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forestières sur ces stations extrêmes des observations souvent surprenantes et

propres à esquisser une méthode de reboisement. Le robinier convient le
mieux; il est là l'essence pionnier idéale. On le plante en brins d'un ou deux
ans, sur des sols en repos depuis un an, environ 5000 à 10 000 plants par ha.
On peut lui adjoindre de l'aulne blanc, du peuplier, du pin, si possible du
tremble et du saule. Au bout de quelques années la plantation d'érable, de

frêne ou de charme sous les robiniers devient possible. Il faut utiliser des

plants bien enracinés de sortes accoutumées à l'aridité; pour les opérations de

culture, seuls les soins les plus minutieux suffisent. Dans les endroits les plus
hostiles, on ne crée que des bouquets de plantes. L'emploi de buissons des
forêts riveraines naturelles et de l'argousier faux nerprun a échoué, probable-
ment à cause des dégâts provoqués par la transplantation. Par contre, le peu-
plier, planté en brin bien enraciné, a résisté à la sécheresse d'une manière
inattendue. On a par chance obtenu une provenance adéquate. /.-B. C.

Mathematische Formulierung des Gesetzes für Wachstum
und Zuwachs der Waldbäume und Bestände

Von Dr. ./. o. Prof. an der Universität Skopje
(V. R. Mazedonien-Jugoslawien)

(56:57)
1. Einleitung

Unter dem Wachstum eines Organismus versteht man Veränderun-
gen, welche an der Größe und dem Gewicht desselben entstehen im
Verlauf eines Teiles seiner Lebenszeit. Das Wachstum ist ein eng mit
der Zeil verbundenes Ereignis. Es beginnt im Moment der ersten Er-
scheinung eines Organismus und dauert an, solange dafür günstige
Umstände bestehen. Es ist interessant, festzustellen, daß sich das Wachs-
tum in allen Gebieten der organischen Welt nicht auf verschiedene Art
abwickelt, sondern denselben charakteristischen Verlauf aufweist. Wie
das Wachstum bei ganzen Organismen verläuft, so vollzieht es sich
auch bei getrennten Organen resp. bei ihren einzelnen Zellen. Das be-
stätigt uns, daß der Verlauf des Wachstums eines Organismus einem
allgemeinen Gesetze untersteht. Die mathematische Formulierung die-
ses Gesetzes ist eine wichtige Aufgabe der Forstleute, Landwirte und
Biologen.

Während die mathematische Formulierung des Wachstumsgesetzes
für einige Gebiete von mehr theoretischem Interesse ist, hat sie für die
Forstwirtschaft, wo die Zeit ein sehr wichtiger Produktionsfaktor dar-
stellt, vor allem für die Praxis große Bedeutung.

Das Wachstumsgesetz, in passender Form ausgedrückt als Zeit-
funktion, kann uns bei Aufstellung von Ertragstafeln behilflich sein. In
letzter Zeit finden die Wachstumsfunktionen auch Anwendung bei der
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Lösung anderer Probleme aus dem Gebiete der Forstwissenschaft und
-praxis. So hat zum Beispiel Prof. Dr. Levakowitsch' die Kon-
stanten einer von ihm entworfenen Wachstumsfunktion für das nume-
rische Bonitieren von Beständen angewendet. Meiner Meinung nach
ließe sich eine passende Wachstunisfunktion mit noch größerem Erfolg
ausnützen bei einer numerischen Untersuchung des Wachstums und
Zuwachses verschiedener Waldbäume und Bestände.

Eine Wachstuniskurve stellt uns den Gang des Wachstums dar.
Sie illustriert das Wachstunisgesetz. Seit mehr als hundert Jahren ist
ihre allgemeine Form in der Forstwissenschaft bekannt. Zahlreiche
Stammanalysen sowie langjährige Beobachtungen des Entwicklungs-
ganges von Beständen zeigten, daß die Wachstumskurven eine S-Form
haben.

Die Wachstumskurve beginnt im Koordinatenausgangspunkt, ver-
läuft tangential zur Abszisse aufwärts, erreicht einen Wendepunkt und
geht nachher in Konkavform über; im Unendlichen wird sie parallel
zur Abszisse.

