Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 116 (1965)

Heft: 4-5

Artikel: Faserbau und Holzeigenschaften

Autor: Vorreiter, L.

DOI: https://doi.org/10.5169/seals-767380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Faserbau und Holzeigenschaften

Von L. Vorreiter, Münchham (Niederbayern)

In der neueren Holzforschung, die das seit etwa 30 Jahren herrschende mechanistische Prinzip der Betrachtung und Erforschung der Eigenschaften des Holzes als eines organischen und porigen, jedoch technischen Körpers wie Stein oder Eisen, abzulösen scheint durch das biologische Prinzip der Ableitung äußerer Holzeigenschaften aus der Feinstruktur, der Statik und Metrik der Einzelzelle, kommt der Erforschung der geradezu bewunderungswürdig gebauten Holzfaser jene Bedeutung zu, wie etwa die Wellentheorie des Lichtes für die moderne Optik und Akustik, die revolutionäre Entdekkung der nuklearen Elementarteilchen der Materie und ihrer Eigenschaften für die moderne Physik mit ihrem umwälzenden Einfluß auf den Geist und künftige Lebensformen der Menschheit usw. Ohne den Vorstoß der Forschung in die Struktur und die physiologisch und statisch funktionelle Bauweise selbständiger Einheiten verholzter Pflanzen, das ist im wesentlichen die Holzfaser, können meines Erachtens schwebende theoretische und praktische Probleme der Holzphysik und Holzmechanik nicht endgültig gelöst und neue grundlegende Fortschritte in der Nutzung dieses natürlichen Rohstoffes nicht gemacht werden.

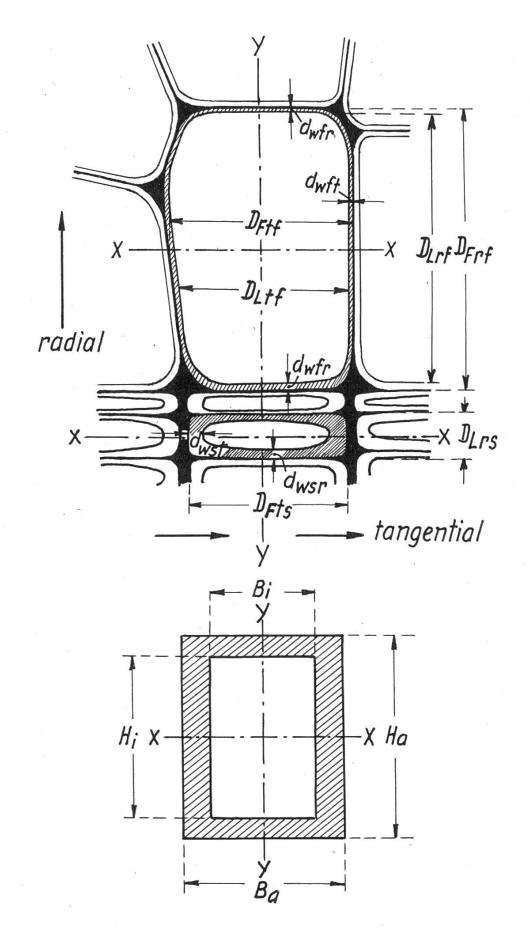
Obwohl eine Reihe wichtiger alter und neuer Erkenntnisse über den Bau, die Funktion und Metrik pflanzlicher Zellen vorliegt und, wenn auch im Schrifttum stark verstreut, der biocellaren Holzforschung sehr zustatten kommt, so konnte ein vollständiges Gesamtbild der Wechselbeziehungen zwischen Form und Struktur der Holzfaser erst durch die elektronenmikroskopische und röntgenoptische Entschleierung des fibrillaren und mikrofibrillaren Feingefüges der einzelnen Schichten der Faserwände gewonnen werden, so vor allem durch die Beiträge von Th. Kerr und I. W. Bailey, R. D. Preston, A. B. Wardrop und H. E. Dadswell, P. Jaccard und A. Frey, A. Frey-Wyssling, K. Mühlethaler, G. Jayme, R. O. H. Runkel, E. Münch, H. Bucher, C. H. Hiller und viele andere. Die ersten Hinweise auf die Zusammenhänge zwischen dem Faserbau und den Holzeigenschaften stammen, allerdings ohne Zahlenbelege oder schlüssige Nachweise und ohne die Komplexität der Beziehungen zwischen den metrischen Größen aufzudecken, von I. J. W. Bisset (2) hinsichtlich der Holzschwindung und von Anonymus (1) hinsichtlich der Holzfestigkeiten. Später hat L. Vorreiter (10) aus den Größen der äußeren Längs-, Radial- und Tangentialquellung der Hölzer über den gesamten Darrwichtebereich den Steigungswinkel ω_0 der Spiralleisten an den Lumenwänden abgeleitet, der identisch ist mit jenem Winkel der Sekundärwandfibrillen der Faser zu deren Längsachse, hierauf (12) ein räumlich exaktes Bestimmungsverfahren für ω_0 aus den einzelnen Größen der Faserbauelemente, die in enger Wechselbeziehung zueinander stehen, entwickelt.

Der folgende Bericht befaßt sich nun mit der Aufgabe, theoretische Ansätze für die Beurteilung und Berechnung der Querfestigkeit und von physikalischen und Festigkeitseigenschaften der Hölzer aus der Form, Lage und Größe der Querschnitte von Fasern des Früh- und Spätholzes der Koniferen bzw. aus dem Steigungswinkel ω_0 ihrer S2-Fibrillen abzuleiten.

1. Faserquerschnitt und Faserfestigkeit

Großlumige und dünnwandige Frühholzfasern der Nadelhölzer gehen bekanntlich jahrringweise in englumige und dickwandige Spätholzfasern über; während die ersteren den größeren Lumendurchmesser D_{Lr} in Radialrichtung aufweisen, verläuft der größere Lumendurchmesser D_{Lt} von Spätholzfasern in Tangentialrichtung. Zwischen den Lumendurchmessern und den Wanddicken der Früh- und Spätholzfasern konnte L. Vorreiter (12) auf Grund zahlreicher Messungen gesetzmäßige Beziehungen nachweisen, ebenso zwischen den Lumendurchmessern D_L , der Darrwichte r_0 der Hölzer, der Packungsdichte γ_w , der Dicke d_w der Faserwände und dem Spiralsteigungswinkel ω_0 der S2-Fibrillen und φ_0 der S3-Wickelbänder der Tertiärwand.

