Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 115 (1964)

Heft: 1-2

Artikel: Über neuere Forschungsergebnisse auf dem Gebiete der

Lärchenrassenbiologie

Autor: Schreiber, M.

DOI: https://doi.org/10.5169/seals-765502

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über neuere Forschungsergebnisse auf dem Gebiete der Lärchenrassenbiologie

Von M. Schreiber, Wien

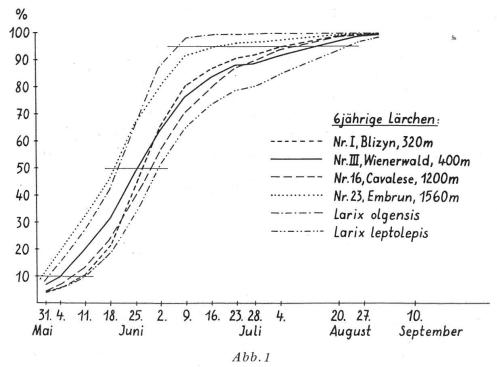
Oxf. 232.12

(Aus dem Institut für Waldbau der Hochschule für Bodenkultur) 1

In einem vor einigen Jahren erschienenen Buch, betitelt «Tyrannei der Erde» (1), vertritt sein Verfasser A. Arland den vielleicht nicht ganz unberechtigten Standpunkt, daß auf dem Gebiete des Ackerbaues insofern eine Tyrannei der Erde besteht, als man heute das Wissen vom Boden über jenes von der Pflanze stellt. Ein ähnliches Verhältnis liegt auch auf dem Gebiete der Grundlagenforschung für den Waldbau vor. Wenn auch unser Wissen um die Waldböden und die Beeinflussungsmöglichkeit ihres Produktionspotentiales derzeit noch manche Lücke im Hinblick auf die Sicherheit seiner Hebung aufweist, so hat man im Streben nach genauer Erfassung der Umwelt, in der unsere Baumarten und Baumvereinigungen leben und in zunehmendem Maße zu leben gezwungen werden, in den letzten Jahrzehnten die direkte Befragung unserer Kulturgewächse und ihrer Standortsvarietäten nach ihren optimalen Lebensansprüchen stärker als in den vorausgehenden Jahrzehnten vernachlässigt. Dies darf wohl als Grund angesehen werden, warum man heute über die physiologische Reaktion der Baumarten, insbesondere über jene ihrer verschiedenen Ökotypen auf unterschiedliche Umweltbedingungen noch relativ wenig orientiert ist. Die hochwachsenden und langlebigen Pflanzenarten sind allerdings ein sehr wenig handliches Experimentierobjekt. Diese für praktische Bedürfnisse noch auszubauende Grundlagenforschung wird darüber hinaus noch dadurch außerordentlich erschwert, daß zum Experiment für waldbauliche Zwecke in den seltensten Fällen ein genetisch einheitliches Material zur Verfügung steht und dies mit dem Älterwerden im genetischen Durchschnittscharakter auch noch eine stetige Änderung erfährt.

Nach diesem Hinweis auf die Bedeutung der Befragung der Bäume in ihren verschiedenen Altersstadien nach der Auswirkung von Umweltseinflüssen auf ihre Wuchsleistung, ihren Bau und ihre Lebensfunktionen seien nun einige Ergebnisse einschlägiger Erhebungen, die an Lärchen verschiedener Herkunft durchgeführt wurden, bekanntgegeben. Sie wurden an verschieden alten Jungpflanzen vorgenommen, die unter angenommen gleichen standörtlichen Bedingungen erwachsen sind.

Bekannt ist, daß der Anbauerfolg mit Lärche in erster Linie von der verwendeten Lärchenart und Lärchensorte einer Art sowohl innerhalb als

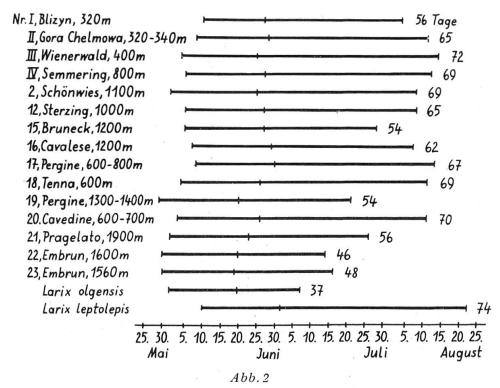

¹ Vortrag, gehalten an der ETH in Zürich am 2. Dezember 1963.

auch außerhalb ihres Heimatgebietes abhängig ist. Es haben dies nicht nur die vielen einschlägigen Berichte aus der forstlichen Praxis bewiesen, sondern auch die zahlreichen in den verschiedenen europäischen Ländern planmäßig angelegten vergleichenden Lärchenherkunftsversuche. Mit solchen Versuchen hat man bekanntlich in der Schweiz mit der Holzart Lärche schon frühzeitig in großzügiger Weise begonnen (2, 3, 5). Sie wurden, wie aus der Literatur hervorgeht, bis in die jüngste Zeit fortgeführt und, was für unsere alpine Forstwirtschaft besonders wertvoll ist, unter weitgehender Heranziehung alpiner Herkünfte (6, 13, 14, 15). Diesen Vergleichsversuchen verdanken wir die wichtige Erkenntnis, daß unter dem Einfluß der verschieden gearteten Wuchsbedingungen, wie sie das ausgedehnte Alpengebiet in horizontaler und vertikaler Erstreckung aufweist, eine Vielzahl an Ökotypen der europäischen Lärche in den Alpen besteht. Diese unterscheiden sich in der Wuchsleistung, nicht selten auch in der Schaft- und Kronenformausbildung, im Verkernungsgrad, in der Borkenstärke, in ihrem phänologischen Verhalten und auch in ihrer Widerstandsfähigkeit gegen anorganische und organische Schadeinwirkungen. Der von Leibundgut angelegte und ausgewertete Lärchenprovenienzversuch, über den er im Jahre 1952 berichtete, erbrachte weiter auch die wichtige Erkenntnis, daß die verschiedenen Lärchenökotypen auch bemerkenswerte Unterschiede im jährlichen Höhenwachstumsgang aufweisen. Diese wichtige Feststellung, die durch Erhebungen an den in Österreich zur Verfügung stehenden Lärchenherkünften auf Vergleichsversuchsflächen bestätigt werden konnte, und die in jüngster Zeit von ihm auch noch bekanntgegebene Tatsache, daß in der Reaktionsweise auf Kurz- und Langtageinwirkung rassische Verschiedenheiten vorliegen, kann viel dazu beitragen, die richtige Standortsauswahl für eine Lärchensorte vorzunehmen, womit der Anfälligkeit gegen Erkrankung und Pilzbefall schon weitgehend vorgebeugt wird.

Die große Bedeutung, die der Feststellung des jährlichen Höhenwachstumsganges zur Beurteilung der Standortsansprüche von Lärchenherkünften zukommen kann, veranlaßte uns, innerhalb der heurigen Vegetationsperiode (1963) ihn an repräsentativen Jungpflanzen von Herkünften der europäischen Lärche, wie dann auch an solchen der japanischen Lärche zu erheben. Die dabei gewonnenen Ergebnisse bestätigen die praktische Bedeutung solcher Messungen. Da sie einige Ergänzungen zu den Feststellungen Leibundguts bieten können, seien sie hier auch angeführt:

Abb. 1 zeigt den Verlauf des Höhenwachstums von vier im 6. Lebensjahr stehenden Herkünften der europäischen Lärche sowie jenen von je einer Population von Larix leptolepis und Larix gmelinii var. olgensis.

Legt man nach dem Vorschlag von Leibundgut als Beginn der Hauptwachstumsperiode jenes Datum fest, an dem 10 Prozent und als Ende jenes, an dem 95 Prozent des Höhenzuwachses erreicht werden, dann ergeben sich hinsichtlich des Wachstumsbeginnes nur Unterschiede von einigen


Höhenwachstumsgang bei 6jährigen Lärchen.

Tagen, während sich der $Wachstumsabschlu\beta$ bei den verschiedenen Lärchenherkünften über einen Zeitraum von fast zwei Monaten erstreckt. In bezug auf die Dauer der Wachstumsperiode liegen demnach beachtliche Unterschiede vor.

Der Verlauf der Zuwachskurven zeigt an, daß das jährliche Höhenwachstum anfänglich sehr rasch vor sich geht, in der zweiten Junihälfte seine höchsten Werte erreicht und bereits Anfang Juli an Intensität abnimmt. Den flachsten Kurvenverlauf weist die Japanlärche auf. Sie hält ihr Triebwachstum dafür am längsten aufrecht und erreicht erst am 22. August die 95-Prozent-Grenze. Am frühesten schloß ihr Höhenwachstum die in Ostasien beheimatete L. gmelinii var. olgensis ab, und zwar schon am 7. Juli, sie weist dafür den steilsten Kurvenverlauf auf.

Die Herkünfte der europäischen Lärche stehen in der Mitte zwischen diesen beiden Extremen. Sie weisen jedoch auch untereinander feststellbare Unterschiede auf. Von den vier in der Abbildung dargestellten Provenienzen besitzt die aus hohen Lagen der Westalpen herstammende Herkunft Embrun die kürzeste, die in 400 m Seehöhe am Ostrand der Alpen beheimatete Herkunft Wienerwald die längste vegetative Wachstumsdauer.

In Abb. 2 sind von einer größeren Zahl an Herkünften der Eintritt und Abschluß der jährlichen Wachstumsperiode, wie sie sich im Erhebungsjahr darbot, zu ersehen. Ihre Länge ist durch die Tagesanzahl wiedergegeben. Hinsichtlich des Beginnes der Hauptwachstumsperiode bestehen Unterschiede von maximal 13 Tagen (29. Mai bis 10. Juni). Durch einen besonders

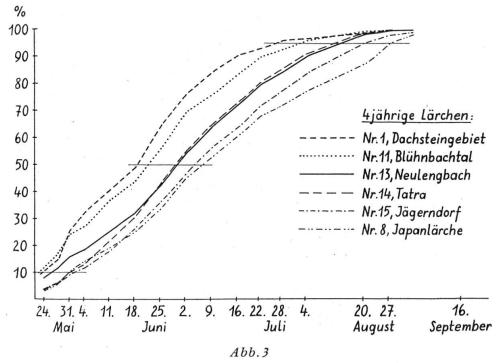
Dauer der Hauptwachstumsperiode bei 6jährigen Lärchen.

frühen Beginn zeichnet sich die norditalienische Herkunft Nr. 19 (Pergine, 1300 bis 1400 m), dann die beiden Herkünfte aus den französischen Westalpen Nr. 22 und 23 (Embrun, 1600 m), weiter die Herkunft Nr. 21 (Pragelato, 1900 m) sowie die Herkunft Nr. 2 (Schönwies, 1100 m) und auch Larix olgensis aus. Bei den genannten europäischen Herkünften handelt es sich durchwegs um Lärchen aus höheren Gebirgslagen.

