Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 109 (1958)

Heft: 12

Artikel: Fragen der forstlichen Transporttechnik

Autor: Wenger, G. / Hartmann, J. / Bavier, G.

DOI: https://doi.org/10.5169/seals-766304

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

seiner Anwendung bei Expropriation von Waldboden im Schoße des Forstvereins im oben angeführten Sinne überprüft werde, um nötigenfalls Vorschläge für wünschenswerte Anpassungen an die heutigen Verhältnisse oder mindestens für eine entsprechende Auslegung auszuarbeiten.

Forstingenieure R. Walter und A. Huber

Fragen der forstlichen Transporttechnik

1. Einführung

von G. Wenger, Kreisoberförster, Neuenstadt

Oxf. 37

In der Forstwirtschaft stellen sich die Fragen des Transportes in vielfachen, verschiedenen Zusammenhängen.

Die waldbauliche Planung stützt sich im wesentlichen auf die gegebenen Transportverhältnisse eines Waldgebietes. Jede waldbauliche Maßnahme erfordert eine umfassende Abklärung der verschiedenen Transportgrenzen im Bestand. Diese ergeben sich aus den gegebenen Geländeformen, den vorhandenen oder noch zu erstellenden Abfuhrwegen und den verfügbaren technischen Hilfsmitteln und Anlagen für das Holzrücken.

Die Leistungsfähigkeit eines Forstbetriebes hängt wesentlich ab von der Lösung der Transportprobleme:

- Zweckmäßiger Ausbau des Wegnetzes, Einsatz von Traktor oder Unimog mit Seilwinde für das Holzrücken, Anlagen für das Reisten.
- Bereitstellung des Holzes für den Verkauf an den Abfuhrwegen. Dazu ist in erster Linie die Einsicht des Waldbesitzers erforderlich, daß der Verkauf des Nutzholzes am Stock und des Brennholzes im Innern des Bestandes nur geringe Vorteile bietet, die zu den Nachteilen und Schäden in keinem vernünftigen Verhältnis stehen. Die technisch und wirtschaftlich zweckmäßigste Art des Rückens, die Anschaffung der geeigneten Geräte und Maschinen und deren richtige Verwendung sind Fragen, die sich jedem Forstbetrieb stellen.

Bei Preisvereinbarungen, Verkauf des Holzes, Vergleich der Erlöse sind Transportfragen von grundlegender Bedeutung abzuklären. Der Preis richtet sich nach der Uebergabeart, ab Waldweg, bahnverladen, auf den Werkplatz geliefert. Die Lagerung am Abfuhrweg ist bereits beim Holzrücken und Lagerung im Hinblick auf den späteren Abtransport zu berücksichtigen. Die Frage, ob der Forstbetrieb den Abtransport teilweise oder ganz mit eigenen Transportmitteln durchführen soll, hängt ab von der Verwendungsmöglichkeit der vorhandenen oder eventuell anzuschaffenden Transportmittel (Lastwagen, Unimog, Traktor) im übrigen Forstbetrieb.

Die Forschung und die Praxis namentlich in Deutschland befassen sich eingehend mit den Fragen der forstlichen Transporttechnik. Ihre Ergebnisse sind jedoch bei uns noch keineswegs in der Praxis verwirklicht. Ein Großteil der Waldbesitzer verkauft noch das Holz im Innern des Bestandes. Die Kenntnisse in der Technik des Holzrückens sind mangelhaft, selbst die einfachsten Hilfsmittel werden nicht verwendet. Erst wenn die grundlegende Bedeutung, die den Transportfragen im Forstbetrieb zukommt, vom Waldbesitzer erkannt und auch verwirklicht ist, wird eine aufbauende fortschrittliche Waldbehandlung möglich.

Die beiden nachfolgenden Vorträge behandeln die Fragen der Transporttechnik, unter Berücksichtigung der verschiedenen Verhältnisse im Flachland und im Gebirge.

2. Fragen der forstlichen Rücktechnik im Gebirge

Von J. Hartmann, Chur

Oxf. 373.2:375

Dem Transport des Holzes aus dem Bestand an den Abfuhrweg muß im Gebirge besondere Aufmerksamkeit geschenkt werden. Die Schäden, verursacht durch unfachgemäßes Rücken des Holzes, sind groß. Sie sind viel größer als Schäden, die bei den reinen Holzhauereiarbeiten entstehen können.

Nachstehend seien die heute üblichen Rückverfahren kurz beschrieben, wobei weniger von den technischen Problemen, als vielmehr vom Einfluß der Geländebeschaffenheit auf die Anwendung der verschiedenen Rückverfahren und vom Einfluß der neuzeitlichen Rückverfahren auf die generelle Wegplanung die Rede sein soll. Es muß in diesem Zusammenhang auch der Langstreckenseilkran behandelt werden, obwohl dieser in erster Linie ein Holztransportgerät ist.

Die heute üblichen Verfahren sind:

- Reisten, auch Riesen genannt,
- Hangaufwärtstransport am Boden schleifend mit: Pferd, Winden, Traktor, Jeep, Unimog,
- Hangabwärtstransport am Boden schleifend mit Abseilwinde Solothurn,
- Hangaufwärtstransport mit Kurzstreckenseilkran,
- Hangabwärtstransport mit Kurzstreckenseilkran,
- Rücken und Transport mit Langstreckenseilkran.

Der Hangaufwärtstransport mit Pferd ist heute ziemlich bedeutungslos und wird nicht behandelt. Ebenfalls nicht behandelt wird der Hangabwärtstransport am Boden schleifend mit Winde Solothurn, weil dieses Verfahren bei uns im Gebirge keine große Bedeutung erlangt hat und ich persönlich mit diesem Gerät nicht gearbeitet habe.

1. Reisten

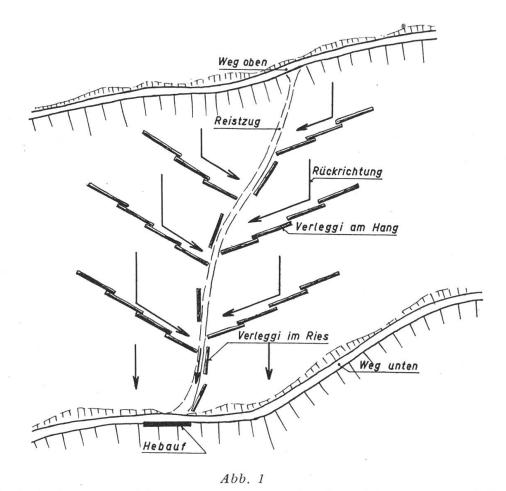
Das Holz wird durch Handarbeit an einem am Hang tiefer gelegenen Weg gebracht. Der gefällte Stamm darf nicht vom Stock weg in der Falllinie abgleiten, da sonst große Schäden am Bestand und geschlagenen Holz entstehen. Auch würde das abgleitende Holz am Abfuhrweg nicht anhalten. Das Holz muß aus der Schlagfläche zuerst in eine Gleitbahn gebracht werden, in der dieses, ohne daß Schäden entstehen können, abgleitet.