Nach der Festigkeitslehre stellt nun jede isoliert betrachtete Holzfaser einen Hohlbalken vor, dessen biegeelastisches Verhalten und Knickfestigkeit vom Trägheitsmoment J und dessen Biegefestigkeit vom Widerstandsmoment W wesentlich beeinflußt werden. Diese Momente hängen wieder von der Form und den Maßverhältnissen des Querschnittes des Hohlbalkens in bezug auf jene Symmetrieachse des Querschnittes ab, die durch die Beanspruchung verformt wird. Gemäß Abbildung 1 unten gelten allgemein (5) für die


X-Achse:
$$J_x = \frac{\gamma_w}{g} \frac{B_a \cdot H_a^3 - B_i \cdot H_i^3}{12}$$
 [cm⁴]

$$W_{x} = \frac{J_{x}}{H_{a}} = \frac{2J_{x}}{H_{a}} = \frac{\gamma_{w}}{g} \frac{B_{a} \cdot H_{a}^{3} - B_{i} \cdot H_{i}^{3}}{6H_{a}} \quad [cm^{3}]$$
 (2)

Y-Achse:
$$J_y = \frac{\gamma_w}{g} \frac{H_a \cdot B_a^3 - H_i \cdot B_i^3}{12}$$
 [cm⁴]

$$W_{y} = \frac{J_{y}}{B_{a}} = \frac{2 J_{y}}{B_{a}} = \frac{\gamma_{w}}{g} \frac{H_{a} \cdot B_{a}^{3} - H_{i} \cdot B_{i}^{3}}{6 B_{a}} \quad [cm^{3}]$$
 (4)

worin $\gamma_{\rm w}=$ Packungsdichte der Wand [g/cm³] und g = Erdbeschleunigung = 981 cm/sec².

 $Abb.\, {\it 1}$ Maßsymbole für die Querfestigkeitsberechnung von Früh- und Spätholzfasern

Zur Übertragung dieser Gleichungen auf die Maßsymbole (Abb. 1 oben) der Holzfaserquerschnitte und zur Berechnung der Momente für letztere ist zunächst festzustellen, daß in Radialrichtung die Wanddicke $d_{\rm wor}$ im Darrzustand (u = 0 %) in einem anderen gesetzmäßigen Verhältnis zum Lumendurchmesser $D_{\rm Lor}$ steht als $d_{\rm wot}$ zu $D_{\rm Lot}$ in Tangentialrichtung. Es ist angenähert (12)

$$d_{\text{wor}}/d_{\text{wot}} = 1 - 0.5 \sin^2\left(\frac{\pi}{2} \frac{D_{\text{Lot}}}{D_{\text{Lor}}}\right)$$
 (5)

wobei der radiale Lumendurchmesser

$$D_{Lor} = \gamma^2_{Ho} \cdot \pi \, \frac{\gamma_C - r_o}{r_o} \qquad [\mu]$$
 (6)

 $(\gamma_{\rm Ho}={\rm Reindichte}\ {\rm der}\ {\rm Faserwand}=1,51\ {\rm g/cm^3}\ {\rm und}\ \gamma_{\rm C}={\rm Reindichte}\ {\rm der}\ {\rm Zellulose}=1,58\ {\rm g/cm^3}).$ Ferner hängt die Packungsdichte $\gamma_{\rm w}$ der Faserwand (6, 8, 9) von der Wanddicke ${\rm d_w}$ bzw. vom Spiralsteigungswinkel $\omega_{\rm o}$ der S₂-Fibrillen ab (12):

$$\gamma_{\rm w} \doteq \gamma_{\rm Ho} \left(1 - \frac{2}{\pi} \operatorname{arctg} \frac{15 - d_{\rm wo}}{7.5 \, d_{\rm wo}} \right) = \gamma_{\rm Ho} \left(1 - \frac{\omega_{\rm o}}{90 \, \circ} \right) \quad [\rm g/cm^3] \tag{7}$$

Nach J. Kisser und Mitarbeitern (7, 8) ist die Packungsdichte $\gamma_{\rm w}$ der radialen Faserwand höher als die der tangentialen. Der Zusammenhang zwischen dem Faserdurchmesser $D_{\rm F}$, dem Lumendurchmesser $D_{\rm L}$ und der Wanddicke $d_{\rm w}$ wird zahlenmäßig ausgedrückt durch die Gleichungen

$$D_F = D_L + 2 d_w \text{ oder } D_L = D_F - 2 d_w \text{ oder } d_w = \frac{D_F - D_L}{2}$$
 [μ] (8)

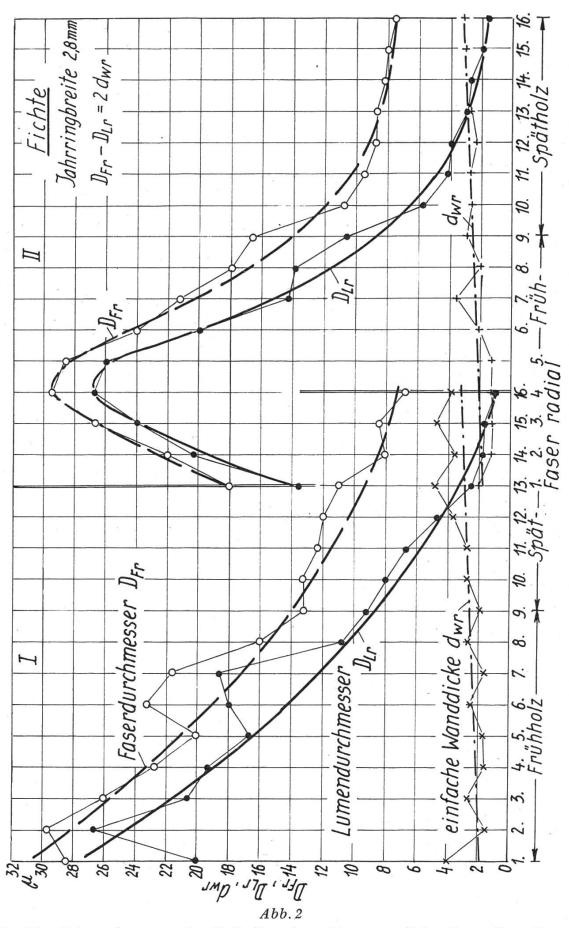
Überträgt man nun die allgemeinen Gleichungen (1) bis (4) auf Maßsymbole der Holzfaser, so erhält man:

$$J_{x} = \frac{\gamma_{wr}}{g} \frac{D_{Ft} \cdot D^{3}_{Fr} - D_{Lt} \cdot D^{3}_{Lt}}{12} \cdot 10^{-4} \text{ [cm}^{4}\text{], } W_{x} = \frac{2 J_{x}}{D_{Fr}} \cdot 10^{-4} \text{ [cm}^{3}\text{]} (9a, b)$$

$$J_y = \frac{\gamma_{wt}}{g} \frac{D_{Fr} \cdot D^3_{Ft} - D_{Lr} \cdot D^3_{Lt}}{12} \cdot 10^{-4} \text{ [cm]}^4, W_y = \frac{2 J_y}{D_{Ft}} \cdot 10^{-4} \text{ [cm^3] (10a, b)}$$

Aus diesen und den vorher angegebenen Gleichungen bzw. aus Abbildung 8 können die Trägheits- und Widerstandsmomente in bezug auf die X- und Y-Achse der Abbildung 1 einer Einzelfaser berechnet werden. Hierin ist der Einfluß aller drei wichtigen Größen des Faserquerschnittes enthalten; obgleich man hieraus beurteilen kann, worauf es bei den genannten Festigkeitseigenschaften quer zur Faserachse ankommt, stellt die Einzelfaser ja nur einen isoliert gedachten Teil des Träger- und Festigkeitssystems vor, das aus physiologischen, vegetationsperiodischen und statischen Gründen von der lückenlosen Zellreihe eines ganzen Jahrringes gebildet wird. Es ist daher notwendig und lehrreich, aus zusammengehörigen Meßwerten aller Faser-

querschnitte über die ganze Jahrringbreite die Trägheitsmomente J_x und J_y einer Zellreihe zu bestimmen, um daraus das Prinzip der Festigkeitsausbildung im Laufe abgeschlossener Wuchsperioden beurteilen zu können.