Durch einen relativ späten Beginn der Wachstumsperiode sind die Japanlärche und von den europäischen Lärchen die Polenherkünfte (Blizyn, 320 m; Gora Chelmowa, 330 m) und die aus mittleren und tieferen Lagen der südlichen Zentralalpen herstammenden Herkünfte Nr. 12, 15, 16, 17, 18 und 20, wie dann auch die Herkünfte vom Alpenostrand (Wienerwald 400 m; Semmering, 800 m) gekennzeichnet.

Frühem Beginn entspricht im allgemeinen auch ein früher Abschluß des Wachstums. Dieser erstreckt sich über eine Zeitspanne vom 7. Juli bis zum 22. August, also über 47 Tage. Am frühesten schließt Larix olgensis aus Gebirgslagen von Nordkorea und der Mandschurei ihre Wachstumsperiode ab, nämlich schon am 7. Juli; am längsten dauert sie bei der japanischen Lärche an, die erst am 22. August 95 Prozent ihres Höhenzuwachses erreicht hat. Die Herkünfte der europäischen Lärche stehen in der Mitte, immerhin ergibt sich aber auch für sie eine Streuung von 31 Tagen im Termin des Wachstumsabschlusses (14. Juli bis 14. August). Besonders früh schließen die Herkünfte Nr. 22 und 23 (1600 m Seehöhe) ihr Wachstum ab. Es folgen

Nr. 21 (1900 m), Nr. 19 (1300 bis 1400 m) und Nr. 15 (1200 m). Am spätesten schließen die aus mittleren und tiefen Lagen der Alpen herstammenden Herkünfte ihre Hauptwachstumsperiode ab, so die Herkunft Wienerwald (400 m), Semmering (800 m) und die Herkünfte aus Norditalien: Pergine (600 bis 800 m), Tenna (600 m) und Cavedine (600 bis 800 m).

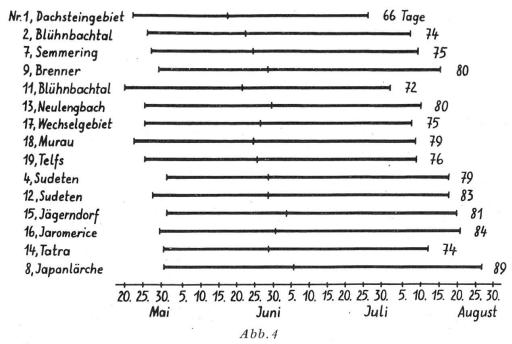

In der Dauer der Wachstumsperiode weichen demnach die aus verschiedenen Seehöhen herstammenden_ Alpenlärchenprovenienzen, wie nicht anders zu erwarten, stark ab. Durch besonders kurze Wachstumsperiode zeichnen sich demnach die aus hohen Lagen der Westalpen herstammenden Herkünfte (Nr. 21, 22 und 23) aus, deren Wachstumsdauer zwischen 46 und 56 Tagen liegt. Die beiden Polenherkünfte weisen eine mittellange Wachstumsperiode auf (56 bzw. 65 Tage), und die längste Wachstumsperiode kommt den in niederen Lagen des östlichen Alpenrandes heimischen Herkünften Wienerwald und Semmering mit 72 bzw. 69 Tagen zu. Auch die Herkünfte Nr. 2 (Schönwies), Nr. 12 (Sterzing), Nr. 16 (Cavalese), Nr. 17 (Pergine), Nr. 18 (Tenna) und Nr. 20 (Cavedine), die aus tieferen und mittleren Höhenlagen der Alpen herstammen, weisen eine Wachstumsdauer von 62 bis 70 Tagen auf.

Von den zum Vergleich mit der europäischen Lärche untersuchten ausländischen beiden Arten hat die in der Jugend überaus raschwüchsige Larix olgensis mit 37 Tagen die kürzeste, Larix leptolepis mit 74 Tagen die längste jährliche Haupthöhenwachstumsperiode.

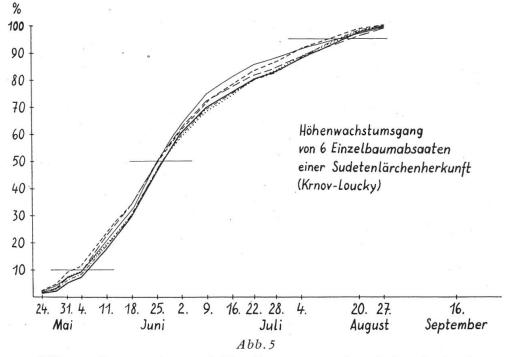
Für den Zeitpunkt, in welchem der halbe Höhentrieb gebildet ist, ergibt sich zwischen den untersuchten Provenienzen die relativ geringe Differenz von nur 15 Tagen. Auf Grund unserer Erhebungen erscheint daher dieser Zeitpunkt für die Kennzeichnung verschiedener Lärchenökotypen nicht besonders charakteristisch. Nur bei den sehr früh abschließenden Lärchenarten und alpinen Lärchenherkünften kann der halbe Höhentriebwert schon viel aussagen.

Die Abb. 3 stellt den Höhenwachstumsverlauf von einigen vierjährigen Herkünften im gleichen Vegetationsjahr unter angenommen gleichen standörtlichen Bedingungen dar. Es handelt sich um eine Auswahl aus einer größeren Anzahl von Alpen- und Sudetenlärchenherkünften, wie dann um eine Tatraherkunft und um eine andere Japanlärchenherkunft. Diese im Vergleich zu den vorher angeführten, um zwei Jahre jüngeren Herkünfte setzten mit ihrem Wachstum um einige Tage früher ein und behalten dieses länger bei, so daß die Dauer der Hauptwachstumsperiode bei ihnen im Durchschnitt um zwei Wochen länger ist. Auch offenbart sich das geringere Alter an dem etwas langsameren Kurvenanstieg. Die Wuchsintensität ist während der jährlichen Hauptwachstumsperiode ausgeglichener als bei den um zwei Jahre älteren Pflanzen.

Aus der Abbildung geht weiter hervor, daß auch hinsichtlich des Wachstumsbeginnes bei diesen untersuchten Herkünften nur geringfügige Unter-


Höhenwachstumsgang bei 4jährigen Lärchen

schiede bestehen. Dagegen erstreckt sich das Ende der Wachstumsperiode bei den einzelnen Herkünften über eine mehr oder weniger lange Zeitspanne. Die längste Wachstumsperiode weist wieder die Japanlärche auf, und unter den Provenienzen der europäischen Lärche dauert sie bei der Sudetenlärche länger als bei den Alpenlärchenherkünften.


Aus Abb. 4, in der von einer größeren Zahl vierjähriger Herkünfte Beginn, Abschluß und Dauer der Hauptwachstumsperiode dargestellt sind, geht hervor, daß die Sudetenlärchen mit dem Wachstum in der Regel um einige Tage später einsetzen und dieses im vorliegenden Fall länger anhielt als bei den Alpenlärchen. Bei ihnen betrug die Dauer der Wachstumsperiode 79 bis 84 Tage, bei den Herkünften aus den Alpen war eine Streuung in der Wachstumsdauer von 66 bis 80 Tagen festzustellen.

Die untersuchte *Tatralärche* beginnt zwar ebenso wie die Sudetenlärche relativ spät mit dem Wachstum, beendet es aber früher und fällt mit ihrer Wachstumsdauer von nur 74 Tagen in die Gruppe der Gebirgslärchen. Die weitaus längste Wachstumsdauer wies mit 89 Tagen die Japanlärche auf, die – wohl weil sie spät mit dem Wachstum einsetzt – es am längsten ausdehnt.

Da von einigen Sudetenlärchenherkünften fünfjährige Jungpflanzen aus Einzelbaumabsaaten zur Verfügung standen, wurde auch an diesem Material der jährliche Höhenwachstumsverlauf erhoben. Wie aus der Abb. 5, die den Höhenwachstumsgang von sechs verschiedenen Einzelbaumnachkommenschaften einer Sudetenlärchenherkunft darstellt, zu ersehen ist, sind die Linienzüge für die einzelnen Populationen sehr ähnlich. In bezug auf den

Dauer der Hauptwachstumsperiode bei 4jährigen Lärchen.

Höhenwachstumsgang von 6 Einzelbaumsaaten einer Sudetenherkunft (Krnov-Loucky, 5jährig).

Eintritt und Abschluß der Hauptwachstumsperiode bestehen Unterschiede von maximal 7 Tagen, hinsichtlich ihrer Dauer sogar nur von 2 Tagen. Ob auch zwischen Einzelbaumnachkommenschaften von Alpenlärchenherkünften eine so weitgehende Übereinstimmung im jährlichen Höhenwachstumsgang besteht, bleibt noch weiterer Untersuchung vorbehalten.

Nach diesem Hinweis auf Ergebnisse von Untersuchungen, die durch die beiden Arbeiten von Leibundgut aus den Jahren 1952 und 1959 angeregt wurden, sei nun auf Untersuchungsergebnisse eingegangen, die über die physiologische Reaktionsweise von Lärchen verschiedener Herkunft auf geänderte Umweltsverhältnisse einiges aussagen können.