Die Gleitbahn nennt man Reistzug. Der Reistzug ist in kupiertem Gelände (Mulden und Hangrücken folgen sich), mit der in der Fallinie verlaufenden Mulde identisch. An flachen, gestreckten Hängen werden Reistzüge durch den Ausbau von Rückgassen angelegt.

Die Reistzüge sind ständig offen zu halten, damit das Holz aus folgenden Hieben am gleichen Ort aus dem Bestand gerückt werden kann.

Die beiden Hangrücken links und rechts eines Reistzuges bilden die Rückgrenzen für das Holz, welches in den Reistzug fällt.

Ein Bestand zwischen zwei Wegen wird also durch die Reistzüge und die dazugehörenden Rückgrenzen, die ebenfalls in der Fallinie verlaufen, in Teilschlagflächen unterteilt, aus denen alles Holz, und zwar dauernd, am gleichen Ort in den Abfuhrweg fällt.


Dies hat eine große Bedeutung für den Waldwegbau. Dort, wo das Holz in den Abfuhrweg gerückt wird, muß genügend Platz zur Verfügung stehen. Am Steilhang ist der Weg gleichzeitig Lagerplatz und Aufarbeitungsstelle. Bei der Einmündung des Reistzuges in den Abfuhrweg sind Abtragsböschungen zu vermeiden, d. h. der Weg muß vom Hang weg gebaut werden. Der Projektverfasser hat zu Beginn den mit dem Weg zu erschließenden Hang nach den besten Rückmöglichkeiten zu untersuchen.

Um das Holz aus der Schlagfläche im Bereiche eines Reistzuges an den Weg zu rücken, ist die Erstellung von Bauwerken notwendig. Diese sind in Abbildungen dargestellt, die wir der Zeitschrift «Bündner Wald» entnommen haben.

Aus dem Dargestellten ist ersichtlich, daß die Vorbereitungsarbeiten beim verfeinerten Reisten sehr umfangreich sind und an das Können des Arbeiters große Anforderungen stellen.

Für den Wirtschafter beginnt das Reisten mit der Schlagzeichnung, denn er muß dabei die Rückgrenzen streng beachten.

Für den Waldarbeiter beginnt das Reisten mit dem Fällen des ersten Stammes. Er muß das Gelände nach den besten Rückmöglichkeiten ansprechen können und «Verleggi, Schutz» etc. am richtigen Ort anbringen. Er hat nicht nur ein technisches Bauproblem zu lösen, sondern auch die örtliche Wahl der Schutzbauten, die für den Erfolg der ganzen Arbeit von ausschlaggebender Bedeutung ist, zu treffen. Eine Trennung zwischen Schlagarbeit und Rückarbeit am Steilhang ist deshalb unmöglich. Es wäre

Schlagfläche im Bereiche eines Reistzuges mit eingezeichneten Bauwerken

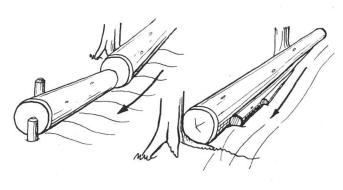


Abb.2

«Verleggi» unterteilt die Teilschlagfläche im Bereiche eines Reistzuges in noch kleinere Schlagflächen. Das auf dieser Fläche geschlagene Holz wird längs der «Verleggi» in den Reistzug gebracht. Die Verlegungen sind so nahe übereinander anzubringen (durch Geländebeschaffenheit gegeben), daß der Arbeiter das auf der Schlagfläche anfallende Holz jederzeit in seiner Gewalt behalten kann. Die «Verleggi» dient also dem seitlichen Zuzug des Holzes in den Reistzug und verhindert längs dem Reistzug angebracht (Abb. 1) das Ausbrechen des abgleitenden Holzes aus der Gleitbahn. Längs des Reistzuges muß vor allem bei Richtungsänderungen verlegt werden.

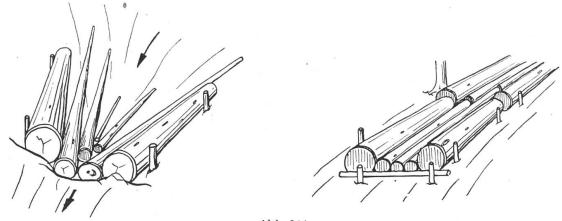
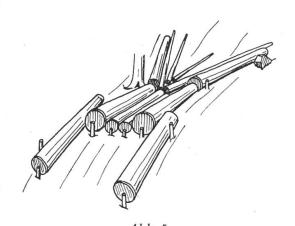



Abb. 3/4

«Scheeri und Schutz» dienen zum «Auslegen» des Reiszuges. Die «Scheri» sammelt und hebt das gleitende Holz an. Sie wird bei Uebergang von steiler zu flacher Stelle angebracht.

«Schutz» erleichtert das Gleiten auf flachen Stellen.

 $Abb.\, 5$ Kombination «Scheeri/Schutz

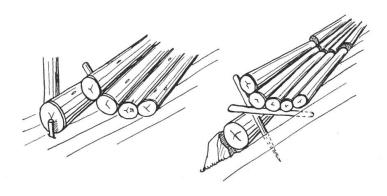
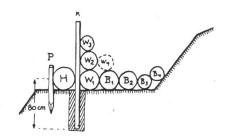



Abb.6

«Auszug»: schräg am Hang angelegtes Leitwerk. Muß so steil erstellt werden, daß Holz ohne Hilfe abgleitet. Wird auch bei Uebergang von einem Reistzug in den Abfuhrweg angebracht.

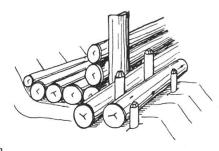


Abb. 7/8

«Hebauf»: soll abgleitendes Holz im Weg aufhalten. Wird dort erstellt, wo Geländebeschaffenheit die Erstellung eines Auszuges nicht gestattet.

also falsch, wollte man getrennte Reistkurse durchführen. Aus diesem Grunde wurden die Holzkurse für das Gebirge vor wenigen Jahren von 2 auf 3 Wochen verlängert und das Reisten in die Kurse eingebaut.

Der Ausbildung unserer Waldarbeiter im Reisten ist trotz neuer mechanischer Rückverfahren größte Beachtung zu schenken. Warum dem so ist, ergibt sich aus den späteren Ausführungen über den Einfluß der Rückverfahren auf die generelle Wegplanung.