Zu diesem Zweck wurden, da meines Wissens im Schrifttum gleichartige Meßergebnisse nicht aufscheinen, an Fichte mit 2,8 mm Jahrringbreite die radialen und tangentialen Größen der Querschnitte aller Fasern von zwei benachbarten Reihen gemessen und in Abbildung 2 und 3 graphisch dargestellt.

 $Zur\ Faserreihe\ I$: Der mittlere Verlauf der radialen Faserdurchmesser D_{Fr} und Lumendurchmesser D_{Lr} fällt von der 1. Früh- bis zur letzten Spätholzfaser stetig, ohne einen Kontrast für den Übergang des Früh- in das Spätholz anzuzeigen, dagegen bleibt in Tangentialrichtung (Abb. 3) der Faserdurchmesser D_{Ft} nahezu konstant, der Lumendurchmesser D_{Lt} ebenso bis zur Frühspätholzgrenze und sinkt von da ab gleichmäßig; die Wanddicke d_{wr} und d_{wt} der Frühholzfasern nimmt gegen die Spätholzgrenze nur unerheblich, von da ab in Radial- und Tangentialrichtung stark zu.

 $Zur\ Faserreihe\ II$: In Radialrichtung (Abb. 2) zunächst starker Anstieg der Faser- und parallel dazu der Lumendurchmesser, hierauf stetige parabolische Abnahme bei gleichmäßiger Zunahme der Wanddicke d_{wr} . In Tangentialrichtung (Abb. 3) leichter Anstieg der Faser- und ungefähre Konstanz der Lumendurchmesser bis zum Spätholz, von da an starker Abfall von D_{Lt} unter gleichzeitiger starker Zunahme der Wanddicke d_{wt} , die stets größer ist als in Radialrichtung. Fasern mit sehr großem Lumen in Radial- und Tangentialrichtung werden zur Verstärkung meist von benachbarten Fasern mit kleinerer Lumenweite in Tangentialrichtung begleitet.

Aus den nach Gleichungen (9a und 10a) berechneten Trägheitsmomenten der Einzelfaserquerschnitte jeder ganzen Reihe über die Jahrringbreite, deren Verlauf Abbildung 4 veranschaulicht, erscheinen nachstehende Schlüsse zulässig:

- a) Die Trägheitsmomente J_x und J_y liefern ein klares Bild der Verteilung des elastischen Verhaltens und der Festigkeit über einen Jahrring, begründet durch das Zusammenwirken der Faser-, der Lumendurchmesser, des Maßverhältnisses in Radial- und Tangentialrichtung und der Faserwanddicke;
- b) wegen der großen Lumendurchmesser weisen Frühholzfasern trotz der geringen Dicke und Packungsdichte der Wände höhere Trägheitsmomente in Radialrichtung auf als Spätholzfasern, in Tangentialrichtung ist dies umgekehrt; damit ist ein Ausgleich der Faserfestigkeit um so besser, je größer der Spätholzanteil ist;
- c) an der Grenze zwischen Früh- und Spätholz sind die tangential (J_x) und radial (J_y) bezogenen Trägheitsmomente benachbarter Faserreihen nahezu gleich (Isotropiestelle der Jahrringfestigkeit);

Verlauf der Fasermaße von zwei vollständigen benachbarten radialen Faserreihen über die gesamte Jahrringbreite von 2,8 mm bei Fichte

d) der Verlauf der Trägheitsmomente einer Faserreihe über einen ganzen Jahrring ist ähnlich jenem des Produktes aus dem Lumendurchmesser und der einfachen Wanddicke in jeweils gleicher Richtung zu den Jahrringen.

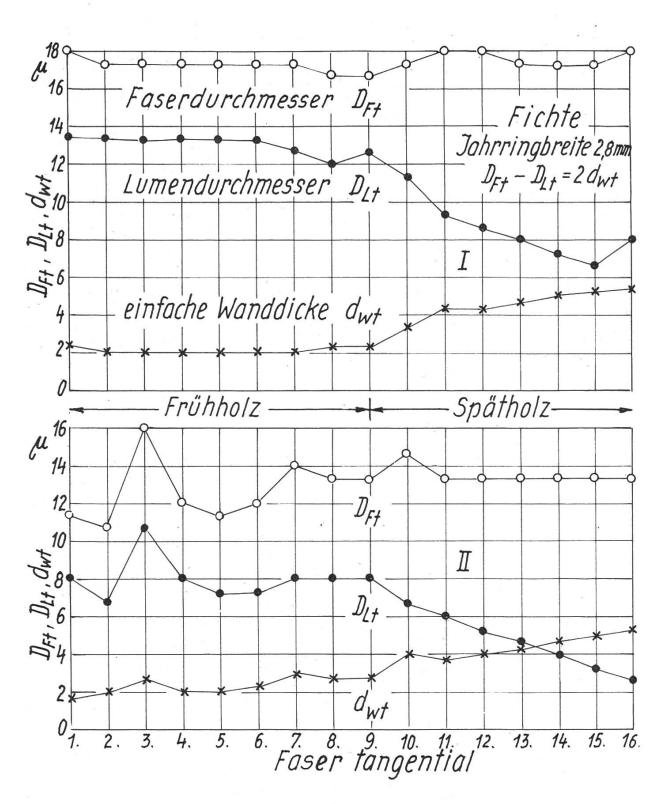


Abb.3

Verlauf der Maße von zwei benachbarten Faserreihen über die gesamte Jahrringbreite von 2,8 mm der Fichte in Tangentialrichtung