Der allgemeine Charakter der Wachstumskurven ist aus Abb. 1

ersichtlich, das die Höhenwachstumskurven der Fichte von Tirol nach

äfebiMung' 1

1 Levakovic A. O izgledima i mogucnostima numerickog bonitiranja sumskih

stojbina. Glasnik za Sumske pokuse. Zagreb 1938 god.
2 Guttenberg. Wachstum und Ertrag der Fichte im Hochgebirge. 1915.
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Für die Forstwissenschaft hat nicht nur die Wachstums-, sondern
auch die Zuwachskurve eine große Bedeutung.

Die Zuwachskurve beginnt im Koordinatenausgangspunkt und
steigt tangential und konvex zur Abszisse an. Nach Erreichen des

Wendepunktes verläuft sie konkav bis zu einem Maximum, nachher
abfallend bis zu einem andern Wendepunkt. Nach diesem sinkt sie wei-
ter ab, jedoch wieder konvex. Im Unendlichen fällt sie zusammen mit
der Abszisse.

Die Form der Zuwachskurven geht aus Abb. 2 hervor, aus der Zu-
wachskurve für den Höhenzuwachs der Tiroler Fichte nach Zahlen-
angaben von Guttenberg (die Zuwachskurven entsprechen also
den Wachstumskurven in Abb. 1).

ü&WMunt/ 2

Wenn wir die Wachstums/on/rf/on mit der Gleichung
17 /(%> (1Ï

bezeichnen, in welcher x das Alter des Baumes oder Bestandes bedeutet,
dann muß die Zumacüs/unAhon die erste Ableitung der Funktion (1)

sein, d. h.
y' /'(x,) (2)

Nach der Beschreibung des allgemeinen Charakters der Wachs-
tumskurve muß die Funktion (1) folgende Bedingungen erfüllen:

1. Für x 0 muß g 0 sein; die Kurve fängt beim Nullpunkte des

Koordinatensystems an.
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2. Für x 0 muß die erste Ableitung y' 0 sein; die Kurve verläuft
zuerst tangential zur Abszisse.

3. Für einen Zwischenwert von x muß die zweite Ableitung y" 0

sein; die Kurve verläuft über einen Wendepunkt.
4. Für x oo soll die erste Ableitung y' 0 sein; in der Unendlich-

keit verläuft die Kurve parallel zur Abszisse.
Die Zuwachsfunktion (2) ist, wie oben angegeben, die erste Ab-

leitung der Wachstumsfunktion (1). Nach der Beschreibung des Cha-
rakters der Zuwachskurven soll die Funktion (2) folgenden Bedingun-
gen entsprechen:

1. Für x 0 soll y' 0 sein; die Zuwachskurve fängt im Koordi-
natenanfang an.

2. Für x 0 soll y" 0 sein; die Kurve verläuft zuerst tangential
zur Abszisse.

3. Für einen Zwischenwert von x soll y" 0 sein; die Kurve ver-
läuft über ein Maximum.

4. Für zwei Grenzwerte von x soll y"' 0 sein; die Kurve hat zwei
Wendepunkte, die sich rechts und links von der Maximalordinate
befinden.

5. Für x oo soll y' 0 sein; die Zuwachskurve fällt im Unend-
liehen mit der Abszisse zusammen.

Hier muß hervorgehoben werden, daß genauere Ausdrücke für die
Funktionen (1) und (2) nicht nur Kurven mit allen Charaktereigen-
Schäften der Wachstums- und Zuwachskurven von Waldbäumen und
Beständen, sondern auch eine kleine Anzahl Konstanten aufweisen müs-
sen. Dabei sollen letztere sich leicht berechnen lassen, besonders nach
der Methode der kleinsten Quadrate, weil die Auffindung einer guten
Funktion des Wachstums ja vorwiegend praktischen Zwecken dienen soll.