2. Hangaufwärtsrücken mit Motorkraft am Boden schleifend

Es ist dies das einfachste der mechanisierten Rückverfahren und gelangt mit verschiedenen Zuggeräten recht häufig zur Anwendung. Nach Steinlin ist das Aufziehen mit leichter Winde 7/8 PS bei Lasten unter 1 m³ am wirtschaftlichsten. Bei größeren Lasten sind stärkere Winden oder andere Zugmittel zweckmäßig.

Das Aufziehen dem Boden nach kann ohne oder mit Doppeltrommel erfolgen. Das Rücken ohne Doppeltrommel hat den Nachteil, daß der Mann mit der Last aufsteigen und das Zugseil wieder von Hand ausziehen muß. Die Verwendung der Doppeltrommel erfordert eine etwas größere Installationszeit. Die Arbeit geht aber viel müheloser vor sich. Das Holz darf im letzteren Falle nicht zu verstreut liegen.

Die Untersuchungen der Eidg. Anstalt für das forstliche Versuchswesen (Untersuchungen zur Verbesserung des Holztransportes im Gebirge, II. Mitteilung von H. Steinlin und K. Zehntner) haben ergeben, daß in einfachem Gelände und bei kleinen Holzmengen, das Aufziehen über kurze Distanzen dem Boden nach wirtschaftlicher ist als das Rücken am Tragseil im Kopfhochverfahren. In schwierigem Gelände (blockig, felsig) hingegen ist das Rücken mit Tragseil schon über kurze Distanzen und bei kleiner Holzmenge wirtschaftlicher. Ueber größere Distanzen und bei großer Holzmenge ist auf jeden Fall das Kopfhochverfahren anzuwenden.

3. Das Aufziehen am Tragseil (Kopfhochverfahren)

Dieses Verfahren hat ebenfalls den Vorteil, daß die Last ohne Begleitung hochgezogen werden kann und daß das Zugseilende nicht von Hand ausgezogen werden muß. Das Auf- und Absteigen am Hang erübrigt sich. Der Wagen mit Zugseilende bewegt sich auf dem Tragseil von Abladestelle zu Aufladestelle und umgekehrt. Wie die Anlage technisch konstruiert ist und arbeitet, wurde in den oben angeführten Mitteilungen I und II der Versuchsanstalt eingehend beschrieben. Es handelt sich um ein Rückgerät, mit dem kleine Holzmengen wirtschaftlich transportiert werden können müssen. Die ganze Anlage muß leicht und einfach konstruiert und sehr beweglich sein. Damit werden die Anschaffungskosten in erträglicher Höhe gehalten, und auch die Installationskosten fallen dank der Beweglichkeit der Anlage nicht sehr ins Gewicht.

Als Zuggerät wird am zweckmäßigsten eine selbstfahrbare Winde verwendet.

Für den Einsatz der Anlage gelten ganz allgemein folgende Grundsätze:

- Das Tragseil ist nur so hoch zu montieren, daß der Trämel am fixierten Ende (einseitige Aufhängung) angehoben wird, wobei dieses auf der Rückstrecke unter dem Tragseil nirgends den Boden berühren darf. Die Wahl der Stützenhöhe ist von Einfluß auf die Installationszeit. Mit zunehmender Stützenhöhe steigen die Installationskosten. In unübersichtlichem Gelände ist vor der Installation die Aufnahme eines Längenprofils mit Meßband und Gefällsmesser zu empfehlen (Methode Pestal).
- Die Trassewahl ist durch das Gelände gegeben. Sie ist so zu treffen, daß möglichst viel Holz mit einer Seilstellung hochgezogen werden kann. Die Zuzugsdistanzen dürfen aber dabei nicht zu groß angenommen werden. Auch ist zu brücksichtigen, daß der Zuzug zum Tragseil nur in der Fallrichtung des Hanges nach oben erfolgen kann. Ebenfalls maßgebend für die Trassewahl ist die Abladestelle.

Auf einem breiten Hangrücken können sich die einzelnen Seilstellungen von der gleichen bergseitigen Verankerungsstelle aus fächerförmig öffnen.

An flachen, gestreckten Hängen wird das Seil schräg zur Fallrichtung des Hanges montiert. Das Holz innerhalb der Zuzugsdistanz unterhalb der Seilstellung kann so direkt zum Seil hochgezogen werden. Das Holz oberhalb der Seilstellung muß zuerst unter das Seil gereistet werden, was in vielen Fällen das Anbringen von Verlegern notwendig macht. Mit dieser Trassewahl kann in solchem Gelände die größte Holzmenge erfaßt werden.

An kupierten Hängen (Mulden und Hangrücken folgen sich in dichten Abständen) wird das Seil über den Hangrücken gespannt. Die Rückgrenzen verlaufen dann in den Mulden links und rechts der Seilstellung. Beim Reisten ist dies gerade umgekehrt. Sie erfassen in diesem Gelände, bei gleicher Anzahl Seilstellungen und Reistzügen, nach beiden Verfahren die gleiche Holzmenge.

- Die Transportdistanz von 250 m dürfte bereits an der oberen Grenze liegen. Auf jeden Fall ist es falsch, den Kurzstreckenseilkran für Transportdistanzen von 400–500 m einzusetzen. Die Transportgeschwindigkeit ist für größere Distanzen zu klein. Der Kurzstreckenseilkran ist ein Rückgerät und keine Transportanlage.
- Die Zuzugsdistanz zum Seil darf nicht zu groß gewählt werden. Sie dürfte je nach Geländebeschaffenheit 20-40 m beidseits des Tragseils betragen. Es ist wirtschaftlicher, auf einer bestimmten Fläche mehrere Seilstellungen zu wählen als mit einzelnen Trassen und zu großen Zuzugsdistanzen zu arbeiten. Die Installationszeiten belasten den Transport weniger als die Zuzugszeiten bei großer Entfernung des Holzes vom Tragseil.

Das Rücken des Holzes hangaufwärts im Kopfhochverfahren hat im Gebirge eine enorme Bedeutung erlangt. Dieses Verfahren erleichtert die Arbeit im Holzschlag ganz allgemein. Das Holz muß nicht in mühevoller Zappierarbeit schräg am Hang in einen Reistzug getrieben werden. Die Maschine übernimmt weitgehnd diese Arbeit, indem ein großer Teil des Holzes am Stock übernommen werden kann. Die Unfallgefahr ist bedeutend geringer als beim Reisten.