In einer Arbeit aus dem Jahre 1940 (16) konnte ich schon darauf hinweisen, daß Lärchen verschiedener Herkunftsgebiete, wenn sie unter gleichen Standortsbedingungen heranwachsen, Unterschiede im Gehalt an wichtigen mineralischen Nährstoffen in ihren Assimilationsorganen aufweisen. Damals sprach ich die Vermutung aus, daß der Gesundheitszustand und das Gedeihen einer Herkunft von dem Bestehen eines bestimmten sorteneigenen Gleichgewichtszustandes im Summenverhältnis der Kationen und Anionen abhängig sein dürfte.

Um das Verhältnis vom Kationen- zum Anionenbestand auf Grund vorliegender Bauschanalysen beurteilen zu können, wurde nach einem Zahlenausdruck gesucht, der es im Rahmen der erfaßten Stoffe zu charakterisieren vermag. Wir stützten uns hiebei auf den Herznerschen Basenkoeffizienten (8, 9), der das Verhältnis der 100fachen Differenz zwischen der äquivalenten Basen- und Säuren-Wasserstoffsumme (dividiert durch die Summe der äquivalenten Basen- und Säuren-Wasserstoffmenge) darstellt. (Spurenelemente wurden dabei vernachlässigt.)

Über die Unterschiede, die in der Aufnahme von lebenswichtigen mineralischen Nährstoffen bei Lärchenherkünften bestehen können, gibt Tabelle I Aufschluß. Sie zeigt die Mineralstoffzusammensetzung der Asche von abfallenden vergilbten Nadeln von je zehn Individuen zweier, im Jahre 1941 achtjähriger Alpen- und Sudetenlärchenherkünfte, die auf einem kleinen Versuchsfeld nebeneinander in gleichen Abständen erwachsen sind.

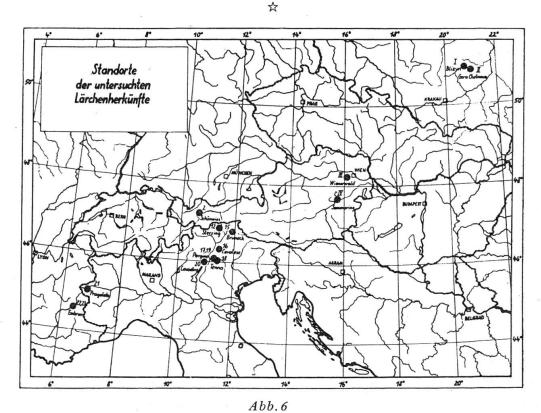
Um den eventuellen Einfluß verschiedener Witterungsverhältnisse der einzelnen Vegetationsjahre auf den Mineralstoffgehalt der Nadeln kennenzulernen, wurde auch in den darauffolgenden zwei Jahren die Asche des abfallenden, gut durcheinander gemischten Nadelmateriales der gleichen Bäume analysiert.

Bei Betrachtung der Tabelle fällt auf, daß besonders Schwankungen im Kalziumgehalt vorliegen und daß in jenen Fällen, in welchen der Kalziumspiegel bei den Alpenlärchen relativ niedrig gefunden wird, eine auffallend große Aufnahme an Aluminium zu verzeichnen ist. Beim Vergleich der Werte der einzelnen Vegetationsjahre ist zu ersehen, daß im Jahre 1942, das einen kühleren und niederschlagsreicheren Frühsommer als die Vergleichsjahre aufwies, bei den Alpenlärchen die Phosphorsäureaufnahme relativ gering ist.

Betrachtet man das Auf und Ab der Menge an aufgenommenen, lebenswichtigen Mineralstoffen auf der Basen- und Säurenseite der Analysenreihen, so gewinnt man den Eindruck, daß die Pflanzen unter dem Zwang

 $Tabelle\ I$:

Mineralstoffzusammensetzung der Asche vergilbter, abfallreifer Nadeln von Alpenlärchen und Sudetenlärchen, gewonnen in den Jahren 1941, 1942 und 1943


Alter: 1941 ... 8 Jahre Standort: Mariabrunner Forstgarten Seehöhe: 229 m ü. M., geogr. Breite: 48° 12', geogr. Länge: 16° 14' östl. v. Gr. Boden: schwach lehmiger Sandboden, bis 10 cm humusreich, Kalkgehalt: 1,04 °/º

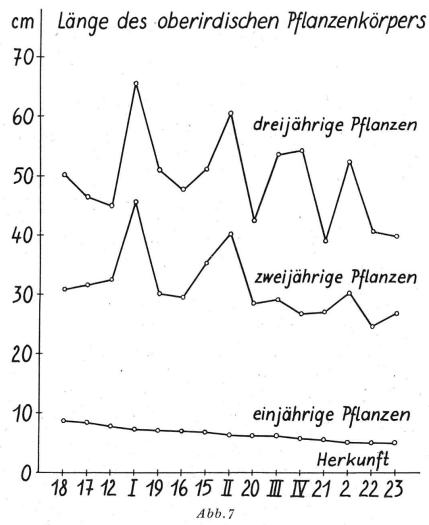
	CaO+	-SiO ₂ -Gehalt	54,10 65,30	63,01	49,58	52,62	57,25 53,66	59,90 61,80
	Alkalitätswert		39,5	80,7	47,7	77,6	71,3	94,1
	Basen	koeffizient	+24,6 +31,4	+39,3 +41,1	+51,9	+31,8 +36,6	+26,5 +27,2	+39,4 +39,9
		Cl	0,16	0,27	Sp. 0,43	0,32	0,63	0,78
		${ m SiO}_2$	41,20	38,30	34,50 34,26	30,74	31,10	34,60 38,30
)	æ.	SO_3	8,82	8,32	8,41	9,08	10,00	9,73
	ə	P_2O_5	11,08	8,62	6,86	9,97	11,88	8,05
	In 100 Teilen Reinasche	Mn ₃ O ₄	0,85	0,41	2,28	1,27	0,21	0,79
	eilen R	Fe ₂ O ₃	1,48	2,15	1,92	1,23	0,66	0,72
	n 100 T	Al ₂ O ₃	10,74	1,32	13,54	5,14	2,14 5,84	3,49
	1	MgO	5,39	11,93	7,57	10,12	10,31	10,17
0		CaO	12,90	24,71 22,50	15,08	21,88	26,15	25,30 23,50
		Na₂O	0,31	0,25	0,33	0,69	0,50	0,66
		K ₂ O	6,95	3,78	9,82	9,35	6,82	6,15
		asche in º/o der kensubstanz	5,72	5,76	5,58	5,14	5,51	5,25
	*	ų.	Sudeten	Alpen	Sudeten	Alpen	Sudeten	Alpen
	1	Herkunft	Turrach Blühnbach	Ullersdorf Jägerndorf	Turrach Blühnbach	Ullersdorf Jägerndorf	Turrach Blühnbach	Ullersdorf Jägerndorf
	Gewinnungsjahr		1941		1942		1943	

stehen, einen ihrer ererbten rassischen Veranlagung entsprechenden Gleichgewichtszustand im Anionen-Kationen-Summenverhältnis herstellen zu müssen. Interessanterweise tritt bei Mangel an Kalzium auf dem vorliegenden Standort der untersuchten Lärchenherkünfte ein Stoff (Aluminium) in verstärktem Ausmaß in den Pflanzenkörper ein, der wohl niemals die Funktion des Kalziums im Stoffwechsel dürfte ausüben können. Nach allem, was uns die Pflanzenphysiologie lehrt, müßte er bei höherer Konzentration das Zelleben als Giftstoff belasten.

Da die Kalziumaufnahme von der Intensität des Transpirationsstromes abhängig ist, scheint es gerade bei Alpenlärchen aus Kontinentalgebieten unter ozeanischen Klimabedingungen zu einem stärkeren Absinken des Kalziumspiegels zu kommen, wodurch dann der Eintritt anderer basischer Stoffe bei häufig veränderter Bodennährlösung, zwecks Ausgleich der Kationensumme, gefördert wird.

Da die Durchführung von Bauschanalysen und ihre rechnerische Auswertung nach dem Vorschlag von Herzner sehr zeitraubend ist, wurde eine einfachere Methode zur Orientierung über den Basiditätsgrad von Blattaschen gewählt. Sie besteht in der Feststellung der in 0,1 normaler Salzsäure löslichen Bestandteile. Da damit nicht alle Kationen erfaßt werden können, wie zum Beispiel Mangan, Aluminium und Eisen, ist der so gewonnene «Alkalitätswert» mit dem Herznerschen Basenkoeffizienten nicht identisch.

Die heimatlichen Standorte der untersuchten Lärchenherkünfte.

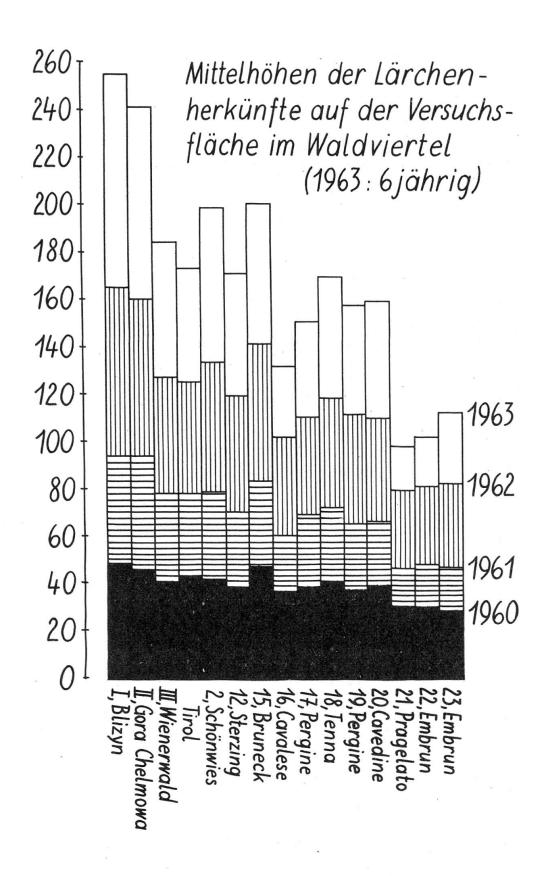

Tabelle 2: Untersuchte Herkünfte; Standortsbedingungen in der Heimat und am Anbauort