Mit der Ermittlung genauerer Ausdrücke für diese Funktionen be-
faßten sich im Verlaufe von anderthalb Jahrhunderten ziemlich viele
Gelehrte. Auch eine Anzahl von Forstleuten bemühte sich um diese

Frage. Eine Übersicht über diese Bemühungen hat Peschel® im
«Tharandter Forstlichen Jahrbuch» 1938 gegeben. Trotzdem aber blieb
dieses Problem weiterhin ungelöst.

Wir legen hier nun zwei Wachstums- und zwei Zuwachsfunktionen
dar, welche, wie später gezeigt wird, allen notwendigen Bedingungen
entsprechen.

2. Ableitung der vorgeschlagenen Wachstums- und Zuwachsfunktionen

Aus dem Charakter der Zuwachskurve werden wir vor allem syste-
matisch die Zuwachsfunktionen ableiten und daraus auf dem Wege der
Integration die Wachstumsfunktionen.

s Peschel. Die mathematischen Methoden zur Herleitung der Wachstumsgesetze
von Baum und Bestand Tharandt. Forstl. Jahrb., II. 3/4, 1938.
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Wir setzen voraus, daß die Zuwachskurve die folgende einfache
Form besitzt: Sie fängt auf der Abszisse im Abstände a vom Koordi-
natenursprung an, erreicht ein Maximum, nimmt wieder ab und endet
in der Abszisse im Abstände M vom Koordinatenursprung. Diese Kurve
ist in Abb. 3 dargestellt.

Abïx'/dung 3

Die analytische Gleichung dieser Kurve soll folgende Bedingungen
erfüllen:

1. Für x a soll ;/' 0 sein.

2. Für x M soll ;/ 0 sein. >

3. Zwischen a und M soll es nur ein Maximum geben. j

(3)

Diese Kurve kann analytisch durch eine rationale Bruchfunktion
definiert werden

2/'
ax^ + &x + c

(4)
x^ + »ix** + 6jX + Ci

wobei die Werte der Konstanten bestimmt sein sollen.
Da die Kurve von Abb. 3 nur die Bedingungen (3) erfüllen muß,

setzen wir, um ihre einfachste Funktion zu bekommen,
di Ci 0

und kommen so zur Gleichung
a.x'2 + fcr + c

2/ (5)

Wenn wir nun die Werte der Konstanten aus der Gleichung (5)

entnehmen, um die Bedingungen (3) zu erfüllen, erhalten wir
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— ai fjüf —
y' 4 —, Jfc > 0 (6)* J/tf»

^ '

oder
& / a \ / .r \ï('-T)('-*) <"

Dieselben Bedingungen erfüllt auch die allgemeinere Funktion
_Ö

4 / a \ TT / a; \ '"
»'•"-tî('-T) ('-*) <"

in welcher h und m willkürlich bestimmte, positive Konstanten dar-
stellen.

Weil die wirkliche Zuwachskurve vom Koordinatenursprung aus-
geht und bei £ oo in der Abszissenachse endet, muß man annehmen,
daß a dem Nullwert zustrebt und il/ dem oo. In diesem Falle hätten wir

lim «/'aM lim 1 - - (l—~
a—»0 ^ \ « / \

co

_ A
lim y'„M (9)

Diese Funktion erfüllt, wie wir im nächsten Kapitel sehen werden,
alle Bedingungen einer richtigen Zmuac/js/un/cfion (mit zwei Kon-
stanten).

Es ist schon hervorgehoben worden, daß die Zuwachsfunktion die
erste Derivation der Wachstumsfunktion darstellt. Deshalb bekommen
wir die gesuchte Funktion, wenn wir die Gleichung (9) integrieren, d. h.

6
_

6 _
ö

_
& r * — & & «

./ 4 '/.<• le </ -e
r e « & r

4 '/.<• e
J «2 5 J « &

_
J iie * (10)

d. h. eine Wacüstu/m /unA/ /on mit zwei Konstanten, wobei A ah
und a > 0.