Wie wir vorhin gesehen haben, ist der Kurzstreckenseilkran das Rückgerät für kleine Holzmengen. Das Verfahren bietet auch in dieser Beziehung gegenüber dem Reisten gewisse Vorteile. Sie können mit kleinen Holzmengen den Reistzug nicht so ausbauen wie es wünschenswert wäre, weil sie sonst, nachdem die Bauwerke fertig erstellt sind, zuoberst wieder mit deren Abbruch beginnen müssen.

Nach unseren Erfahrungen errechnen sich für das Rücken mit dem Kurzstreckenseilkran ungefähr folgende Kosten pro m³:

Montage bei Seillänge 250 m: 4 Mann à 4½ Stunden = 18 Stunden Demontage ungefähr ½ Montagezeit 9 Stunden

total 27 Stunden

was bei einer Transportmenge von 40 m³ 0.70 Arbeitsstunden pro m³ ergibt. Die Installationskosten für den Kurzstreckenseilkran sind geringer als die Kosten für die Erstellung der Bauwerke beim Reisten. Dafür sind aber die reinen Transportzeiten etwas größer.

Die transportierte Holzmenge kann beim Kurzstreckenseilkran mit 2 bis 3 m³ pro Stunde angenommen werden. Im 9-Stunden-Tag beträgt demnach die totale Rückmenge 22.50 m³.

Arbeitsaufwand:

4 Arbeiter à Fr. 27.—/Tag
$$=$$
 Fr. 110.— $=$ Fr. 4.90/m³ Rückmenge $=$ Installationskosten: 0.70 à Fr. 3.— $=$ Fr. 2.10/m³ $=$ Windenkosten $=$ Fr. 1.—/m³ $=$ Total $=$ Fr. 8.—/m³

Der Rücktransport mit Kurzstreckenseilkran ist in unseren Verhältnissen eher billiger als nach dem Reistverfahren.

4. Das Abseilen am Tragseil

Das Holz kann nur dann im Kopfhochverfahren abgeseilt werden, wenn das Tragseil genügend gespannt und so steil ist, daß sich die Last beim Abfahren auf dem Tragseil nicht absenken kann. Bei ungenügender Steilheit des Tragseils bleibt der Wagen stehen und die Last senkt sich ab, da sie am Wagen nicht fest verankert ist. In den meisten Fällen muß man das Holz an beiden Enden aufhängen, wozu ein spezieller Laufwagen erforderlich ist.

Der Kurzstreckenseilkran ist für das Abseilen technisch noch nicht einwandfrei gelöst, und es dürfte überhaupt schwer fallen, eine Lösung zu finden, ohne den Nachteil einer bedeutend schwereren und damit unbeweglicheren und teureren Anlage in Kauf nehmen zu müssen.

Das Abseilen hat weiterhin den Nachteil, daß das Holz vor dem Abwärtstransport zuerst entweder mit der Winde hangaufwärts, oder im Reistverfahrend unter das Seil zusammengezogen werden muß. Wenn beispielsweise das Seil über einer Mulde gespannt ist, muß das Holz im Reistverfahren auf das Trasse gerückt werden. Es sind demnach außer der Installation des Seilkranes noch Vorbereitungsarbeiten für das Reisten zu treffen (Verlegungen). Wenn das Holz schon im Reistverfahren unter das Tragseil, welches in der Mulde verläuft, gebracht werden muß, wird es am billigsten nach dem gleichen Verfahren in den Abfuhrweg gebracht, denn es befindet sich in der Mulde ja bereits im Reistzug. Der Seiltransport ist in diesem Falle gegenüber dem Reistverfahren nicht konkurrenzfähig. Ich bin persönlich der Auffassung, daß in einem mit Wegen erschlossenen Waldgebiet das Abseilen kaum große Bedeutung erlangen wird. Wir verwenden den Kurzstreckenseilkran in meiner Verwaltung seit dem Jahre 1953 und haben seither im Abseilverfahren nur 3 Transporte ausgeführt.

5. Langstreckenseilkran

Bei der Erschließung eines Waldgebietes durch Wege haben wir eine klare Trennung zwischen dem Transport des Holzes innerhalb des Bestandes (Rücken) und dem Transport des Holzes außerhalb des Bestandes (auf dem Abfuhrweg). Der Langstreckenseilkran rückt (wenigstens zu einem Teil) und transportiert das Holz in einem Arbeitsgang. Die Behauptung, daß mit dem Langstreckenseilkran Schäden, die beim Reisten unvermeidbar seien, verhindert werden können, ist in dieser allgemeinen Form falsch. Sie ist falsch, weil bei richtiger Ausbildung der Waldarbeiter im Reisten auch mit diesem Verfahren Schäden vermieden werden können. Selbstverständlich gilt dies für normale Reistdistanzen und in nicht felsigem Gelände, also in einem durch Wege erschlossenen Gebiet. Sie ist aber auch falsch, weil mit dem Langstreckenseilkran, sollen Schäden vermieden werden, nicht alles Holz am Stock übernommen werden kann. Man muß auch bei diesem Transportverfahren gewisse Holzpartien an günstige Zuzugsorte zusammenreisten, oder in gewissen Fällen sogar mit einem Kurzstreckenseilkran zusammenrücken.

Der Langstreckenseilkran erschließt nicht im Sinne eines Weges. Er ist ein Holztransportmittel, das, wenn der Holztransport ausgeführt ist, wieder entfernt und am gleichen Ort mehrere Jahre, ja sogar viele Jahre nicht mehr aufgestellt wird. Wenn während dieser Zeit die Bestände behandelt werden sollen (Pflanzungen, Jungwuchspflege usw.), müssen trotzdem Wege, auf denen Leichttransporte ausgeführt werden können, erstellt werden. Mit dem Langstreckenseilkran können kleine Holzmengen (Zwangsnutzung, Durchforstungsmat. aus jungen Beständen) nicht transportiert werden. Man wird in der ganzen Bewirtschaftung unbeweglich, was auf die Produktivität der Bestände einen negativen Einfluß haben muß.