Nr.	Herkunft	Geogr. Breite	Geogr. Länge	Seehöhe in m	Exposition	Mittlere Jahres- temperatur	Mittl. Lufttemp. in der VegZeit	Jahresniederschlag in mm	Niederschlag in der VegZeit in mm
I II	Blizyn Gora Chel-	51° 00′	21° 00′	320	?	7,3°	14,6°	∼ 650	∼ 380
	mowa	51° 10′	20° 45′	320-340	3	7,3°	14,6°	∼ 650	∼ 380
III	Wienerwald	48° 10′	16° 10′	400	5	7,8°	14,6°	880	490
IV	Semmering	47° 38′	15° 50′	800	3	$6,0^{\circ}$	13,4°	1100	620
2	Schönwies	47° 12′	$10^{\circ}40^{\prime}$	1100	NW	4,7°	10,8°	1264	695
12	Sterzing	$46^{\circ}54^{\prime}$	11° 26′	1000	W und N	7,0°	14,6°	788	424
15	Bruneck	47° 00′	12° 00′	1200	NW	\sim 5−6°	~ 13,5°	800	450
16	Cavalese	46° 19′	11° 27′	1200	OSO	8,7°	16,8°	863	496
17	Pergine	$46^{\circ}~00'$	11° 00′	600-800	W	\sim 9,5 $-$ 10 $^{\circ}$?	1289	595
18	Tenna	46° 04′	11° 19′	600	fast eben	~ 12°	3	~1000	550
19	Pergine	$46^{\circ}~06'$	11° 23′	1300-1400	N	~ 9°	~ 14°	1085	579
20	Cavedine	45° 59′	11° 04′	600 - 700	NW ·	11°	~ 16°	1190	519
21	Pragelato	45° 01′	6° 56′	1900	NO	4,3°	11,5°	710	235
22	Embrun	44° 47′	6° 57′	1600	NO	6,7°	13,1°	1056	539
23	Embrun	44° 47′	6° 54′	1560	N	6,7°	13,1°	1056	539
	zuchtstätte:		16° 14′	290	eben	8,0°	15,6°	840	430

Forstl. Hochschulgarten

Im folgenden sei nun auf die Besprechung einiger Ergebnisse übergegangen, die Erhebungen an Junglärchen verschiedener Herkunft über deren Mineralstoffernährung ergeben haben (18). Über die Herkunftsgebiete klären Abb. 6 und Tabelle 2 auf. Es handelt sich dabei um Lärchenherkünfte, die zum Großteil im Jahre 1958 von Schober in Hann. Münden zur Anlage eines Parallelversuches in Österreich zur Verfügung gestellt wurden. Die Auswahl der Mutterbäume besorgte — soweit mir bekannt — Schober selbst, und die Zapfengewinnung erfolgte unter Aufsicht.

Abb. 7 zeigt die Wandlung in der Höhenentwicklung der untersuchten Lärchenherkünfte in ihren ersten drei Lebensjahren. Im allgemeinen sind die im ersten Jahr kräftiger entwickelten Lärchenherkünfte auch im zweiten und dritten Jahr größer als der Durchschnitt. Vom zweiten Jahr an bestehen jedoch schon auffallende Ausnahmen in der Wüchsigkeit, die im dritten Jahr noch deutlicher in Erscheinung treten. Besonders vorwüchsig wurden die polnischen Herkünfte, die Herkünfte vom Alpenostrand und die nordtiroler Herkunft Schönwies. Der heimatliche Standort der zuletzt angeführ-



Mittelhöhe der 1-, 2- und 3jährigen Lärchenherkünfte.

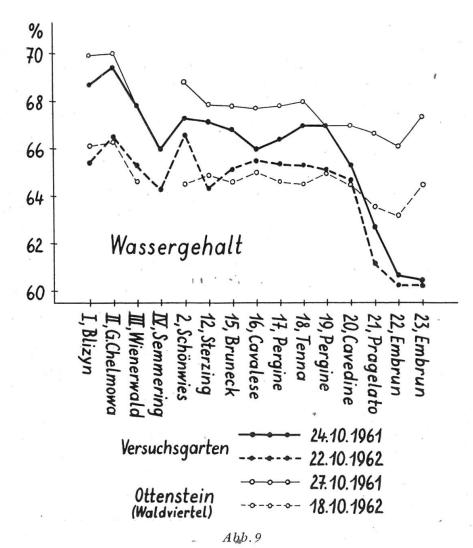
ten alpinen Herkunft sei durch folgende Angaben kurz charakterisiert: Die Mutterbäume stocken auf einem Nordwesthang in 1100 m Seehöhe, die Jahresdurchschnittstemperatur beträgt daselbst 4,7 °C und die mittlere Lufttemperatur während der Vegetationszeit von Mai bis September 10,8 °C. Von der zur Verfügung stehenden Jahresniederschlagsmenge von 1264 mm fallen in der Vegetationszeit 695 mm. Aus Abb. 7 geht eindeutig hervor, daß die ererbte Wuchsenergie eines Lärchenökotyps erst im zweiten und noch stärker im dritten Jahr zur Geltung kommt.

Wie sich die Höhenentwicklung dieser schon in den ersten Jahren untersuchten Lärchenherkünfte in den folgenden drei Jahren im Freiland bei Pflanzenabständen von 1,5 m verhält, veranschaulicht Abb. 8.

Als Anbauort wurde mit Absicht eine Gegend im niederösterreichischen Waldviertel gewählt, wo von Natur aus, wie Tschermak nachgewiesen hat (19), keine Lärchen vorkommen. Das Klima ist hier luftfeuchter, kühler und sonnenscheinärmer als jenes des vorderen Wienerwaldes, in welchem

 $Abb.\,8$ Mittelhöhen der Lärchenherkunfte auf der Versuchsfläche im Waldviertel.

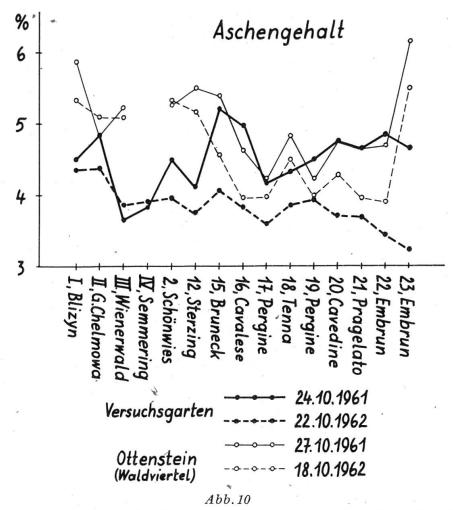
sich der Vergleichsanbauort, der forstliche Versuchsgarten, befindet. Der Boden im Waldviertel ist ein aus Granit hervorgegangener skelettreicher, sandiger Lehmboden, der vorher dem Getreidebau diente. Er weist im Vergleich zum tonreicheren Hochschulgartenboden mehr Kali, weniger Kalzium, jedoch als Folge früherer landwirtschaftlicher Pflege weit höheren Phosphorsäuregehalt auf. Im N-Gehalt beider Böden besteht nahezu kein Unterschied, nur das C/N-Verhältnis des Humus im waldviertler Boden wurde etwas ungünstiger festgestellt.


Alle Lärchenherkünfte weisen derzeit auf dem lärchenfremden Standort eine überaus üppige Entwicklung auf. Den höchsten Zuwachs besitzen die beiden Polenherkünfte, den geringsten die Herkünfte aus den Hochlagen der französischen Westalpen und auch die Herkunft aus dem angrenzenden italienischen Alpengebiet aus 1900 m Seehöhe (Provenienz Pragelato). Zu den Besserwüchsigen gehören auch noch die Herkünfte Wienerwald, die nordtiroler Herkunft Schönwies und die beiden südtiroler Herkünfte aus der Gegend von Sterzing und Bruneck aus 1100 m Seehöhe.

Von den Lärchenherkünften der beiden Vergleichsstandorte wurde zu Ende der Vegetationsperiode 1961 und 1962 von je 50 Individuen Nadelmaterial von der oberen Hälfte des Terminaltriebes zu Beginn der Nadelvergilbung gewonnen. Die Vergilbung trat bei den polnischen Lärchen und den Lärchen der höchsten Alpenstandorte um ungefähr zehn Tage früher ein als bei den anderen Herkünften.

Erhoben wurden der Wasser- und Aschengehalt der Nadeln, die Aschenalkalität und der Gehalt der Nadeln an wichtigen Nährstoffen.

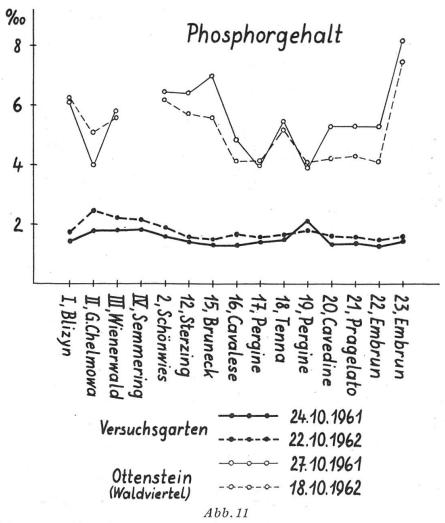
Wie schon bei den ein-, zwei- und dreijährigen Lärchen der verschiedenen Herkünfte festgestellt werden konnte (17), ergab auch die Untersuchung der Nadeln von vier- und fünfjährigen Lärchen hinsichtlich ihres Wassergehaltes die wohl nun zur Genüge erhärtete Tatsache, daß die polnischen Herkünfte die höchsten Wassergehalte, die Herkünfte aus den hohen Lagen der südlichen Westalpen die niedrigsten und die übrigen Herkünfte unter gleichen standörtlichen Bedingungen immer mittelhohe Wassergehalte aufweisen.