Der Funktion (8) kann noch eine allgemeinere Form gegeben
werden

_6_

4 / a \ ~ö~ / a; \(i-ir) au

wobei auch c eine bestimmte positive Konstante darstellt. In diesem
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Falle würde die Kurve nicht im Abstände a vom Koordinatenursprung
_1_

ausgehen, sondern im Abstände a c wodurch jedoch die Gestalt der-
selben (Abb. 3) sich nicht ändert.

Wenn wir auch diesmal /im « 0 und /im il/ c© setzen, er-
halten wir

6

& / a \ V / x

(l-,„ (l-„
_ _ft_

e
*

(12)

d. h. eine Zuiüac/i.s/unAh'on mit drei Konstanten.
Wenn man diese Funktion integriert, erhält man

ft 6 ö

r e yc Ar — & A «c

J A — dx — e d — e (13)
J x" + * &c J x" Ac

Weil A ahc, erhält man eine VVacA.s-f2n27.s7i/nAfion mit drei Kon-
stanten

6

2/ ae .<' (14)

3. Untersuchung der abgeleiteten Funktionen des Wachstums und Zuwachses

Im ersten Kapitel haben wir die Bedingungen, welchen eine rieh-
tige Wachstumsfunktion und eine richtige Zuwachsfunktion entspre-
chen soll, aufgezählt. Wir wollen nun untersuchen, inwieweit die ab-
geleiteten Wachstumsfunktionen (10) und (14) sowie auch die entspre-
chenden Zuwachsfunktionen (9) und (12) diese Bedingungen erfüllen.

Wir wollen zuerst die einfacheren Wachstums- und Zuwachs-
funktionen, d. h. solche mit nur zwei Konstanten, prüfen.

Wie bereits gesagt, ist es die erste Bedingung für eine richtige
Wachstumsfunktion, daß ihr Graphikon im Koordinatenursprung be-

ginnt, d. h. für x 0 soll y 0 sein. Tatsächlich haben wir bei der
Wachstumsfunktion (10) für x 0

_
6

lim y lim ae * 0 (A > 0)
ai—>0

Die zweite Bedingung war, daß das Graphikon der Wachstums-
funktion tangential zur Abszissenachse verlaufen soll. Die Wachstums-
funktion erfüllt diese Bedingung, weil die ersle Ableitung der Funk-
tion (10)

_
ft

a& .r

2/ —--e (15)
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für .T 0 gleich 0 wird, weil

_
^

6 #
lim —=0 (6 > 0) (15 a)
z->0

Das Graphikon der Funktion (10) soll nach der dritten Bedingung
einen Wendepunkt für einen kleinen Zwischenwert von x haben. Die-
sen Wert von x findet man, wenn man die zweite Ableitung von
Funktion (10)

__Ö_
aö » / 6 \(V) <"»

gleich 0 setzt und sie nach x auflöst. Dann erhalten wir
6

* *

g" (I?)

Das ist jener Wert für x, bei dem die Funktion (10) einen Wende-
punkt hat.

Weiter soll das Graphikon der Funktion (10) der vierten Bedingung
nach für x oo parallel zur Abszissenachse verlaufen, d. h. y bekommt
einen konstanten Wert. Wirklich beträgt

_
6

6 £
lim y' lim =0

2—> CC £ ^ CO

Nun wollen wir die Zuwachsfunktion (9) prüfen, welche der unter-
suchten Wachstumsfunktion (10) entspricht und ihre erste Ableitung
darstellt.

Es ist die erste Bedingung für eine richtige Zuwachsfunktion,
daß ihr Graphikon im Koordinatenursprung beginne, d. h. für x 0

soll y' 0 sein. Dies wurde schon mit den abgeleiteten Gleichungen (15)
und (15 a) bewiesen.