Der Einsatz des Langstreckenseilkranes muß deshalb auf bestimmte Gebiete beschränkt bleiben. In steilen und felsigen Waldungen, in denen die Erstellung von Waldwegen kostenmäßig nicht verantwortet werden kann, sind die Holztransporte dauernd mit Langstreckenseilkranen auszuführen. Es sind dies immer auch die weniger produktiven Gebiete. Auch in Waldungen, die durch Wege erschlossen werden sollen, deren Bauausführung aber noch zurückgestellt werden muß, leistet der Langstreckenseilkran vorübergehend vorzügliche Dienste. Es muß also in jeder Verwaltung oder in jedem Forstkreis im Zusammenhang mit der generellen Erschließungsplanung eine Wegebau- und Seilbahngebietsausscheidung getroffen werden. Damit kommen wir auf den Einfluß zu sprechen, den die modernen Rück- und Transportgeräte auf die generelle Planung der Walderschließung haben müssen. Am Beispiel eines Forstreviers der Stadt Chur sei dies nachfolgend erläutert:

Die Waldungen der Stadt Chur sind durch ein sehr dichtes Schlittwegnetz erschlossen (60 m'/ha), das größtenteils vor 1917 gebaut wurde. Der NW Hang (Abb. 10) zwischen der Talebene und dem Geländerücken, der sich von St. Hilarien über das Känzeli nach den Spuntisköpfen hinzieht, ist zwischen St. Hilarien und Känzeli bei einer Höhendifferenz von 600 m mit 6 Parallelwegen erschlossen. Also pro 100 m Höhendifferenz ein Weg, was in der Hangrichtung gemessen einem Wegabstand von 120–150 m gleichkommt. Das Wegnetz ist heute teilweise veraltet, weil es für den Schlittentransport gebaut wurde. Die Wege sind ohne festen Unterbau erstellt, Wegbreiten 2,20–2,50 m, Gefälle 12–25 %. Die generelle Erschließung mußte deshalb neu studiert werden. Eine Projektstudie ist auf der Photo ersichtlich. Die neuen Wege sind teilweise schon gebaut, oder dann in Ausführung begriffen, und zwar in einer Breite von 3,30 m inklusive Bankette.

Bei der generellen Planung hat man die uns heute zur Verfügung stehenden Lang- und Kurzstreckenseilkrane berücksichtig. Das Gebiet für den Langstreckenseilkran ist ausgeschieden.

Eine ganz besondere Bedeutung kommt nun dem Kurzstreckenseilkran als Mittel für den Hangaufwärtstransport zu. Wie oben ausgeführt, betragen die Reistdistanzen beim alten Wegnetz 120 bis 150 m. Bei den heutigen Wegbaukosten kann man kein so dichtes Wegnetz mehr bauen. Es ist dies aber auch nicht notwendig. Mit dem Kurzstreckenseilkran kann das zwischen zwei Wegen anfallende Holz über eine Distanz von 250 m an den hangoberen Weg gerückt werden. Das Holz, das tiefer unten anfällt, ist wie bis anhin über eine Distanz von 120–150 m an den hangunteren Weg zu reisten. Wir erhalten so mit beiden Rückverfahren kombiniert einen rechnerischen Wegabstand von 370–400 m, ohne in der Bewirtschaftung gegenüber heute irgendeinen ins Gewicht fallenden Nachteil in Kauf nehmen zu müssen.

	Legende zu Abb. 10
	altes Schlittwegnetz
	Kantonsstraße
	neue Wege 3.30 m breit
××	projektierte Wege 3.30 m breit
• • • •	Abgrenzung des Gebietes, das zufolge geländemässiger Schwierigkeiten nicht durch Wege erschlossen werden soll (Langstreckenseilkran).
• • — • • — • • —	Territorialgrenze
<u></u>	Talstationen und Seillinien für den Langstreckenseilkran
<u> </u>	Bergstationen und Seillinien für den Kurzstreckenseilkran
• • • • • • • • • • • • • •	Geländerippe: St. Hilarien-Känzeli-Spuntisköpfe

Photo Revier, Obertor, Chur, mit eingezeichnetem Wegnetz.

Nach dem neuen Erschließungsplan wird auch der vorstehend genannte NW-Hang nur noch durch 4, eventuell sogar nur durch 3 Wege erschlossen (auf Abb. 10 sind 4 Wege eingezeichnet). Dabei ist besonders beachtenswert, daß der oberste Weg (Fortsetzung der Känzelistraße über Pt. 1, 2, 3, 4, 5, 6, 7, 8) nicht im steilen NW-Hang projektiert ist, sondern im geländemäßig viel einfacheren, nach Osten exponierten Hang S der Linie St. Hilarien-Känzeli-Spuntisköpfe. Die Wendeplatten 1, 3, 5, 7 werden dabei immer auf der Geländerippe «Känzeli-Spuntisköpfe» angelegt, und zwar an Stellen, die sich gleichzeitig für Bergstationen von Kurzstreckenseilkranen eignen. Von diesen Wendeplatten aus wird das Holz aus dem sehr steilen oberen Teil des NW-Hanges mit Kurzstreckenseilkran nach oben gerückt. Die Fortsetzung der Känzelistraße erschließt also nicht nur den Osthang, über den sie geführt wird, sondern auch den oberen Teil des NW-Hanges. Wir bauen in einfachem Gelände und erschließen dank der Einsatzmöglichkeit des Kurzstreckenseilkranes von einzelnen Punkten aus zusätzlich ein extrem steiles Gebiet.

Zusammenfassend ist festzuhalten:

- Dem Reisten kommt im Gebirge weiterhin eine große Bedeutung zu, und zwar gerade in Verbindung mit Kurzstrecken- und Langstreckenseilkranen. Der Ausbildung der Waldarbeiter muß diesbezüglich mehr Beachtung geschenkt werden.
- Das Reisten sollte zum Gegenstand von Untersuchungen durch die Eidg. Anstalt für das forstliche Versuchswesen gemacht werden.
- Dank der Möglichkeit, mit Motorkraft hangaufwärts zu rücken, kann in Kombination mit dem Reisten, oder evtl. dem Hangabwärtstransport mit Kurzstreckenseilkranen der Wegabstand an Steilhängen ganz wesentlich vergrößert werden. Dadurch werden Mittel frei, die einen großzügigeren Ausbau des künftigen Wegnetzes gestatten. Auch im Gebirge ist vielerorts der Lastwagen das Transportmittel der nahen Zukunft.
- Der Langstreckenseilkran leistet im Gebirge vorzügliche Dienste. Er ist aber dauernd nur dort einzusetzen, wo der hohen Kosten wegen keine Wege gebaut werden können. Im Rahmen eines generellen Erschließungsplanes sind die Gebiete für den Langstreckenseilkran auszuscheiden.

3. Fragen der forstlichen Transporttechnik in Mittellandverhältnissen

Von Oberförster Otter, Olten

Oxf. 375

Im Gegensatz zu den Verhältnissen im Gebirgswald sind im einfachen Gelände des Mittellandes die wichtigsten Fragen der forstlichen Transporttechnik abgeklärt. Indessen ist es noch nicht so weit, daß die in den letzten Jahren gewonnenen Erkenntnisse in die Praxis bereits allgemein Eingang gefunden hätten. Dazu haben sich in jüngster Zeit neue Ausblicke

eröffnet, deren Erörterung im Rahmen der heutigen Fachsitzung zweifellos von Interesse ist.