Die Abstufung der Wassergehaltswerte weicht auf den beiden Standorten – wie aus Abb. 9 zu ersehen ist – nur wenig voneinander ab. Interessant ist in bezug auf diese Eigenschaft noch die Feststellung, daß im Jahre 1962 gegenüber dem Jahre 1961 auf beiden Flächen ein durchschnittlich geringerer Wassergehalt zu verzeichnen ist. Daraus darf gefolgert werden, daß die Nadeln im Jahre 1962 einen stärker ausgebildeten Lichtblattcharakter als im Jahre 1961 aufgewiesen haben. Dies dürfte darauf zurückzuführen sein, daß im Jahre 1962 das Austreiben der Lärchen infolge der vorausgehenden kalten Vorfrühlingswitterung um fünf bis sechs Wochen später erfolgte als 1961, so daß zur Zeit des Austreibens bereits eine größere Tageslänge mit längerer Sonnenscheinstundenzahl zur Verfügung stand. Bemer-

Wassergehalt der Terminaltriebnadeln der 4- und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

kenswert ist in diesem Zusammenhang vielleicht noch, daß die Nadeln der aus den südlichen Westalpen stammenden Herkünfte (Nr. 21, 22 und 23) auf dem sonnenscheinreicheren Standort des Hochschulgartens in beiden Jahren einen erheblich niedrigeren Wassergehalt als die Vergleichspflanzen im sonnenscheinärmeren Waldviertel besitzen, demnach auf verschiedenes Lichtklima stärker als andere Herkünfte reagieren.

In bezug auf den Aschengehalt der Nadeln ergab sich, wie aus Abb. 10 hervorgeht, daß er im Jahre 1962 auf beiden Standorten bei der Mehrzahl der Herkünfte geringer war als 1961. Wir dürfen dies mit der kürzeren Dauer der Vegetationszeit im Jahre 1962 gegenüber 1961 in Verbindung bringen. Aus dem vorgeführten Graphikon ist ersichtlich, daß der Unterschied im Aschengehalt der Nadeln der Jahre 1961 und 1962 bei den Westund Südalpenlärchen stärker ausgeprägt ist als bei den Rassen aus lichtärmeren Gebieten.

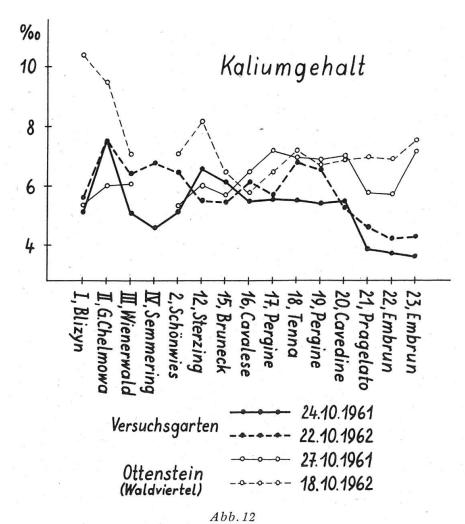


Aschengehalt der Terminaltriebnadeln der 4- und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

Die Linienzüge für den Nadelaschengehalt der Herkünfte verlaufen für ein und denselben Standort in den beiden Erhebungsjahren weitgehend parallel. Der Vergleich der beiden Standorte ergibt dagegen keine Übereinstimmung im Linienverlauf. Dies spricht dafür, daß die einzelnen Lärchenökotypen auf das standörtlich verschiedene Angebot an aufnehmbaren Nährstoffen in verschiedenem Grade reagieren. Es geht dies übrigens auch aus dem Gehalt an einzelnen Bodennährstoffen in der Nadelasche hervor.

Da besonders der Unterschied im Phosphorangebot des Hochschulgartenbodens im Vergleich zu jenem des Bodens im Waldviertel auffallend groß ist, soll das Verhalten der einzelnen Herkünfte in der Phosphoraufnahme als Beispiel der Reaktion auf verschiedenes Angebot einer näheren Betrachtung unterzogen werden.

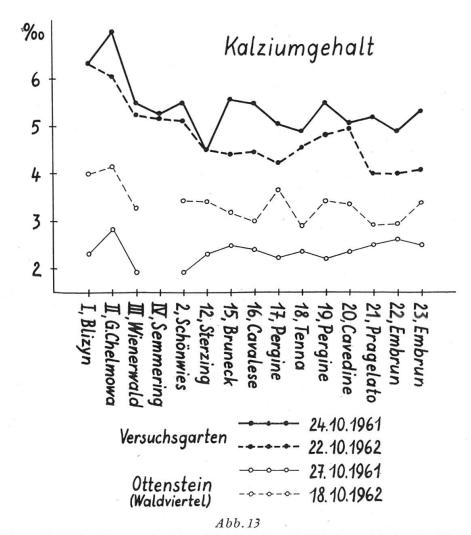
Der Gehalt an leicht löslichem Phosphor ist im Boden der waldviertler Versuchsfläche bis zu einer Tiefe von 50 cm rund zwölfmal so groß wie im



Phosphorgehalt der Terminaltriebnadeln der 4- und 5jährigen Lärcherherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

Boden des Hochschulgartens. Dementsprechend weist auch das Nadelmaterial von sämtlichen Herkünften auf diesem Standort bedeutend höhere Phosphorgehalte auf (Abb. 11). Im Durchschnitt beträgt der Phosphorgehalt im Jahre 1961 das 3,7fache, im Jahre 1962 das 3,1fache des Phosphorgehaltes der Vergleichsherkünfte auf dem Hochschulgartenboden.

Die einzelnen Lärchenökotypen haben auf das höhere Phosphorangebot sehr verschieden stark reagiert. So hat beispielsweise Ende 1961 die Herkunft Nr. 23 (Embrun, 1600 m) eine Steigerung auf das 6fache gegenüber dem Hochschulgartenwert aufzuweisen. Die Herkünfte Polenlärche aus Gora Chelmowa (320 bis 340 m Seehöhe) und Pergine aus den norditalienischen Alpen (1300 bis 1400 m) haben nur mit einer Steigerung auf das 2,2fache bzw. 1,8fache reagiert.


Wasserkulturversuchen bleibt es noch vorbehalten, solche verschiedene Herkunftsreaktionen auf ungleiche Nährstoffangebote einer exakteren Nachprüfung zu unterziehen.

Kaliumgehalt der Terminaltriebnadeln der 4- und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

Aus dem Vergleichsversuch auf den beiden Böden geht eindeutig hervor, daß das Angebot an aufnehmbaren Nährstoffen für den Nährstoffgehalt der Nadeln in erster Linie von Bedeutung ist. Dies beweist auch der im Durchschnitt 1,2fach höhere Kaligehalt sämtlicher auf dem Ottensteiner Boden stockender Herkünfte gegenüber dem Hochschulgartenvergleichsfeld, das einen um rund dreimal geringeren Gehalt an austauschbarem Kalium aufweist (Abb. 12). Umgekehrt hat der doppelt so hohe Kalziumgehalt im Versuchsgartenboden auch einen im Durchschnitt doppelt so hohen Kalziumgehalt in den Lärchennadeln dieses Standortes gegenüber dem anderen zur Folge gehabt (Abb. 13).

Dem niedrigeren Kalziumgehalt und dem sehr hohen Phosphorgehalt in den Nadelaschen der Herkünfte auf dem waldviertler Standort ist es zuzuschreiben, daß auch die Alkalitätswerte der Aschen hier relativ niedrig sind (Abb. 14). Wie weit ein solcher Ernährungszustand in der Zukunft das Gedeihen der im Waldviertel angebauten Lärchen beeinflussen wird,

Kalziumgehalt der Terminaltriebnadeln der 4- und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

bleibt einem weiteren Studium der älter werdenden Lärchenökotypen vorbehalten. Möglicherweise kann durch solche Vergleiche zur Klärung der Ursachen der Krankheitsanfälligkeit von Lärchenrassen einiges beigetragen werden.

Da im N-Gehalt, wie schon früher erwähnt, bei beiden Böden kein wesentlicher Unterschied besteht, wurde auch der Gehalt an diesem Nährstoff in den Nadeln der Herkünfte beider Flächen gleich hoch gefunden (Abb. 15).

Eine Vorstellung von der Größe des N-Gehaltes in Lärchennadeln können folgende Angaben vermitteln: Vor der herbstlichen Rückwanderung von Nährstoffen in Zweige und Stamm, die ungefähr Ende August bei Lärchen einsetzt, beträgt der N-Gehalt von vergleichbaren Nadelproben im Mittel für alle Herkünfte auf dem Forstgartenboden 2,30 Prozent, am 10. Oktober war er nur mehr 2,02 Prozent. Es betrifft dies den N-Gehalt von Kurztriebnadeln am besonnten obersten Pflanzendrittel. Die durchschnitt-

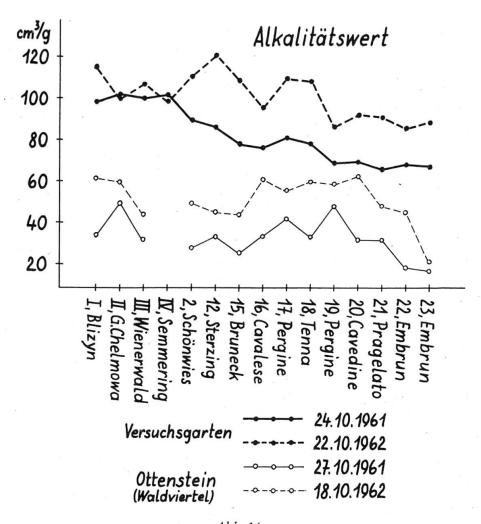
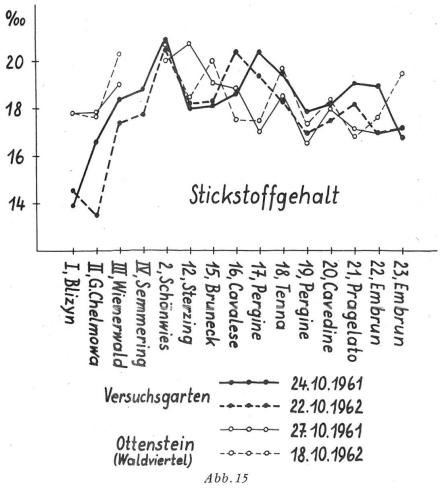


Abb. 14

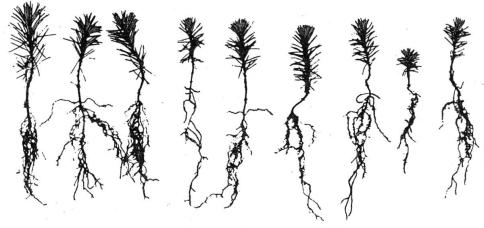

Alkalitätswert der Terminaltriebnadeln der 4- und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

lichen N-Gehalte von Terminaltriebnadeln, gewonnen Ende Oktober, betrugen im Mittel für alle Herkünfte auf dem Forstgartenboden 1961 1,83 Prozent, 1962 1,67 Prozent. Die entsprechenden Werte für die gleichen Herkünfte auf der waldviertler Anbaufläche betrugen im Durchschnitt 1,82 Prozent bzw. 1,85 Prozent.