Zweite Bedingung ist es, daß das Graphikon der Zuwachsfunktion
tangential zur Abszissenachse anlaufe. Diese Bedingung wird von der
Funktion (9) erfüllt, wenn ihre erste Ableitung, welche durch die Glci-
chung (16) dargestellt ist, für x 0 ebenfalls 0 wird. Dies wird
dadurch bewiesen, daß

e &

limy" 0 ist.
*->o

Nach der dritten Bedingung soll das Graphikon der Zuwachs-
funktion für einen Zwischenwert von x durch ein Maximum verlaufen.
Diesen Wert findet man, wenn man die erste Ableitung der Funktion (9),
welche durch die Gleichung (16) dargestellt ist, gleich 0 setzt und nach
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x auflöst. Dann erhält man die Gleichung (17). Das zeigt uns, daß die
Zuwachsfunktion (9) ihr Maximum dann erreicht, wenn die Wachs-
tumsfunktion (10) über ihren Wendepunkt verläuft.

Der vierten Bedingung nach soll das Graphikon der Zuwachs-
funktion (9) zwei Wendepunkte haben, welche sich rechts und links
von der Maximalordinate befinden. Ihre Lage auf der Abszissenachse
findet man, wenn die zweite Ableitung der Zuwachsfunktion gleich 0

gesetzt und die Gleichung nach x aufgelöst wird. Also

_ &_

«/'" a6 (6x^ 66x + &2) 0 (18)
x*

wobei
6x2 _]_ 52 _ 0

Die Lösung dieser Gleichung ergibt

36±l/962 —662 36 ±6 1/3 6 1/ 3

x,.,
' '

:

'
(19)

6 6 2 6

Die beiden Wurzeln dieser Gleichung sind die Abszissenwerte der

Wendepunkte. Behält man im Auge, daß — dem Abszissenwert des

Maximums entspricht, so ist ersichtlich, daß die beiden Wendepunkte
gleich weit von der Maximalordinate abstehen, und zwar in Abständen

Nach der fünften Bedingung soll das Graphikon der Zuwachs-
funktion (9) für x 00 mit der Abszissenachse zusammenfallen, d. h.

für x 00 soll y' 0 sein. Und wirklich ist

_ Jl
a& »

lim y' lim e =0
£—> CO £—>O0

Aus den bisherigen Darlegungen ist ersichtlich, daß die Wachs-
tumsfunktion (10) und die ihr entsprechende Zuwachsfunktion (9) mit
zwei Konstanten alle Anforderungen richtiger Wachstums- und Zu-
wachsfunktionen erfüllen.

Auf gleiche Art und Weise wurde auch die dreikonstantige Wachs-
tumsfunktion (14) und die ihr entsprechende Zuwachsfunktion (12)

untersucht.

Der ersten Bedingung nach soll die Kurve der Funktion (14) im

Koordinatenursprung anfangen. Dies wird gezeigt dadurch, daß
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_
lim y lim ae 0 (6 > 0, c > 0) ist.
£->0 2->0

Die Kurve dieser Funktion soll tangential zur- Abszissenachse be-
ginnen. Diese Bedingung wird erfüllt, wenn die erste Ableitung der
Funktion (14)

y'=a&c-—J" (20)
2-C+ 1

für x 0 gleich 0 ist. Das ist der Fall, weil

lim — =0 ('• il) (20a)
ic—> 0 2^^"*

Das Graphikon der Funktion (14) hat einen Wendepunkt für einen
Grenz- und Kennwert von x. Diesen Wert von x findet man, wenn man
die zweite Ableitung der Funktion (14)

6c

—-(c + 1) (21)
e

2/" a&c —
.c + 2

gleich 0 setzt und nach x auflöst. Dann erhalten wir
JL_

/ 7i/> \ /»

(22)

Zuletzt soll für x oo das Graphikon der Funktion (14) parallel
zur Abszissenachse verlaufen. Dies wird dadurch bewiesen, daß

&

e jjC
lim «' lim 0 ist.

r<= + *
#—> OO £—> OO

Es bleibt noch die dreikonslantige Zuwachsfunktion (12) zu über-
prüfen.

Daß das Graphikon dieser Funktion im Koordinatenursprung be-

ginnt, wird durch Gleichung (20) und (20 a) bewiesen.

Anschließend verläuft dieses Graphikon tangential zur Abszissen-
achse. Dies wird bewiesen dadurch, daß die erste Abteilung der Funk-
tion (12), dargestellt durch Gleichung (21), für x 0 gleich 0 wird, weil

&

e je
lim 0 ist.