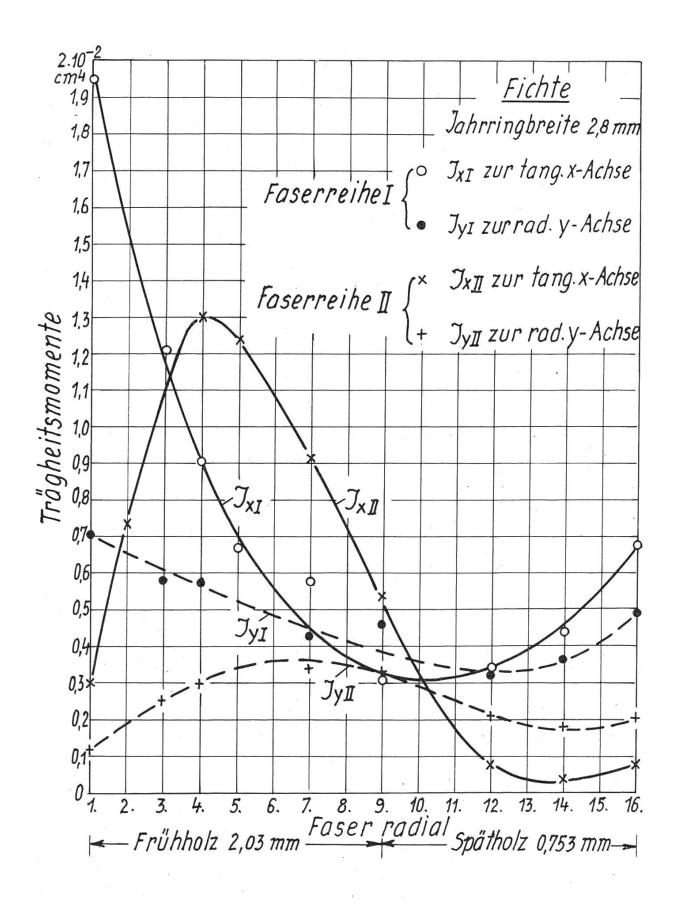


Abb.4 Verlauf der radialen (J_{xI}, J_{xII}) und tangentialen (J_{yI}, J_{yII}) Trägheitsmomente der Querschnitte von zwei (I, II) radialen Faserreihen von Fichte

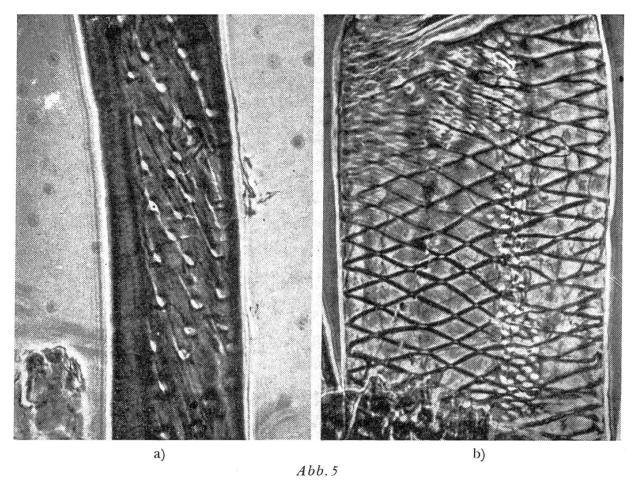
Unter der näherungsweise erfüllten Voraussetzung, daß der Faserquerschnitt über die ganze Faserlänge (mit Ausnahme der verjüngten Enden) gleichbleibt, läßt sich für jede Teillänge $l > 12 D_F$ der Elastizitätsmodul E_i aus der Durchbiegung f an der Angriffsstelle der Kraft P berechnen (5):

$$E_{i} = \pm \frac{M_{i}}{J_{i}} = \frac{P \cdot l^{3}}{48 J_{i} \cdot f}$$
 [kp/cm²] (11)

 $(M_i = Biegemoment [cmkp], i = X- bzw. Y-Achse)$, ebenso die Biegefestigkeit aus dem Widerstandsmoment zur X- bzw. zur Y-Achse:

$$\sigma_{\rm Bx} = \frac{\rm M_{max}}{\rm W_{x}} = \frac{\rm 3}{\rm 2} \frac{\rm P \cdot l}{\rm D_{Ft} \cdot D^{2}_{Fr}} \ \rm bzw. \ \sigma_{\rm By} = \frac{\rm M_{max}}{\rm W_{y}} = \frac{\rm 3}{\rm 2} \frac{\rm P \cdot l}{\rm D_{Fr} \cdot D^{2}_{Ft}} [\rm kp/cm^{2}] \ (12)$$

 $(M_{max}=$ höchstes Biegemoment [cmkp], P=Einzellast [kp] in Mitte der Stützlänge l [cm], f= Durchbiegung [cm] unter P).

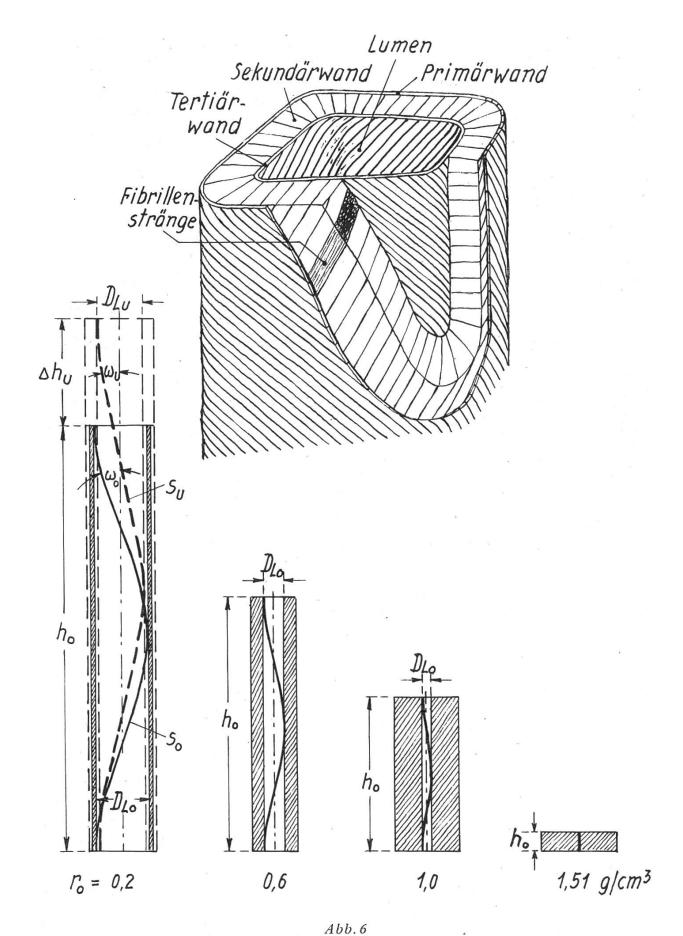

Damit kann, wenn auch praktisch bedeutungslos, die statische Zweckmäßigkeit der Querschnittausbildung der Einzelfaser und der Zweck und das Verhältnis der Festigkeitsänderung von Früh- und Spätholzfasern durch quergestellte Querschnittachsen und verstärkte Wanddicken beurteilt und nachgewiesen werden. Dieser Ausgleich der Festigkeit, dem der Wechsel von Querschnittform, -größe der Faser und ihrer Wanddicke innerhalb der Faserreihe eines Jahrringes offenbar dient, kommt noch stärker zur Geltung, wenn die Festigkeiten nach Gleichungen (11 und 12) bei Annahme gleichbleibender Einzellast P, Stützweite 1 und Durchbiegung f für jede Faser der ganzen Reihe berechnet wird. Aus Raumgründen muß hier von deren Wiedergabe abgesehen werden.