Da die N-Gehalte der Herkünfte untereinander nur relativ wenig verschieden sind, ergibt sich bei ihrem Vergleich mit der durchschnittlichen Zuwachsleistung der Ökotypen, daß zwischen diesen beiden Größen bei den gegebenen Ernährungsverhältnissen keine irgendwie geartete Beziehung vorliegt.

Die Differenzen in der Wuchsenergie der Lärchenherkünfte (auf einem Standort mit annähernd gleicher N-Versorgungsmöglichkeit) sind daher allein auf Erbeinflüsse zurückzuführen.

Zur N-Ernährung der Lärche und ihrem N-Bedarf seien noch einige Tatsachen angeführt, die praktische Bedeutung besitzen, insbesondere für



Stickstoffgehalt der Terminaltriebnadeln der 4. und 5jährigen Lärchenherkünfte im Versuchsgarten und auf der waldviertler Versuchsfläche.

jene Fälle, wo Nährstoffarmut eines Bodens Düngungsmaßnahmen verlangt. Der holländische Forscher Van Goor (7) stellte auf den Lärchendauerversuchsflächen der holländischen forstlichen Versuchsanstalt fest, daß nur bei ausgesprochenem N-Mangel im Boden sehr geringe zugeführte N-Gaben eine wachstumsfördernde Wirkung hatten. Wurden die N-Gaben gesteigert, traten sofort Wachstumshemmungen auf. Beachtenswert ist noch seine Feststellung, daß nur auf phosphorreicheren Böden der Wuchs durch N-Düngung nicht gehemmt wird. Versuche, die in älteren Beständen der japanischen Lärche auf verschieden frischen Böden in Holland ausgeführt wurden, bestätigten, daß eine Verbesserung des P-Gehaltes der Böden bis zu Werten von 50 bis 70 mg je 100 g Boden eine stetige Zuwachssteigerung herbeiführte. Wenn nur eine bessere N-Ernährung durch Kalkung eingeleitet wurde, was auch im erhöhten pH-Wert zum Ausdruck kam, nahm die Wuchsleistung ab, und häufig kam es sogar zu ungünstigerer Schaftform (schlingerndem Wuchs).

Daß die Lärche besonders in den ersten Lebensjahren auf ein Zuviel an Stickstoff, der nicht in harmonischem Verhältnis zu anderen Hauptnähr-

Lärche nach verschulter 5-jähr. Tanne

ljährige Lärche nach verschulter 5jähriger Tanne bzw. nach 2jähriger Erle.

stoffen geboten wird, in ihrer Existenz gefährdet ist, bewies ein im Versuchsgarten unserer Hochschule ausgeführter Düngungsversuch mit den ersten herausgebrachten Vollhumondüngern der österreichischen Stickstoffwerke in Linz. Auf den nach Anleitung der Fabrik im Frühjahr gedüngten Beeten wurden nebeneinander Fichte, Weißkiefer, Schwarzkiefer und europäische Lärche angebaut. Im Laufe des Sommers starben die Lärchensämlinge mit rotbrauner Verfärbung ab, während die auf den nachbarlichen gleich stark gedüngten Beeten befindlichen anderen Nadelholzarten im wesentlichen keine größeren Schädigungen aufwiesen. Nur auf dem Beet mit den Weißkiefernpflanzen waren in merklichem Ausmaß auch absterbende Kiefern wahrzunehmen.

Noch eine andere, erst vor zwei Jahren ebenfalls im Versuchsgarten gemachte Beobachtung kann zur Bestätigung der auffallenden Empfindlichkeit der Lärche auf übermäßige N-Düngung, insbesondere im ersten Lebensjahr, angeführt und auch durch ein Bild (Abb. 16) belegt werden.

Auf einem Forstgartenbeet, das vorher etwa bis zur Hälfte eine dichtaufgelaufene zweijährige Schwarzerlenvollsaat trug und auf dem übrigen Teil verschulte fünfjährige Tannen, wurde europäische Lärche angebaut. Es zeigte sich bald ein ganz bedeutender Unterschied in der Entwicklung der heranwachsenden Lärche. Auf dem Schwarzerlenanbauteil blieben mit ziemlich scharfer Abgrenzung die Lärchen klein und kümmerten, während sie sich auf dem übrigen Beetteil, wo Tanne gestanden hatte, normal entwickelten. Die Kümmerlärchen zeigen eine starke Wurzeldeformation, die möglicherweise darauf zurückzuführen ist, daß die Überschwemmung mit Stickstoff die Pflanze zwingt, einen erheblichen Teil des von ihr aufgebauten Zuckers für die Eiweißsynthese abzuzweigen und daher den Wurzeln nur wenig Zucker zu ihrem Wachstum zur Verfügung gestellt wurde. Ich stütze mich hier auf eine Ansicht, die Laatsch in seinem jüngst erschienenen Büchlein, betitelt «Bodenfruchtbarkeit und Nadelholzanbau» (12), geäußert hat. Zuckermangel hat dann zur Folge, daß die Wurzelzellen keine entsprechend dicken Zellwände ausbilden können und auch die notwendige Energiequelle für die Aufrechterhaltung optimaler Atmung ihrer Wurzeln, die bekanntlich von Eidmann (4) bei Lärche besonders hoch gefunden wurde, nicht zur Verfügung steht. Bei mangelhaft ernährten Wurzelgeweben dürfte es auch dazu kommen können, daß nützliche Symbionten zu schädigenden Parasiten werden.

公

Zum Abschluß sollen noch einige interessante Ergebnisse bekanntgegeben werden, die Beschattungsversuche bei verschiedenen Lärchenherkunften hinsichtlich ihres Triebwachstums, der erzeugten Pflanzenmasse, des Wassergehaltes der Nadeln, ihrer Wasserabgabe und auch in bezug auf die Mineralstoffversorgung ergeben haben (11). Ziel dieser Versuche war es, die physiologische und stoffliche Reaktion auf unterschiedliche Lichtmenge bei verschiedenen Lärchenherkunften kennenzulernen.

Für den Beschattungsversuch, der während der Vegetationsperiode 1962 an zweijährigen Lärchen vorgenommen wurde, standen neun Herkünfte der europäischen Lärche sowie auf gleicher Parzelle erwachsene Japanlärche zur Verfügung (Tab. 3). Das Saatgut stammt aus anerkannten Beständen und wurde von österreichischen Waldsamenklenganstalten beschafft.

Jede der Versuchsherkünfte blieb auf der einen Hälfte der bebauten Beetfläche während der ganzen Vegetationsperiode in voller Belichtung, während die andere Beethälfte mittels Spanmatten, die in einer Höhe von 35 cm über dem Boden angebracht waren, beschattet wurde. Der Abstand der Spanleisten war so gewählt, daß nur 50 Prozent des vollen Tageslichtes den Pflanzen zukam. Die Gewinnung der für die Untersuchung benötigten Pflanzen erfolgte Mitte September, und die nach Schnellwägemethode ausgeführten Transpirationsstudien wurden während der Monate Juli und August vorgenommen. Wie aus Abb. 17 zu ersehen ist, ergaben sich für die Länge des oberirdischen Pflanzenkörpers bei den beschatteten Pflanzen fast durchwegs höhere Werte als bei den im vollen Tageslicht erwachsenen. Hinsichtlich der zuwachssteigernden Wirkung der Beschattung bestehen zwischen den einzelnen Lärchenprovenienzen größere Unterschiede. Sie beweisen den verschieden hohen Grad genetisch bedingter Schattenfestigkeit, über deren Bestehen ältere Vergleichsversuche und auch Erfahrungen aus der forstlichen Praxis keinen Zweifel ließen.

Tabelle 3: Im Beschattungsversuch untersuchte Herkünfte.

Herkunft	Seehöhe (m)
Altlengbach/Wienerwald	400— 500
Semmering	900-1300
Wechselgebiet	900-1300
Murau	900-1400
Kulm/Neumarkter Sattel	600-1200
St. Leonhard im Lavanttal	900-1400
Wipptal/Tirol	900-1500
Telfs/Tirol	900-1300
Sudeten	_
Japanlärche	

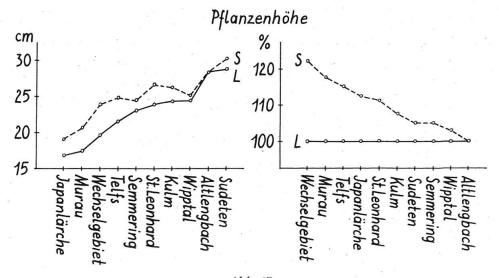
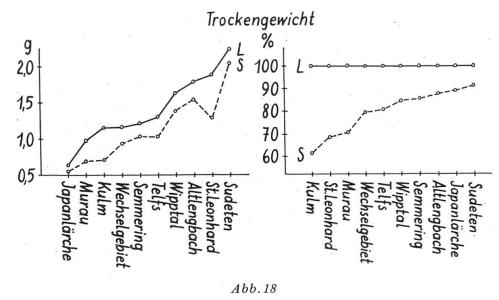
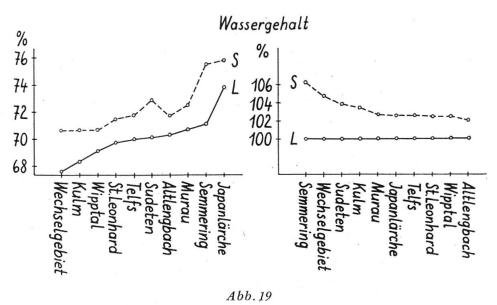



Abb.17

Pflanzenhöhe der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

Bezieht man die Pflanzenhöhe der beschatteten Individuen auf die = 100 gesetzten Werte der im vollen Tageslicht erwachsenen Pflanzen, dann ergibt sich, daß die Herkünfte Wechselgebiet, Murau und Telfs (Tirol) auf die Beschattung relativ stark, die Wienerwaldlärche aus Altlengbach überhaupt nicht, die Herkünfte Wipptal und Semmering sowie die Sudetenlärche nur verhältnismäßig schwach reagiert haben. Die zuletzt genannten Provenienzen vertragen demnach in stärkerem Maße Beschattung als die Lärchenökotypen aus dem Zentralbereich des alpinen Lärchenverbreitungsgebietes.