Der dritten Bedingung nach soll das Graphikon der Funktion (12)
für einen Grenzwert von x über ein Maximum verlaufen. Dies wird
gefunden, wenn man die erste Ableitung der Funktion (12), dargestellt
durch Gleichung (21), gleich 0 setzt und nach x auflöst. Dann erhält
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man die Gleichung (22). Dies zeigt, daß dort, wo das Graphikon der
Wachstumsfunktion (14) über einen Wendepunkt verläuft, das Graphi-
kon der untersuchten Zuwachsfunktion (12) ein Maximum aufweist.

Das Graphikon der Zuwachsfunktion (12) hat zwei Wendepunkte.
Ihre Lage bestimmt sich, wenn man die zweite Ableitung der Funk-
tion (12)

_
_A_ -

«/"' a&c -^—*3 [a^ (c* + 3c + 2) — (35c2 + 36c) + 6*c*] (23)

gleich 0 setzt und nach x auflöst. Dann sind

36c* + 36c ± ]/ 962c2 (c + i) 2 — 4^2 + 3c + 2)
^ — - (24)

I-* 2 (c* + 3c + 2)

Wenn wir nun
3&c^ + 36c

A
2 (c* + 3c + 2)

und

j/ 96V (c + 1) 2 — 46V (c2 + 3c + 2)

2 (c'2 + 3c + 2)

setzen, können wir schreiben

5

x A ± -ß
1,2

«i 1/ A + ü und Xg 1/ A — ü

wobei

Das zeigt uns, daß die Kurve der Zuwachsfunktion (12) zwei
Wendepunkte besitzt; sie liegen aber nicht symmetrisch zur Maximal-
ordinate, wie das bei der zweikonstantigen Zuwachsfunktion (9) der
Fall war.

Schließlich zeigt das Graphikon der Zuwachsfunktion (12) für
x oo ein Zusammenfallen mit der Abszissenachse. Und wirklich ist

_
_A_

lim «' lim a6c 0* rc +. 1
£-» 00 CO ^

Wie ersichtlich, erfüllt die dreikonstantige Zuwachsfunktion (12)

alle fünf ihr auferlegten Bedingungen.
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Bekanntlich besteht die Aufgabe der Forstwirtschaft in letzter
Linie darin, auf einer bestimmten Fläche dauernd möglichst große
Mengen verschiedener Hölzer von möglichst hohem Werte zu erzeugen.
Deshalb stehen die Fragen, welche das Wachstum und den Zuwachs
der Waldbäume und Bestände betreffen, immer im Mittelpunkt der
forstwirtschaftlichen Tätigkeit. Um diese Probleme richtig zu lösen,
müssen die Forstleute mit den Gesetzen des Wachstums und des Zu-
wachses gut vertraut sein.

Die hier abgeleitete Wachstumsfunktion (10) und die entsprechende
Zuwachsfunktion (9) entsprechen im wesentlichen den Anforderungen,
die' an Funktionen, welche die Wachstums- und Zuwachsgesetze for-
mulieren, gestellt werden müssen.

Es ist jedoch ein Mangel der Funktion (9), daß ihre Kurve zwei
Wendepunkte aufweist, die gleich weit von der Maximalordinate ent-
fernt sind, was der wahren Form der Zuwachskurve nicht entspricht.

Das ist jedoch nicht der Fall bei der Wachstumsfunktion (14) und
der ihr entsprechenden Zuwachsfunktion (12). Diese Funktionen ent-
sprechen allen Anforderungen, die an eine mathematisch richtige For-
mulierung des Wachstums- und Zuwachsgesetzes gestellt werden kön-
neu. Hingegen weisen diese Funktionen je drei Parameter auf und sind
für die Praxis schwerer anzuwenden als die Funktionen (9) und (10)
mit nur zwei Parametern.

Résumé

Dans cette étude, l'auteur expose et propose deux équations analytiques
qui définissent la loi de la croissance des arbres et des peuplements forestiers,
ainsi que deux équations sur l'accroissement.