Als Diskussionsgrundlage soll im folgenden der heutige Stand der Rückund Transporttechnik kurz umrissen werden. Dabei legen wir auf diejenigen Fragen besonderes Gewicht, die in Zukunft vermehrter Beachtung bedürfen (Rückgassen) oder noch näher abgeklärt werden müssen (Schichtholzrücken).

I. Holzrücken

1. Grundsätze und Vorbereitungsarbeiten

Als Rücken bezeichnen wir das Zubringen des Holzes aus dem Bestand an die Abfuhrstraße.

Es wird selbstverständlich danach getrachtet, diese Arbeit möglichst wirtschaftlich zu gestalten. Eine hohe Rückleistung ist jedoch erst eine Voraussetzung für den Erfolg. Auf lange Sicht gesehen ist nur derjenige Rückbetrieb wirtschaftlich, in dem die große Leistung durch absolut pflegliche Ausführung der Arbeit erreicht wird. Das Holz soll deshalb grundsätzlich von der Forstverwaltung und nicht etwa vom Käufer gerückt werden. Aus derselben Ueberlegung ist zu fordern, daß diese Arbeiten nicht im Akkord, sondern in Regie ausgeführt werden.

Ein genügend dichtes und gut ausgebautes Netz von autofahrbaren Waldstraßen erleichtert nicht nur den Abtransport des Holzes, sondern vermindert auch die Rückdistanzen. Als unerläßliche Grundlage jeglichen Holzrückens muß das Wegnetz durch ein System von Rückgassen ergänzt werden. Auf die noch meistenorts verkannte Bedeutung von systematisch angelegten Rückgassen als Detailaufschließung der Bestände muß mit allem Nachdrck hingewiesen werden.

Die Rückgassen sollen dem Bestand während seines ganzen Lebensablaufes dienen. Im Idealfall werden sie deshalb schon in Dickungen angelegt, was die Ausführung der Pflegemaßnahmen wesentlich erleichtert. Ein späterer Ausfall an Holzproduktion ist nicht zu befürchten. Im Kronenraum des auswachsenden Bestandes sind die Rückgassen überhaupt nicht zu sehen. Die Bäume stehen aber dann, scheinbar zufällig, so verteilt, daß das gerüstete Holz ohne Schaden anzurichten und mit geringen Kosten gerückt werden kann.

Vorläufig wird es sich in den meisten Fällen darum handeln, in älteren Beständen Rückgassen nachträglich anzulegen. Gewöhnlich läßt sich dies mit ganz einfachen Mitteln verwirklichen. Das Entfernen von einzelnen Bäumen, alten Stöcken und Steinen, eventuell das Verlegen von zwei bis drei Zementrohren in Entwässerungsgraben oder einige Spatenstiche in Bodenhindernissen genügen meistens, um große Bestandesteile wesentlich besser zu erschließen.

Die Vorbereitung des Rückens beginnt schon bei der Holzhauerei. Das Einhalten der «rückgerechten» Fällrichtung, niedrige Stöcke und am richtigen Ort aufgesetztes Schichtholz tragen zum störungsfreien Ablauf der Rückarbeit entscheidend bei. Das Einmessen des Rundholzes soll grundsätzlich vor dem Rücken erfolgen. Als eigentliche Vorbereitungsarbeiten seien das Bilden der Lose und die entsprechende Herrichtung der Lager sowie das Bereitstellen der notwendigen Werkzeugausrüstung erwähnt.

Um im voraus abschätzen zu können, ob das für einen bestimmten Fall vorgesehene Rückverfahren überhaupt zum Ziele führt, ist es nützlich, über die Zugkraftverhältnisse eine gewisse Vorstellung zu haben. Die Forstliche Versuchsanstalt stellte in Rückversuchen auf horizontaler Piste folgenden Zugkraftbedarf für entrindete Stämme fest:

Zugkraftbedarf = 18% des Stammgewichtes, bei Neuschnee auf harter Unterlage.

Zugkraftbedarf = 52% des Stammgewichtes, auf lehmig-sandiger Unterlage, durch Nässe aufgeweicht.

An Hängen zwischen 60 % und 100 % Neigung steigt der Zugkraftbedarf auf 75–100 % des Stammgewichtes an. Durch das Entrinden des Stammes kann der Zugkraftbedarf in günstigen Verhältnissen um 20% vermindert werden. Ein Vergleich der verschiedenen Befestigungsmittel zeigte, daß die Kette 20 % mehr Zugkraft erfordert als die Zange. Dabei war das Anhängen am Stammfuß nochmals um 15 % ungünstiger als am Zopf. Hinsichtlich des Reibungswiderstandes liegt die Drahtseilschlinge erwartungsgemäß zwischen Zange und Kette.

Auf hindernisfreier Bahn und hartem Boden kommt es in bezug auf den Kraftbedarf nicht sehr darauf an, ob der Stamm am Fuß oder am Zopf angehängt wird. Auf weicher Unterlage benötigt dagegen das Rücken Zopf voran rund 10% weniger Kraft. Das Anhängen am Zopf ist aber vor allem auch im Hinblick auf die Hindernisse vorzuziehen, da der Stamm Zopf voran viel wendiger ist.

2. Das Rücken von Stammholz mit Pferde- und Motorzug Zugmittel und Hilfsgeräte

Ungeachtet der allgemein zunehmenden Mechanisierung wird das Holz in den einfachen Geländeverhältnissen des Mittellandes noch vorwiegend mit *Pferden* gerückt. Mit keiner andern Zugkraft läßt sich so sorgfältig arbeiten wie mit dem Pferdezug. Auch kostenmäßig ist das Pferd der Maschine überall dort noch überlegen, wo es bis zum zu rückenden Stamm vordringen kann und dieser direkt angehängt wird. Zwei schwere Pferde bringen eine Zugkraft von 300–500 kg, für den Moment des Anziehens 1100 kg, auf. Wo diese Zugkraft nicht mehr ausreicht sowie dort, wo die Pferde wegen ungünstigen Geländes oder dichter Verjüngung nicht mehr bis zum Stamm herangeführt werden können, müssen einfache Seilzüge

oder Uebersetzungen eingerichtet werden. Wenn es sich dabei um einzelne Stämme handelt, wird die Wirtschaftlichkeit des Pferdezuges dadurch nicht stark beeinflußt. Sobald aber eine größere Zahl von Stämmen mit Hilfe von Drahtseilen und Rollen gerückt werden müßte, hat der Pferdezug dem Motorzug zu weichen. Auch über größere Rückdistanzen ist die Maschine dem Pferd überlegen.