Die Übertragung dieser rechnerischen Ergebnisse auf einen Holzstab mit praktischen Maßen erfordert sehr umfangreiche Berechnungen der Ähnlichkeitsmechanik, für die hier wichtige Grundlagen über die inneren Schub- und Reibungskräfte der Fasern fehlen und erst durch Modellversuche gewonnen werden können.

2. Spiralwandbau und Längsdehnbarkeit der Fasern

Von den im wesentlichen aus drei Schichten zusammengesetzten Faserwänden sind (Abb. 6 oben)

- a) die äußerste Primärwand S_1 sehr dünn (etwa $0,1...0,6~\mu$), chemisch sehr resistent und aus gekreuzten Fibrillen;
- b) die innere Sekundärwand S_2 sehr dick (etwa $1...14 \mu$), chemisch aufschließbar, bestehend aus in einer gesetzmäßigen Richtung spiralig geordneten Fibrillensträngen und der Sitz der Holzquellung (10, 12);
- c) die innerste Tertiärwand S₃ äußerst dünn (etwa $0.05...0.4~\mu$), chemisch sehr widerstandsfähig und als spiraliges Wickelband ausgebildet.



Spiralige Ordnung der Fibrillen einer Fichtenfaser (a) und eines Lindengefäßes (b) Vergrößerung: 475:1 (Lichtbilder von H. Bucher)

Als Träger der Form- und Längsänderungen durch innere oder äußere Kräfte, sei es an der isolierten Faser oder an einem Holzstab, kommen nur die spiralig um die Faserlängsachse in der S_2 verlaufenden Fibrillenstränge in Betracht, wie sie sich zum Beispiel für Fichte und Linde an den Spiralleisten auf der S_3 (im Lumen) gemäß Abbildung 5 leicht erkennen lassen. Bei geringer Darrwichte r_0 des Holzes, mit deren Zunahme auch die Packungsdichte γ_w der Faserwand in verstärktem Maße gesetzmäßig ansteigt (4, 6, 9), ist der Spiralsteigungswinkel ω_0 der S_2 -Fibrillen zur Faserlängsachse im Darrzustand (u=0.0/0) des Holzes sehr groß (zum Beispiel bei $r_0=0.2$ g/cm $^3\omega_0=56.0$ °), bei hoher Darrwichte r_0 sehr klein zum Beispiel $r_0=1.0$ g/cm $^3\omega_0=3.0$ °35′) und beträgt für Reinzellulose mit $\gamma_C=1.58$ g/cm $^3\omega_0=0.0$ °, wie aus Abbildung 6 unten und aus Abbildung 8 hervorgeht.

Zwischen diesem Steigungswinkel ω_0 und sämtlichen Größen der Faserbauelemente konnte L. Vorreiter (10, 12) eine funktionelle und komplexe Wechselbeziehung nachweisen; die einfachste und geradlinig proportionale Beziehung besteht zwischen dem Steigungswinkel ω_0 und der Packungsdichte γ_w (g/cm³) der Faserwände:

$$\omega_{\rm o} = 59.6^{\circ} (\gamma_{\rm Ho} - \gamma_{\rm w})$$
 [°] (13)

Spiraliger Bau der Holzzellwände (oben) und Steigungswinkel der Sekundärwandfibrillen in Abhängigkeit von der Darrwichte der Hölzer und der Feuchte (unten bzw. links)

Bei Feuchteaufnahme werden die S_2 -Fibrillen von den eingelagerten Wassermolekülen auseinandergedrängt, da die Querbindung der ersteren nur durch schwache Nebenvalenzen erfolgt, die Faserwand quillt hauptsächlich in das Lumen, nach außen beengt durch die aus gekreuzten Fibrillen «abgesperrte» Primärwand S_1 . Dabei wird der Steigungswinkel der S_2 -Fibrillen infolge ihrer Streckung, Drehung und leichten Längszunahme kleiner, also $\omega_u < \omega_o$ (vgl. weiter unten).

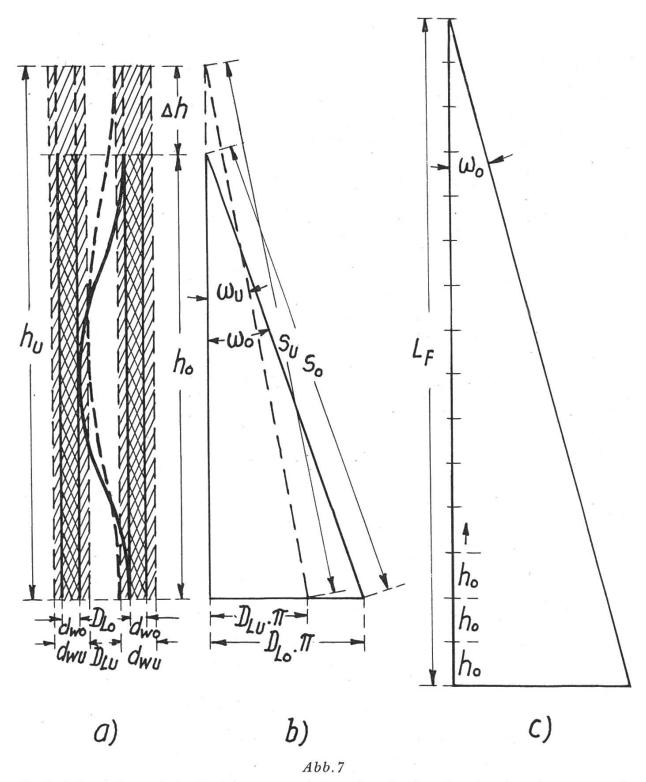
Der rechnerische Zusammenhang zwischen den einzelnen Größen der Faserbauelemente wird von Abbildung 7 schematisch veranschaulicht. Im Darrzustand u = 0% der Faser sinkt der Lumendurchmesser zwischen $\gamma_{\rm L}$ für Luft zu $D_{\rm Lo}=\infty$ und $\gamma_{\rm C}=1,58$ g/cm³ auf $D_{\rm Lo}=0$ gemäß Gleichung (6), seine Beziehung zum Faserdurchmesser $D_{\rm Fo}$ und zur Faserwanddicke dwo wird von Gleichung (8) hergestellt. Wird der Lumenumfang näherungsweise durch $D_{\rm Lo}$ ausgedrückt, so beträgt die Spiralganghöhe

$$\mathbf{h}_{o} = \mathbf{D}_{Lo} \cdot \boldsymbol{\pi} \cdot \cot \boldsymbol{g} \ \omega_{o} = \sqrt{\mathbf{s}_{o}^{2} - \mathbf{D}_{Lo}^{2} \cdot \boldsymbol{\pi}^{2}} \qquad [\mu]$$
 (14a, b)

die Spirallänge so je Spiralgang

$$s_o = \frac{D_{Lo} \cdot \pi}{\sin \omega_o} = \sqrt{h_o^2 + D_{Lo}^2 \cdot \pi^2} \qquad [\mu]$$
 (15a, b)

und die Faserlänge L_F (mm), wenn gesetzt wird A=Anzahl ihrer Spiralgänge (Abb. 7c):


worin für Nadelhölzer empirisch (12) gilt:

