce parcours détourné. Pourtant, contrairement à ce qu'ils pensent, leur avance n'est nullement entravée car la neige bien que fort épaisse supporte aisément leur poids, recouverte qu'elle est d'une couche de glace vive très résistante.

En contournant le mas forestier, ce qui les frappe le plus c'est le bruit que font les arbres et les branches en se rompant, bruit qui s'entend loin à la ronde, non seulement provenant de la forêt proche mais encore de forêts plus éloignées.

Arrivé à son domicile, le médecin doit constater qu'une partie des arbres de son verger et des vergers avoisinants ont cédé eux-aussi. Il en va d'ailleurs de même de certaines granges du voisinage.

Ce n'est que deux jours plus tard que le cocher peut aller rechercher cheval et traineau. En effet, il a fallu non seulement attendre la fin du phénomène, fin qui s'est produite dans la nuit, mais encore le temps nécessaire pour libérer le chemin au travers de la forêt.

A la fin de son exposé, le médecin donne quelques indications sur les dégâts constatés dans le périmètre de ses visites médicales.

Nous recommandons fort la lecture de ces pages à tous ceux qui s'intéressent à la description exacte de tels phénomènes.

Zusammenfassung

Glatteis und Eisregen

Im Laufe des Winters 1977/1978 wurden zweimal grosse Schäden an den Wäldern in Folge von Eisregen und Glatteis gemeldet. Zudem wurde dem Autor eine ausführliche Beschreibung einer ähnlichen Situation Mitte des 19. Jahrhunderts gemeldet (siehe Bibliographie). Da solche Vorkommnisse öfters zu beobachten sind, jedoch glücklicherweise nur für kurze Zeit andauern, also ohne nennenswerte Schäden, wird hier die meteorologische Erklärung des Phänomens ausführlich wiedergegeben. Überflutet warme Luft ein Gebiet, welches vorher in kalte Luft eingebettet war, so ergibt sich eine ungewöhnliche Luftschichtung: kalt am Boden, warm in den Mittelschichten, dann wieder normal kälter mit der Höhe. Niederschlag, der in Form von Schnee in grosser Höhe gebildet wurde, schmilzt in der warmen Luft und wird wieder unter dem Gefrierpunkt in der am Boden liegenden kalten Luft abgekühlt, bleibt jedoch flüssig (unterkühltes Wasser). Dieser «Regen» verwandelt sich schlagartig in Eis, sobald er auf einen festen Gegenstand (hier Waldbäume) fällt.

Bibliographie

Adalbert Stifter: Die Mappe meines Urgrossvaters 1841. Aus Adalbert Stifter, ges. Werke in 14 Bänden. Birkhäuser-Verlag, Basel. 1962.