Im Interesse eines pfleglichen Rückbetriebes muß aber verlangt werden, daß die Zugmaschinen in den Rückgassen oder auf den Wegen bleiben. Traktoren und andere geländegängige Motorfahrzeuge kommen deshalb für die Rückarbeit nur in Frage, wenn sie mit einer Seilwinde ausgerüstet sind. Eine Winde von 1,5–2 Tonnen Zugkraft mit 100–150 m Seil genügt in den meisten Fällen. Die Seilzuführung auf die Trommel muß derart konstruiert sein, daß der Zug in möglichst weiten Grenzen richtungsunabhängig ist. In dieser Hinsicht weist die Spill-Winde große Vorzüge auf.

In bezug auf die *Hilfsgeräte* wurden in den letzten Jahren erfreuliche Fortschritte erzielt. Es sei hier nur an die Drahtseilschlingen, Umlenkrollen und an den Rückrolli erinnert. Die schweren Eisenschlepphauben werden bald durch solche aus Leichtmetall, eventuell sogar aus Kunststoff, ersetzt werden. Zu den wichtigsten Hilfsmitteln sind auch die Drahtseile zu zählen. Leider wird noch viel zu wenig beachtet, daß die Lebensdauer derselben vor allem von der Art der Behandlung und des Unterhaltes abhängig ist. Versuche haben gezeigt, daß gepflegte, das heißt mindestens einmal jährlich gefettete Drahtseile ihren Dienst vier- bis fünfmal länger versehen als ungefettete.

Zu den Drahtseilen gehören zweckmäßige Verbindungsarmaturen. Hier leisten die SOLO-Haken und die Seilklemme «Blitz» der Forstwirtschaftlichen Zentralstelle seit Jahren ausgezeichnete Dienste.

Arbeitsorganisation

Das Holzrücken ist in erster Linie eine Organisationsaufgabe. Für das Rücken mit *Pferden* hat sich eine kleine Arbeitsgruppe, bestehend aus dem Fuhrmann mit zwei Pferden, einem im Umgang mit Pferden vertrauten Waldarbeiter und zwei weiteren Arbeitern, die meistens als Lagergruppe eingesetzt werden, am besten bewährt. In Schlägen mit leichtem Holz, wo die Zugkraft *eines* Pferdes ausreicht, wird das Gespann getrennt. Der vorher als Begleitmann tätige Arbeiter führt nun das zweite Pferd.

Solange die Zugmaschine gemietet werden muß, kann beim Rücken mit Motorzug grundsätzlich mit derselben Gruppenorganisation gearbeitet werden wie beim Pferdezug. Anders dort, wo eine betriebseigene Maschine zur Verfügung steht. In diesem Fall muß nicht darauf geachtet werden, daß die Maschine immer in Bewegung ist, und eine Gruppe von insgesamt zwei bis drei Mann (einschließlich des Fahrers) genügt ohne weiteres, um den Rückbetrieb schonend und rationell durchzuführen.

Ob mit Pferden oder mit Maschinen gerückt werde, der Erfolg hängt in jedem Fall davon ab, daß der Rückgruppe klare, bestimmte Anweisungen gegeben werden. Es ist dies zweifellos eine der interessantesten und dankbarsten Aufgaben des Försters.

3. Das Rücken des Schichtholzes

Gewöhnlich ist das Rücken des Schichtholzes in den meisten Betrieben noch dem Holzhauer überbunden, der für diese Arbeit Stoßkarren, Zweiradkarren oder Handschlitten zu Hilfe nimmt. Der Mangel an Waldarbeitern und die steigenden Löhne werden zweifellos mehr und mehr dazu führen, daß die menschliche Arbeitskraft höher bewertet und dort eingesetzt wird, wo sie wirklich nötig und unersetzlich ist. Damit wird auch das Handrücken über größere Distanzen rationelleren und weniger mühsamen Verfahren weichen müssen.

Das Schichtholzrücken tritt also aus dem Blickfeld der Holzhauerei heraus und wird zur neuen Aufgabe des Rückbetriebes. In letzter Zeit wurden in dieser Richtung umfangreiche Versuche durchgeführt, die der Praxis bereits wertvolle Hinweise geben können.

Eine Lösung, die sich in vielen Fällen als zweckmäßigste erweisen wird, besteht darin, daß das Schichtholz in Stücken von 6–8 m mit den gleichen Mitteln gerückt wird wie das Stammholz, um dann auf der Straße mit einer Pendelfräse eingeschnitten zu werden. Bei dieser als das «Verfahren lang» bezeichneten Lösung ist die zu rückende mittlere Last naturgemäß klein. Das Verfahren eignet sich deshalb vor allem für eher kürzere durchschnittliche Rückdistanzen bis etwa 100 m.

Die andere, als «Verfahren kurz» ausprobierte Lösung entspricht grundsätzlich der bisherigen Methode, indem das Schichtholz im Bestand eingeschnitten wird. Neu dagegen sind die Hilfsmittel, die für das Herausbringen der Meterrugel eingesetzt werden. In der Regel wird der Holzhauer die Meterstücke zwar nach wie vor mit Handgeräten rücken, dies aber nur noch auf höchstens 30–40 m, nämlich bis an die nächste Rückgasse. Dort wird das Holz von Rückmitteln übernommen, die in verschiedenen Kombinationen bereits mit bestem Erfolg ausprobiert wurden:

- Schlitten mit Pferde- oder Motorzug (Pontonschlitten «Schwyn»)
- Vierrad-Kleintraktor («Plumett») mit Schlitten oder Triebachsanhänger
- Einachstraktor mit Triebachsanhänger.

Die Auswahl unter diesen Kombinationen hat sich nach den örtlichen Gegebenheiten zu richten. In jedem Fall ist der Erfolg an das Vorhandensein gut geplanter Rückgassen gebunden. Allgemein gesehen, ist das «Verfahren kurz» für größere Rückdistanzen vorzuziehen, zumal sich in diesen Fällen die Auf- und Abladezeiten nicht mehr so stark auswirken. In bezug auf die Arbeitsorganisation hat die Gruppe von nur zwei Mann die besten Resultate gezeitigt.

Rücken von Schichtholz mit Pontonschlitten «Schwyn»; Lastgang mit 1,8 Ster am Hang von $80\,^{0}/_{0}$ Neigung. Zugmittel: Seilwinde.

II. Transportaufgaben

Die Forstverwaltungen haben sich in zunehmendem Maße auch mit eigentlichen Transportaufgaben zu befassen. Wir gestatten uns, hiezu auf einen Artikel von Forstmeister Hablützel¹ zu verweisen und daraus die wichtigsten Punkte als Diskussionsgrundlage zusammenzustellen.

1. Art der Transportaufgaben

a) Leichttransporte von Werkzeugen und Geräten, Kleinmaschinen, Pflanzen, Kompost, Pfählen usw.