Les nombreuses analyses des tiges, ainsi que les observations faites pen-
dant de longues années sur le développement des peuplements forestiers ont
démontré que la courbe de croissance a la forme d'un «S». Cette courbe com-
mence du commencement d'un système de coordonnées rectangulaires, tangen-
bellement à l'axe des abscisses, et s'élève d'une façon convexe, arrivant aussitôt
à un point d'inflexion. Après ce point, la courbe continue à s'élever, mais
cette fois d'une façon concave et pour l'âge + elle devient parallèle à l'axe
des abscisses (fig. 1).

De même, la courbe de l'accroissement commence du commencement des

coordonnées, tangentiellement à l'axe des abscisses. Elle s'élève au début d'une
façon convexe, atteint un point d'inflexion, après quoi elle continue à s'élever
d'une façon concave atteignant un maximum. Ensuite la courbe descend d'une
façon concave, arrivant à un second point d'inflexion, après quoi elle con-
tinue à descendre d'une façon convexe et pour x elle se confond avec
l'axe des abscisses (fig. 2).

En vertu de la courbe des accroissements décrite, l'auteur développe les

fonctions (9) avec deux constantes et (12) avec trois constantes qui défi-
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nissent la loi de l'accroissement. En intégrant ces fonctions, on obtient les
fonctions de croissance (10) avec deux constantes et (14) avec trois constantes.

En étudiant ces fonctions, l'auteur démontre qu'elles répondent entière-
ment aux formes décrites ci-dessus des courbes de croissance et d'accroisse-
ment.

La vie en forêt dans l'Est canadien
Par .4.-0. FeiA/, Jonquière (Canada)

(32:37)

Lorsque le voyageur, ayant contourné Terre-Neuve par le nord,
vogue en longeant le Labrador vers l'estuaire du St-Laurent, il découvre
tout d'abord un continent inhabité parsemé de quelques rares arbres
nains, paysage dont il se dégage irrésistiblement une impression glaciale
de désolation. Mais à mesure qu'il descend vers le sud, les arbres gran-
dissent et se resserrent pour former insensiblement un peuplement
continu, avant-garde de l'immense forêt canadienne. Pendant plus d'un
jour il longe ces côtes où la forêt peu à peu fait place à quelques terres
cultivées; de temps en temps il entrevoit un village que toujours domine
sa grande église. Après être remonté pendant de longues heures le large
estuaire du St-Laurent, il aperçoit dans le lointain, au prochain détour
du grand fleuve, la première cité canadienne d'importance, la vieille
ville de Québec. Québec, capitale de la plus grande province du Canada
(quarante fois la surface de la Suisse), patrie des Canadiens français,
est bâtie sur une colline au-dessus du St-Laurent; elle a conservé pré-
cieusement ses vieilles maisons à l'architecture française et les remparts
de sa citadelle, témoins des temps héroïques où Français et Anglais se

battaient pour la possession de ce pays sans limite. Rappelons ici que le
Canada, colonisé d'abord par les Français qui en prirent possession en
1534, passa aux Anglais en 1763 à la suite d'une grande bataille qui se

déroula devant Québec.

Du haut de la ville, si l'on regarde vers le nord, on admire au pre-
mier plan la perspective du grand fleuve parsemé de bateaux; n'oublions
pas que le St-Laurent est une des voies fluviales les plus importantes du
monde. Longue de plus de 3500 km, elle pénètre presque jusqu'au centre
du continent. Au second plan s'étendent de riches campagnes, et l'hori-
zon est borné par une chaîne de collines dont quelques sommets dé-

passent un peu 1000 mètres; on les appelle ici avec beaucoup de sérieux
des «montagnes». Ces montagnes — soyons courtois et employons le

langage du pays — portent le nom de Laurentides, elles s'étendent sur
des centaines de kilomètres entre le St-Laurent et la baie d'Hudson.
Elles sont couvertes de forêts quasi ininterrompues, source en apparence
inépuisable de bois pour les scieries et les fabriques de papier.
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