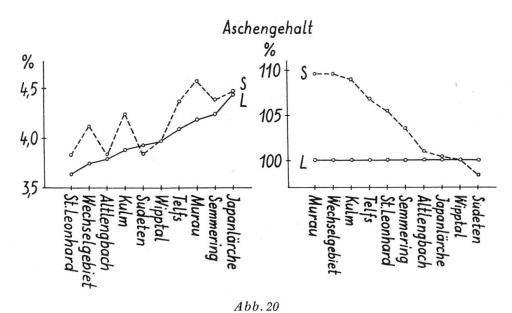


Trockengewicht des oberirdischen Pflanzenkörpers der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

Eine deutliche Reaktion auf die Lichtschwächung ergibt sich auch hinsichtlich des *Trockengewichtes* des oberirdischen Pflanzenkörpers, wie dies Abb. 18 zeigt. Das Trockengewicht der beschatteten Pflanzen ist durchwegs infolge der herabgesetzten Assimilationsleistung geringer als jenes der voll belichteten Pflanzen. Auch in bezug auf die Trockengewichtsverminderung infolge Lichtschwächung bestehen bei den einzelnen Lärchenökotypen ebenfalls wieder Unterschiede, die mit ihrer verschiedenen Fähigkeit, Beschattung zu ertragen, in Verbindung stehen.

Mit einer verhältnismäßig starken Herabsetzung der Trockengewichtsmasse haben wieder Provenienzen aus dem zentralen Bereich des alpinen Lärchenverbreitungsgebietes reagiert. Es sind dies die Herkünfte Kulm, St. Leonhard und Murau, alles Herkünfte aus der Nadelwaldstufe der Zentralalpen. Diese besitzen schon als jugendliche Pflanzen eine relativ geringe Fähigkeit, Beschattung zu ertragen, und benötigen stärkere Lichtungseingriffe, um am Leben zu bleiben. Am schwächsten haben auf den Lichtentzug die Sudetenlärche reagiert, dann die aus den östlichen Randgebieten der alpinen Lärchenverbreitung herstammenden Ökotypen Altlengbach und Semmering, wie dann auch die Japanlärche. Auffallend ist, daß auch wieder die Tiroler Herkunft aus dem Wipptal relativ schwach reagierte, während wir bei der Herkunft Wechselgebiet in Niederösterreich eine größere Schattenfestigkeit erwartet hätten.

Die Beschattung hat sich auch sehr deutlich auf den Wassergehalt der Nadeln ausgewirkt, wie dies aus Abb. 19 deutlich hervorgeht. Der Wassergehalt ist bei den unter vermindertem Lichtgenuß erwachsenen Pflanzen merklich höher als bei jenen, die dem vollen Tageslicht ausgesetzt waren. Diese Tatsache gibt uns das Recht, ohne Durchführung von anatomischen

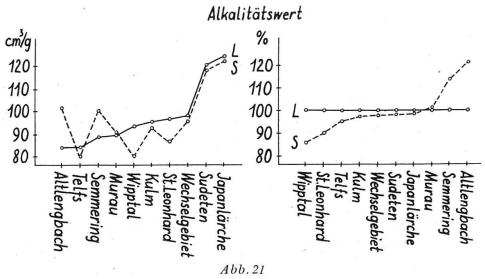


Wassergehalt des oberirdischen Pflanzenkörpers der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

Untersuchungen anzunehmen, daß durch die Verminderung der Lichtintensität Nadelorgane in Richtung zum Schattenblattblau zur Ausbildung kamen.

Nach dem festgestellten Wassergehalt bestehen auffallenderweise in der Stärke der Reaktion der einzelnen Herkünfte auf die Beschattung keine nennenswerten Differenzen (Parallellauf der Linien). Betrachtet man dagegen die Wassergehaltswerte der unter gleicher Licht- bzw. Schatteneinwirkung erwachsenen Herkünfte, dann bestehen auch bemerkenswerte Unterschiede, die auf einem vom Lichtklima des Heimatstandortes abhängigen Blattcharakter schließen lassen. Sie kennzeichnen die erblich bedingten Verschiedenheiten der Lärchenökotypen im Anspruch an das Lichtklima. Im großen und ganzen weisen die Lärchenherkünfte aus den Innenalpen einen niedrigeren Wassergehalt, also höheren Trockensubstanzgehalt der Nadeln auf. Sie besitzen somit ausgesprocheneren Lichtblattbau. Es sind dies vor allem die Herkünfte Wechselgebiet, Kulm, Wipptal, St. Leonhard (Lavanttal) und die Tiroler Herkunft Telfs. Dagegen kann bei den Provenienzen aus dem nordöstlichen Alpenvorland (Semmering und Altlengbach) sowie bei der Sudeten- und Japanlärche auf Grund des höheren Nadelwassergehaltes auf einen Nadelbau geschlossen werden, der im Gegensatz zu den ersteren mehr die Eigenschaften des Schattenblattes aufweist. Daraus folgt, daß die zuletzt genannten Lärchen zu optimaler Assimilationsleistung weniger hohe Ansprüche an die Strahlungsintensität stellen und auch an eine ganz anders geartete Photoperiodizität angepaßt sein dürften.

Wie aus Abb. 20 zu ersehen ist, ergibt sich hinsichtlich des Aschengehaltes der Nadeln, daß einige Herkünfte auf die Beschattung mit einer Erhöhung des Mineralstoffgehaltes reagiert haben, während andere trotz der

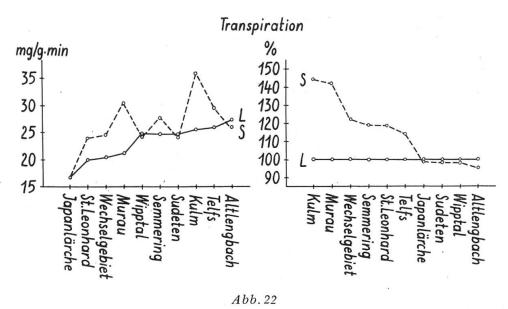


Aschengehalt der Nadeln der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

Beschattung nahezu die gleichen Werte wie bei voller Belichtung aufweisen. Die Herkünfte, die auf die Lichtschwächung mit einer deutlichen Erhöhung des Aschengehaltes reagiert haben, sind die Provenienzen aus dem Zentralbereich des alpinen Verbreitungsgebietes, und zwar die Herkünfte Murau, Wechselgebiet, Kulm (Neumarkter Sattel, südliche Steiermark), Telfs (Südhänge des Inntales) und St. Leonhard (Lavanttal). Keine Reaktion oder nur eine sehr schwache Reaktion in der Eigenschaft Aschengehalt zeigen die Herkünfte Altlengbach und Semmering, wie dann die Japan- und Sudetenlärche und auch wieder die Tiroler Lärche aus dem Wipptal.

Hinsichtlich der Alkalitätswerte der Nadelaschen ist bei der Mehrzahl der Herkünfte als Folge der Beschattung ein Absinken der Werte zu verzeichnen (Abb. 21). Da, wie einleitend erwähnt, wir den Alkalitätswert als Anhalt für das Summenverhältnis der vorhandenen basischen und sauren Aschenbestandteile betrachten, kann daraus gefolgert werden, daß bei den meisten Herkünften als Folge verminderter Lichtstärke eine Verschiebung des Basen-Säuren-Verhältnisses nach der sauren Seite hin eingetreten ist. Zu einem verhältnismäßig starken Absinken des Alkalitätswertes ist es besonders bei den dem Zentralbereich der alpinen Lärchenverbreitung angehörigen Herkünften gekommen. Dagegen ist, wie die Abbildung zeigt, bei der Sudetenlärche, der Japanlärche und bei den beiden Herkünften aus dem nordöstlichen Alpenvorland (Altlengbach und Semmering) kein nennenswerter Rückgang festzustellen. Die letzteren haben sogar mit einer Erhöhung der Werte reagiert. Bei ihnen ergab sich als Folge der Beschattung eine Verschiebung des Basen-Säuren-Verhältnisses nach der alkalischen Seite hin.

Es darf angenommen werden, daß Lärchenherkünfte, bei denen Be-



Alkalitätswert der Nadelasche der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

schattung zu besonders niedrigen Nadelaschenalkalitäten führt, früher unter Stoffwechselanomalien leiden dürften und dadurch weniger resistent gegen verschiedene schädigende Einflüsse der anorganischen und organischen Natur sein werden. Besonders muß dies eintreten, wenn Lärchen aus lichtreichem Gebirgsklima mit anderer Photoperiodizität in lichtärmere nördlichere Anbaugebiete gebracht werden, wo sie besonders sehr hohen Lichtabschwächungsgraden in luftfeuchten, niederschlagsreichen Jahren ausgesetzt sind.

Möglicherweise bilden die dann eintretenden Störungen im Nährstoffhaushalt, zu denen es bei Lärchenrassen aus Gebieten mit hoher Lichtintensität vor allem kommen wird, die Voraussetzung für die Erscheinung des «Lärchensterbens» und für die «Befallsmöglichkeit» durch den Erreger des Lärchenkrebses. In diesem Zusammenhang verweisen wir auf die Tatsache, daβ die untersuchte Population der Japanlärche besonders hohe Werte in bezug auf den Aschengehalt ihrer Nadeln und auch in bezug auf die Aschenalkalität aufweist. Sie übertrifft in diesen beiden Merkmalen in eindeutiger Weise alle Herkünfte der europäischen Lärche. Der hohe Aschengehalt läßt sich auf die lange Dauer vegetativer Tätigkeit des Assimilationsapparates dieser Lärchenart in unserem Klima zurückführen. Wieso es zur hohen Alkalität der Nadelasche bei ihr kommen kann, ist in Anbetracht ihrer geringen Transpirationsgröße – auf die ich bald zu sprechen komme – heute noch unverständlich.