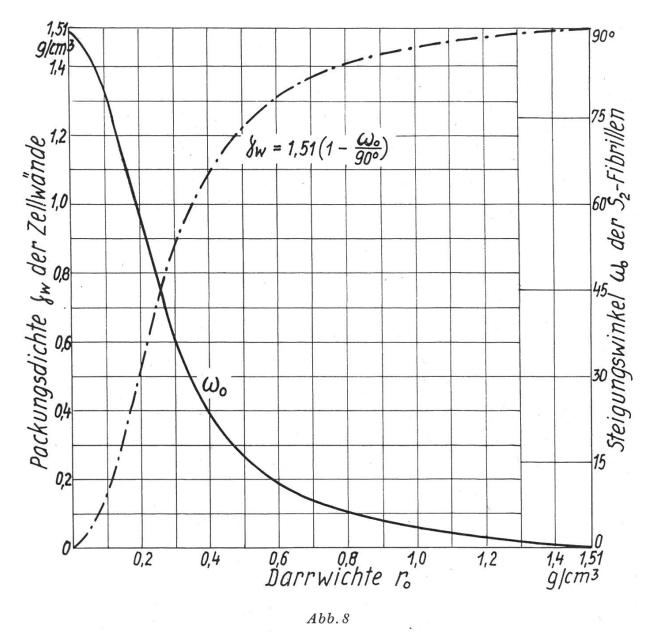
$$A = 165 \cdot L_{\rm F}^{3/4} \tag{17}$$

Wichtig ist hier ferner der von H. Bucher (3) experimentell belegte Nachweis, daß die Tertiärwand S_3 ein individueller Teil der Faserwand ist und daß sie in Form eines spiraligen Wickelbandes aus chemisch sehr resistenter Zellulose besteht. Aus seinen Meßwerten des Steigungswinkels φ_0 dieses Spiralwickelbandes von einer Reihe verschiedener Holzarten, das bei der Zellstoffgewinnung für Xanthogenate und Acetate als unlöslicher Rückstand abgefiltert werden muß, hat L. Vorreiter (12) festgestellt, daß diese Steigungswinkel φ_0 mit zunehmender Darrwichte r_0 der Hölzer gesetzmäßig wachsen und komplementär zum Steigungswinkel ω_0 der S_2 -Fibrillen verlaufen, und zwar nach Gleichung

$$\omega_{\rm o} \approx 90^{\circ} - \varphi_{\rm o}$$
 bzw. $\varphi_{\rm o} \approx 90^{\circ} - \omega_{\rm o}$ [°] (18a, b)

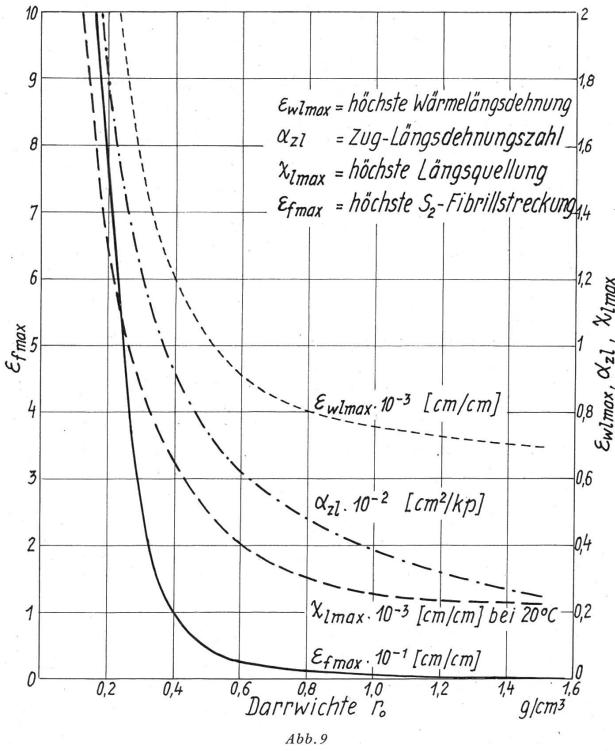
Auch diese Erkenntnisse bilden die neuen Grundlagen zum Verständnis und zur Deutung physikalischer und mechanisch-technischer Eigenschaften der Hölzer. So kann die bisherige Stoffhypothese, daß der Sitz und Träger

Analytisch-mathematische Beziehungen zwischen den Größen der Faserbauelemente sowie mit der Faserlänge (c)


der Holzquellung die pektin- und ligninreiche Mittellamelle oder Klebschicht zur gegenseitigen Verbindung der Holzfasern sei, nicht mehr aufrechterhalten werden; sie vermag auch nicht den gleichzeitigen und zwangsläufig zusammenhängenden Vorgang der Quer- und Längsquellung des Holzes zu erklären. Dies gelingt erst dann, wenn man den fibrillaren Feinbau und vor allem die unterschiedlichen Richtungen und Steigungswinkel

der Fibrillen in jeder Wandschicht in den Mittelpunkt der Betrachtung rückt, wie zuerst I. J. W. Bisset (2), H. Ziegenspeck (13) und andere angedeutet haben; auch einige andere Formen physikalischer Maßänderungen der Hölzer quer und längs zur Faser lassen sich ausschließlich auf dieser Basis aufklären, worauf schon Anonymus (1) kurz hingewiesen hatte.

Nach der neuen Fibrillspiralentheorie spielt sich die Holzquellung oder hygroelastische Dehnung des Holzes gleichzeitig nach allen drei Hauptrichtungen wie folgt ab: Durch das Eindringen der Wassermoleküle zwischen die Mikrofibrillen und Fibrillenstränge der S2 schwillt letztere an. Die S1 sperrt diese Schwellung nach außen teilweise ab, die unter dem komplementären Steigungswinkel φ_0 entgegengesetzt zur Steigrichtung mit dem Winkel ω_0 der S2-Fibrillen spiralig gewickelten Bänder der S3 lockern sich durch die Streckung und Drehung der S2-Fibrillenstränge und geben Raum in das Lumen zur Ausdehnung der sich verdickenden S2 frei. Auf diese Weise wird durch die Streckung und Drehung der S2-Fibrillen ihr Steigungswinkel $\omega_{
m o}$ vermindert und die durch Feuchtaufnahme erschlaffende Faser in Längsrichtung gespannt; der Kollaps der S2-Fibrillen in das Lumen wird durch das sich nur funktionell lockernde S3-Wickelband verhindert. Ein solcher Vorgang ist, wie sich leicht demonstrieren läßt, nur dank der sinnreichen Steigung der S2-Fibrillen mit dem Winkel ω_0 in eine Richtung und der S₃-Wickelbänder mit dem komplementären Winkel φ_0 in die Gegenrichtung möglich. Trocknet die Holzfaser, so spielt sich dieser Vorgang in entgegengesetztem Sinne ab, so daß durch diese wunderbare Einrichtung die Funktion der Faser als statisches Tragsystem in jedem Feuchtezustand erhalten bleibt.