Lastbereich 0,5–1 Tonne. Diese Transporte sind meistens von kurzer Dauer und lassen sich zeitlich nicht zu ganzen Transporttagen zusammenfassen.

b) Schwertransporte von Material für den Waldstraßenbau und -unterhalt, ferner von Schichtholz, Wellen und eventuell von Stammholz.

Lastbereich 3-5 Tonnen. Diese Transporte lassen sich in der Regel zu Transporttagen oder -wochen zusammenlegen.

¹ H. Hablützel, Motorfahrzeuge in der Forstwirtschaft «Wald und Holz», 39. Jahrgang, Nr. 9, Mai 1958.

c) Arbeitertransporte, die auch für den Forstbetrieb immer mehr zur Selbstverständlichkeit werden. Sie müssen täglich zu bestimmten Zeiten ausgeführt werden.

2. Die Möglichkeiten verschiedener Motorfahrzeugtypen

- a) Einachstraktor, kombiniert mit leichtem Anhänger mit 800 kg Tragkraft für Leichttransporte und einem Triebachsanhänger mit 1500 kg Tragkraft für Schichtholztransporte. Die Kombination mit dem Triebachsanhänger entspricht einem Fahrzeug mit Vierradantrieb und ist demzufolge sehr geländegängig. Nachteilig ist dagegen die geringe Wendigkeit beim Schichtholzrücken aus dem Bestand. Die angebaute Seilwinde wird nur ausnahmsweise verwendet, das Seil muß über eine besondere Umlenkrolle zugeführt werden. Erfahrungsgemäß wirft beim Einsatz der Seilwinde auch die Verankerung des Traktors gewöhnlich einige Probleme auf. Der Einachstraktor kann einem Kleinbetrieb mit kurzen Wegdistanzen gute Dienste leisten.
- b) Kleintraktor («Plumett»), kombiniert mit Triebachsanhänger und Schlitten für Schichtholztransport. Leistungsfähig für Leichttransporte. Der Kleintraktor kann zudem sehr gut für das Rücken von Stammholz eingesetzt werden. Die Seilzuführung der Spillwinde ist weitgehend richtungsunabhängig und gestattet ein leichtes Abziehen des Seiles. Der so ausgerüstete Plumett-Traktor ist als vielseitiges Transportmittel für Kleinund Mittelbetriebe zu bezeichnen, welche außer den Leichttransporten auch das Schicht- und Stammholzrücken selbst durchführen.
- c) Jeep oder Landrover sind besonders geeignet für Verwaltungen mit großen Wegdistanzen bei Vorherrschen von Arbeiter- und Leichttransporten. Der Vierradantrieb macht die Transporte von schlechten Wegverhältnissen unabhängig. Durch den Einbau einer Spill-Seilwinde würde sich dieser Fahrzeugtyp auch zum Stammholzrücken eignen.
- d) Unimog, kombiniert mit Anhänger, ist eines der vielseitigsten Fahrzeuge für mittlere und größere Forstbetriebe. Mit der Seilwinde von 3,5 Tonnen Zugkraft zum Stammholzrücken gut geeignet. Besonders interessant ist die Kombination mit den Geräten für den Wegunterhalt. Ferner lassen sich Schneepflüge, Schneefräsen, Straßenwischer, Kippanhänger und Transportmulden montieren. Allgemein auch für Schwertransporte geeignet.

Allein diese gedrängte Zusammenstellung wirft bereits eine Reihe von Fragen auf, die in der anschließenden Diskussion zweifellos angeschnitten werden. Mit der Anschaffung eines Motorfahrzeuges sind die Transportaufgaben noch nicht wirtschaftlich gelöst. Der bestmögliche Einsatz dieser Maschinen stellt an den Betriebsleiter ganz besondere Anforderungen. Die Frage, woher denn dieser das nötige Rüstzeug hernehme, gehört glücklicherweise nicht zu dem uns gestellten Thema...

4. Ergebnisse der Aussprache

Die Kombination von Seilanlagen und Reisten erlaubt im Gebirge bedeutend größere Wegabstände als man bisher gerechnet hat. Ueber die zweckmäßigen Distanzen besteht noch nicht genügend Klarheit. Man erachtet aber Abstände von 300-370 m als gute Richtlinie. Durch die kombinierte Arbeitsweise verschiebt sich die Transportgrenze nach unten gegen den nächstuntern Weg. Die Auswirkung der größeren Wegabstände auf die übrigen Arbeiten muß mitberücksichtigt werden. Untersuchungen, die sowohl die Exploitation als auch die Waldpflegearbeiten einschließen, liegen noch nicht vor. Die Verhältnisse sind jedoch im Gebirge und im Flachland verschieden. Im Gebirge ist die Komponente Transport stark überwiegend, im Flachland dürften eher die Waldpflegemaßnahmen entscheidend sein. Die Anlage von Rückgassen und deren späterer Ausbau als Zubringerwege erlauben das Wegnetz zu ergänzen und den waldbaulichen Bedürfnissen anzupassen. Für die Ausführung der Jungwuchspflege und Dickungspflege ist der Aushieb von Schneisen nicht unbedingt erforderlich. Wenn aber später doch Rückgassen gehauen werden müssen, so wird es zweckmäßig sein, schon frühzeitig Schneisen anzulegen, die schon bei den ersten Pflegemaßnahmen wertvolle Dienste leisten und später zu Rückgassen erweitert werden können.

Je nach vorhandenen Transportanlagen und Transportmitteln ist zu entscheiden, ob das Holz kurz oder lang am Schlagort aufgerüstet werden soll. Diesbezügliche Untersuchungen sind gemacht worden, sind jedoch noch nicht ausgewertet. Im Ausland werden ganze Bäume aus dem Bestand herausgeschafft und auf Rüstplätzen mit modernsten Maschinen aufgerüstet. Das Verfahren scheint für schwaches Holz und bei Verwendung von Kleinseilanlagen im Großbetrieb zweckmäßig zu sein. Für den schweizerischen Kleinbetrieb mit intensiver Waldpflege dürfte dieses Verfahren weniger in Frage kommen.

Zusammenfassend hat die Aussprache im wesentlichen gezeigt, daß dem Reisten im Gebirge, kombiniert mit Seilanlagen, eine große Bedeutung zukommt. Für die Wahl der Wegabstände ergeben sich neue Gesichtspunkte. Diese Fragen sind durch eingehende Untersuchungen näher abzuklären. Die Kenntnisse über die Verwendung von Seilkranen fehlen oder sind noch sehr mangelhaft. Es sollten Kurse für das untere und obere Forstpersonal sowie auch für Waldarbeiter durchgeführt werden.

(G. Wenger und G. Bavier)