An den belichteten und nicht belichteten Lärchen wurden auch Transpirationsmessungen durchgeführt. Diese wurden von meinem Assistenten, Herrn Dr. Kral, am 6., 11. und 24. Juli sowie auch am 21. August 1962 vorgenommen. Dabei ergaben sich für die in Frage stehenden Tage, wie aus Abb. 22 deutlich hervorgeht, für die einzelnen Herkünfte, je nachdem, ob

Transpiration der im vollen Tageslicht bzw. unter dem Beschattungsgitter erwachsenen Herkünfte.

die Pflanzen unter vollem oder vermindertem Lichtgenuß gestanden hatten, zum Teil stark abweichende Werte. Bezieht man die Transpirationsgrößen der beschatteten Pflanzen auf die = 100 gesetzten Werte der voll belichteten, dann ergibt sich folgende Reihung der Provenienzen: Kulm 144, Murau 142, St. Leonhard 120, Wechselgebiet 120, Semmering 118, Telfs 114, Japanlärche 100, Wipptal 99, Sudeten 98 und Altlengbach mit 96. Bei den Herkünften, die auf die Beschattung mit einer zum Teil recht erheblichen Erhöhung der Wasserabgabe reagiert haben, handelt es sich im wesentlichen um Herkünfte, die im Innenalpengebiet beheimatet sind. Dagegen haben die Herkünfte Semmering und Altlengbach sowie die Sudeten- und Japanlärche hinsichtlich ihrer Wasserabgabe auf die Lichtschwächung praktisch überhaupt nicht reagiert. Dasselbe gilt auffallenderweise auch wieder für die Tiroler Lärche aus dem Wipptal.

Nach den noch unveröffentlichten Transpirationserhebungen meines Assistenten Dr. Kral hat die im Durchschnitt während der Vegetationszeit relativ schwach transpirierende Japanlärche ihre Wasserabgabe besonders ab Juli stark eingeschränkt, woraus auf eine geringe Trockenresistenz geschlossen werden kann (10), die ja auch tatsächlich – wie bekannt – bei ihr vorliegt. In diesem Zusammenhang müssen wir uns die Tatsache vergegenwärtigen, daß gerade diese Lärchenart sehr krebsfest ist und an ihr die Erscheinungen des Lärchensterbens, wie sie bei der europäischen Lärche sehr häufig unter für sie ungünstigen standörtlichen Bedingungen festgestellt werden, nicht auftreten. Schädigungen durch Dürre, die bei der japanischen Lärche sehr häufig wahrgenommen werden, sind bekanntlich nicht identisch mit dem «rätselhaften Lärchensterben» der europäischen Lärche.

Zusammenfassend kann festgestellt werden, daß zwischen den untersuchten Lärchenherkünften in ihrer Reaktion auf eine Änderung des Lichtfaktors in mehrfacher Hinsicht Unterschiede bestehen, die das Vorhandensein von mehr oder weniger stark auf lichtklimatische Bedingungen reagierende Standortsrassen erkennen lassen. In ihrer Reaktion auf Beschattung ergeben sich charakteristische Unterschiede zwischen den Herkünften aus dem zentralen Teil der alpinen Verbreitung der Lärche und jenen der kollinen und montanen Stufe des nordöstlichen Alpenvorlandes, den Herkünften aus den Sudeten und jenen aus Japan. Die Provenienzen der ersten Gruppe zeichnen sich durch einen niedrigeren Nadelwassergehalt und somit durch einen ausgesprocheneren Lichtblattbau aus. Bei Beschattung reagieren sie stärker in ihrer Zuwachssteigerung, die als Etiolementerscheinung auftritt. In bezug auf ihren Wasserumsatz reagieren sie auf die Beschattung auffallenderweise mit einer erheblichen Erhöhung der Transpiration und hinsichtlich ihres Mineralstoffhaushaltes mit einer damit wahrscheinlich in Zusammenhang stehenden Erhöhung des Aschengehaltes, dessen Alkalität wesentlich niedriger gefunden wird.

Die Herkünfte der zweiten Gruppe, zu denen außer den angeführten auch die Tiroler Provenienz aus dem Wipptal gehört, weisen dagegen mehr einen dem Schattenblattbau nahestehenden ererbten Nadeltypus auf. Sie haben unter sonst gleichen Bedingungen eine höhere Fähigkeit, Beschattung ohne starke Veränderung ihrer Transpirationsgröße und ihres Mineralstoffhaushaltes ertragen zu können. Bei ihnen ergibt sich auch keine Verschiebung im Basen-Säuren-Verhältnis. Auf Grund ihres geringen Reagierens auf Beschattung sind Lärchenökotypen der Larix decidua und vor allem jene der Japanlärche für lichtklimatisch weniger begünstigte Standorte besser geeignet als Herkünfte aus den zentralalpinen kontinentalen Lagen.

Résumé

Résultats de recherches récentes sur la biologie des races du mélèze

On peut constater des différences assez grandes, à la façon dont réagissent les provenances de mélèze étudiées, à un changement de lumière. Cela prouve la présence de races réagissant plus ou moins fortement aux différences climatiques d'insolation. On constate des différences caractéristiques de réaction à l'ombragement, des provenances des Alpes centrales et de celles de l'étage collineux ou montagnard des Préalpes septentrio-orientales; des provenances des Sudètes et de celles du Japon.

Les provenances du premier groupe présentent une teneur en eau des aiguilles assez basse, ce qui indique la structure de feuilles de lumière. L'ombragement de telles races provoque une forte augmentation de l'accroissement qui cause l'étiolement des tiges, une augmentation étonnante de la transpiration, et une diminution d'alcalinité des substances minérales, à la suite de l'augmentation de la teneur en cendres, ce phénomène étant probablement lié au premier.

Les provenances du second groupe, auquel appartient aussi la provenance tirolienne du Wipptal, présentent plutôt un type d'aiguilles d'ombre. Elles supportent l'ombragement sans présenter d'augmentation de la transpiration ou du bilan des substances minérales, si les autres conditions du milieu restent semblables. On ne constate pas non plus de différence dans les rapports acides et alcalins. Ces provenances du mélèze européen et japonais se prêtent donc très bien aux régions les moins favorisées au point de vue de la lumière, et il faut les préférer aux provenances des régions continentales des Alpes centrales.

J.-Ph. Schütz

Literatur:

- (1) Arland A.: Tyrannei der Erde. Berlin 1959.
- (2) Burger H.: Untersuchungen über das Höhenwachstum verschiedener Holzarten. Mitt. d. Schweiz. Anst. f. d. forstl. Versuchswesen, 1926.
- (3) Einfluß der Herkunft des Samens auf die Eigenschaften forstlicher Holzgewächse. 4. Mitt.: Die Lärche. Mitt. d. Schweiz. Anst. f. d. forstl. Versuchswesen, 1935.
- (4) Eidmann F.E.: Untersuchungen über die Wurzelatmung und Transpiration unserer Hauptholzarten. Schriftenr. Akad. d. dtsch. Forstw. 1943.
- (5) Engler A.: Einßuß der Provenienz des Samens auf die Eigenschaften forstlicher Holzgewächse. Lärche (Larix europaea D.C.). Mitt. d. Schweiz. Anst. f. d. forstl. Versuchswesen, 1905.
- (6) Fischer F.: Die Jugendentwicklung von Lärchen verschiedener Herkunft auf verschiedenen Standorten. Mitt. d. Schweiz. Anst. f. d. forstl. Versuchswesen, 1950.
- (7) Goor C.P. van: Standort und Düngung von japanischer Lärche (Larix leptolepis) in den Niederlanden. Die Phosphorsäure, 1956.
- (8) Herzner R.: Ein Verfahren zur Bestimmung der Gesamtbasen und -säuren in Futtermitteln. Die Landeskultur, 1937.
- (9) Über die Anwendung des Amalgamverfahrens zur Bestimmung der Gesamtbasen und -säuren in Futtermitteln. Wiener landw. Ztg., 1938.
- (10) Kral F: Vergleichende Transpirationsstudien an Herkünften der europäischen Lärche. Cbl. f. d. ges. Fw., 1962.
- (11) Über Reaktionsweisen von Fichten- und Lärchenheikunften auf Änderung des Lichtfaktors. Cbl. f. d. ges. Fw., 1963.
- (12) Laatsch W.: Bodenfruchtbarkeit und Nadelholzanbau. München 1963.
- (13) Leibundgut H. und Kunz R.: Untersuchungen über europäische Lärchen verschiedener Herkunft. 1. Mitt.: Ergebnisse von Anbauversuchen. Mitt. d. Schweiz. Anst. f. d. forstl. Versuchswesen, 1952.
- (14) Leibundgut H.: Untersuchungen über europäische Lärchen verschiedener Herkunft. 2. Mitt.: Der jährliche Verlauf des Höhenwachstums. Schweiz. Ztschr. f. Fw., 1959.
- (15) Der Photoperiodismus als Mittel der Lärchenrassenforschung. Schweiz. Ztschr. f. Fw., 1962.
- (16) Schreiber M.: Beitrag zur Kenntnis der forstlichen und biologischen Eigenschaften einiger Klimarassen der europäischen Lärche (Larix decidua Mill.). Cbl. f. d. ges. Fw., 1940.
- (17) Zur physiologischen Reaktionsweise von Provenienzen der Europäischen Lärche (Larix decidua Mill.), der Japanlärche (Larix leptolepis Gord.) und der Sibirischen Lärche (Larix sibirica Ledeb.) auf gleiche Umweltsbedingungen. Cbl. f. d. ges. Fw., 1960/61.
- (18) Schreiber M. und Kral F.: Weitere Untersuchungen über waldbaulich beachtenswerte physiologische Reaktionsweisen von Herkünften der europäischen Lärche. Cbl. f. d. ges. Fw., 1963.
- (19) Tschermak L.: Die natürliche Holzartenverbreitung und die ökologischen Bedingungen im Waldviertel und Dunkelsteinerwald in Niederösterreich. Cbl. f. d. ges. Fw., 1932.