Für isoliert gedachte Fasern und Faserreihen über die Jahrringbreite ist anhand der komplexen Maßverhältnisse ihres Querschnittes, wie im Teil I ausgeführt, auch die Anisotropie der Querquellung in Radial- und Tangentialrichtung durch die Fibrillspiralentheorie erklärbar; bei Holzkörpern spielt aber noch das Verhältnis der Massenverteilung in Radial- und Tangentialrichtung hinein, die eine Funktion des Verhältnisses an porenloser Holzfestmasse mal Durchmesser zur Festmasse mal Umfang des zugehörigen Kreises bildet. Auf die nähere Betrachtung dieses Problems kann aber hier nicht eingegangen werden.

Mit steigender Darrwichte r_0 der Hölzer bzw. der Packungsdichte γ_w der Faserwand (Abb. 8) fallen der Steigungswinkel ω_0 der S2-Fibrillen und der Lumendurchmesser D_{Lo} , ebenso fällt die Spiralganghöhe h_o (Abb. 7b und Gleichung 14a), um so weniger vermögen sich die S2-Fibrillen in das Lumen bei Feuchteaufnahme auszudehnen und sich aufzurichten, was im Hinblick auf die sich vergrößernde Dichte, Festigkeit und Steifheit schwerer Hölzer abklingende Bedeutung hat. Damit stehen die Befunde über die äußere Quellung der Hölzer über ihren gesamten Wichtebereich bis zur Reindichte vollkommen im Einklang, nämlich (11)

Beziehung zwischen der Darrwichte r_0 der Hölzer, der Packungsdichte γ_w der Zellwände und dem Steigungswinkel ω_0 der S_2 -Fibrillen

- a) die Querquellung von Holz steigt von $r_0 = 0.05...0.8$ g/cm³ geradlinig und entspricht annähernd dem entgegengesetzten Steilabfall der mittleren Lumendurchmesser für diesen Wichtebereich und dem inneren Quellraum der Faser, von $r_0 = 0.8...1.51$ g/cm³ flacht sich die Querquellung, der Lumendurchmesser und der Quellraum ab;
- b) gleichzeitig fällt die Längsquellung in Faserrichtung erheblich im 1. Bereich von r_o und konvergiert im 2. Bereich gegen das Minimum der Längsquellung von Reinzellulose (vgl. in Abb. 9 den Verlauf von χ_{lmax});
- c) bei der Querquellung entspringt das Anisotropieverhältnis der Radialzur Tangentialquellung dem Verhältnis der Massenverteilung in diesen Richtungen und beträgt für einen auf Reindichte $\gamma_{\rm Ho}$ reduzierten Kreis-

Zusammenhang zwischen thermo-, hygro-, mechanoelastischer Dehnung und höchster S2-Fibrillstreckung der Holzfasern in Abhängigkeit von der Darrwichte der Hölzer

querschnitt der halben Ludolphschen Zahl $\pi/2$ (also dem Verhältnis des Durchmessers zum halben Kreisbogen).

An Drahtspiralen (besser an maßgerechten Modellen von Holzfasern mit Wandschichten aus Stoffen ähnlicher Eigenschaften wie die der Faser) mit unterschiedlichem Steigungswinkel $\omega_{\rm o}$ (den Maßverhältnissen des Faserquerschnittes und mit $\varphi_{\rm o}$) kann leicht der Vorgang der Streckung der S2-Fibrillen

in der Faser demonstriert werden: Die Spiralfeder mit großem Steigungswinkel zur Federachse läßt sich im Verhältnis zu ihrer Länge weitaus stärker auseinanderziehen als eine solche mit kleinem Steigungswinkel, also mit sehr steilen Spiralen. Die Anzahl der Spiralgänge A, multipliziert mit der Ganghöhe h liefert die Federlänge l, multipliziert mit der Spirallänge s je Gang die Drahtlänge L der Spirale. Bei gleicher Drahtdicke und gleichem Innendurchmesser D nimmt die Länge L um so mehr ab, je kleiner der Steigungswinkel ω ist, nimmt D und ω stetig ab, so steigt L zunächst und sinkt dann wieder ab.

Nun steht der Steigungswinkel ω_o der S₂-Fibrillen mit dem Lumendurchmesser D_{Lo} (Gleichung 6), mit der Ganghöhe h_o (Gleichung 14a) und mit der Wanddicke d_{wo} in enger Beziehung (12):

$$tg \,\omega_o = \frac{15 - d_{wo}}{7.5 \,d_{wo}} \tag{19}$$

so daß in Verbindung mit Gleichung 14a

$$h_{o} = D_{Lo} \cdot \pi \frac{7.5 d_{wo}}{15 - d_{wo}}$$
 [μ] (20)

woraus auch die Spirallänge s_0 mittels Gleichung (15a, b) sich berechnen läßt. Bei vollständiger Geradstreckung der Spirale beträgt die höchste Dehnung je Spiralgang aus dem Unterschied $\triangle s = s_0 - h_0$

$$\varepsilon_{\text{fmax}} = \frac{s_{\text{o}} - h_{\text{o}}}{h_{\text{o}}} \qquad [\mu/\mu] \text{ oder [cm/cm]}$$
(21)

Die Berechnung von $\varepsilon_{\mathrm{fmax}}$ über den ganzen Wichtebereich der Hölzer bis γ_{Ho} aus den angeführten Gleichungen, Abbildungen und Meßwerten liefert den in Abbildung 9 wiedergegebenen Verlauf. Trägt man hierzu die durch innere Kräfte herbeigeführte Höchstdehnung der Faser, also die von Sorptions- und Quellkräften bei Feuchteaufnahme bewirkte höchste Längsquellung oder hygroelastische Dehnung χ_{lmax} und die von Thermokräften verursachte höchste Wärmelängsdehnung oder thermoelastische Dehnung $arepsilon_{ ext{wlmax}}$ sowie die durch äußere mechanische Kraft bewirkte Zug- oder mechanoelastische Dehnungszahl α_{zl} vergleichsweise zu ε_{fmax} auf, so beweist der gleichartige Verlauf dieser vier verschiedenen Dehnungsarten in Abbildung 9 die von der Dehnbarkeit der S2-Fibrillen abhängige maximale Längsänderung der Faser und des resultierenden Holzkörpers bei Einwirkung beliebiger Kraftformen. Die unterschiedlichen Dehnungsgrößen in jedem der vier Fälle gehen auf die Größe der dehnenden Kräfte der entsprechenden Kraftform zurück. Berücksichtigt man diese Dehnungsgrößen selbst gemäß ihrem Dezimalfaktor in Abbildung 9, so findet man, daß sämtliche durch innere lignogene oder äußere fremde Kräfte möglichen elastischen Längsdehnungen wesentlich kleiner sind als die höchste Dehnbarkeit ε_{fmax} der S₂-Fibrillspiralen.

- An diesen Befund lassen sich schließlich folgende Schlüsse knüpfen:
- a) Die Wärme besitzt eine 2- bis 2½ fache Dehnungskraft im Vergleich zur Feuchte auf die gleiche Faser, die Verbindung von Wärme und Feuchte verstärkt die Dehnung bzw. Quellung (11);
- b) wenn durch innere lignogene Kräfte eine kleinere elastische Längsdehnung herbeigeführt wird als durch äußere Kräfte, so müssen äußerlich nicht wahrnehmbare und nicht meßbare Änderungen im Gefüge der Einzelfaser bzw. der Faserwand oder im Faserverband eintreten;
- c) die große theoretische Streckbarkeit der S2-Fibrillspiralen läßt sich dahin deuten, daß im Hinblick auf die Zusammensetzung von Faserverbänden zu mehr oder minder dicken Holzkörpern mit stark unterschiedlichen Fasergrößen D_{Lo} , d_{wo} und ω_o ein weiter Reservebereich der Dehnbarkeit verbleiben soll, um bei hoher Dehnung der weitlumigen, dünnwandigen Fasern keine Überdehnung benachbarter englumiger, dickwandiger Fasern zuzulassen und damit an solchen Stellen die Integrität des Faserverbandes zu gewährleisten.

Zusammenfassung

Anhand ausgewerteter Meßergebnisse, abgeleiteter theoretischer und empirischer Gleichungen wird nachgewiesen, daß die Querbeanspruchung der Fasern bzw. von einen Holzkörper bildenden Faserverbänden sich aus dem Trägheitsmoment bzw. Widerstandsmoment der Einzelfaserquerschnitte herleiten läßt, wobei die Berechnung dieser Momente den Einfluß der Form und Größe der Faser und des Lumens sowie der Dicke der Faserwand, die miteinander in einem komplexen gesetzmäßigen Zusammenhang stehen, gleichzeitig wiedergibt. Auf rechnerischem Wege konnte ferner Aufschluß über die unmittelbare Abhängigkeit aller Arten elastischer Dehnungen des Holzes in Faserrichtung vom Spiralsteigungswinkel der S2-Fibrillen gefunden und die neue Fibrillspiralentheorie der Maßänderungen durch innere lignogene oder äußere Kräfte quer und längs zur Faserachse, insbesondere für die hygroelastische Dehnung (Quellung) bei Feuchteaufnahme dargelegt werden.

Résumé

La structure des fibres et les propriétés du bois

Sur la base des résultats de mesures on a déterminé théoriquement et empiriquement des équations permettant de trouver les sollicitations transversales sur les fibres et les groupes de fibres composant un bloc de bois, à partir des moments d'inertie et moments de résistance des coupes transversales de chaque fibre. Le calcul de ces moments donne à la fois des indications sur la forme et la grosseur des fibres et du lumen, et sur l'épaisseur de la paroi fibrillaire, ces éléments étant liés entre eux par des rapports complexes.

D'autre part, on a pu par le calcul éclairer les rapports directs entre tous les genres de dilatation élastique du bois dans le sens des fibres et l'angle d'inclinaison des spirales des fibrilles S2. On a ainsi donné forme à la récente théorie des changements de grosseur dus à la structure en spirale des fibrilles sous des forces internes lignogènes ou des forces extérieures, perpendiculairement ou parallèlement au sens des fibres. Les calculs ont portés principalement sur la dilatation hygroélastique (gonflement) lors de la prise de vapeur d'eau.

Traduction: J.-Ph. Schütz

Schrifttum

- (1) Anonymus: Fibre structure and the properties of wood. For. Prod. News Letter, 1950, Nr. 180, S. 2–5
- (2) Bisset I. J. W.: Why does wood shrink? For. Prod. News Letter, 1951, Nr. 184, S. 5-6
- (3) Bucher H.: Die Tertiärlamelle von Holzfasern und ihre Erscheinungsformen bei Coniferen. Herausg. Cellulosefabrik Attisholz AG, Attisholz b. Solothurn, 1953
- (4) Frey-Wyssling A.: Die pflanzliche Zellwand. Berlin-Göttingen-Heidelberg, 1959
- (5) Hütte: Des Ingenieurs Taschenbuch. I. Band, 27. neubearb. Auflage. Berlin, 1949
- (6) Jayme G. und Krause Th.: Über die Packungsdichte der Zellwände in Laubhölzern. Z. Holz als Roh- und Werkst. 21 (1963), S. 14–19
- (7) Kisser J. und Lohwag K.: Histochemische Untersuchungen an verholzten Zellwänden. Z. Mikroskopie 23 (1937), S. 51
- (8) Kisser J. und Sturm M.: Mikroskopische Untersuchungen über den Verholzungsgrad und die Membrandichte der Holzelemente. Intern. Holzmarkt 40 (1949), H. 15, S. 10–16
- (9) Lange P. W.: Mass distribution in the cell walls of Swedish spruce and birch. Svensk. Papp. Tidn. 57 (1954), H. 15, S. 533-537
- (10) Vorreiter L.: Der Steigungswinkel der Spiralleisten an den Zellwänden der Hölzer. Biolog. Zentralbl. 83 (1964), H. 3, S. 353–371
- (11) Vorreiter L.: Maßänderungen der Hölzer bei verschiedener Feuchte und Temperatur. Z. Holztechnik 44 (1964), H. 5, S. 233–241
- (12) Vorreiter L.: Gesetzmäßige Beziehungen zwischen den Größen der Faserbauelemente. Z. Das Papier 19 (1965), im Druck
- (13) Ziegenspeck H.: Der submikroskopische Bau des Holzes im Vergleich mit dem der Fasern im allgemeinen. In H. Freund: Handbuch der Mikroskopie in der Technik. Bd. V, Teil I, S. 369-456. Frankfurt a. M., 1951

Die vom Herrn Dr. H. Bucher angefertigten Lichtbilder 5 a) und b) wurden von der Cellulosefabrik Attisholz AG, vorm. Dr. B. Sieber in Attisholz bei Solothurn, entgegenkommend zur Verfügung gestellt, wofür der Verfasser auch an dieser Stelle verbindlichst dankt.