Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 84 (1933)

Heft: 12

Artikel: Über Zuwachsschwankungen

Autor: Knuchel, H.

DOI: https://doi.org/10.5169/seals-767787

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über Zuwachsschwankungen.

Von H. Knuchel, Zürich.

(Fortsetzung und Schluß.)

III.

Um festzustellen, ob die zweifellos auch in andern Gegenden der Schweiz vorkommenden Zuwachsschwankungen mit den in Zofingen gefundenen übereinstimmen, wurden im Oktober 1930 etwa 40 schweizerische Forstämter verschiedener Landesteile um die Einsendung von Stammscheiben von gesunden, herrschenden, nicht zu alten, frohwüchsigen Bäumen ersucht.

Da die Zofinger Untersuchungen ergeben hatten, daß der Zuwachs in verschiedener Höhe am Stamm annähernd gleich verläuft, konnte man sich mit der Entnahme von einer Scheibe je Stamm begnügen, und zwar wurde eine Scheibe vom oberen Ende des ersten Klotzes, d. h. aus 4—8 m über Boden, gewählt. Hier sind die Jahrringe am gleichmäßigsten, annähernd kreisrund und frei von den Ausbuchtungen, die weiter unten, im Bereich der Wurzelanläufe, stets zu bemerken sind.

Bereitwillig wurden uns gegen 200 Scheiben von ebenso vielen Bäumen verschiedener Holzarten eingesandt, wofür hiermit allen beteiligten Forstämtern bestens gedankt sei. 148 Scheiben konnten für die Untersuchung benützt werden, der Rest schied aus, teils wegen Undeutlichkeit der Jahrringe, teils wegen exzentrischem Wuchs, Rotholzbildung, stark abnehmender Jahrringbreite usf.

In der Tabelle auf Seite 370 ist die Herkunft der Scheiben summarisch zusammengestellt.

Abb. 7

Mit Hilfe einer Binokularlupe mit Meßeinrichtung können die Jahrringbreiten leicht und rasch auf ½10 Millimeter genau abgelesen werden.

Photographisches Institut der E. T. H.

Längs von drei im Abstand von je zirka 120° durch Bleistiftlinien bezeichneten Radien wurden die Scheiben glattgeschnitten und die Jahrringbreiten gemessen. Dies geschah nicht mehr, wie früher, mit Hilfe eines Anlegemaßstabes und einer gewöhnlichen Lupe durch Berechnung des Unterschiedes der Radiuslängen, sondern durch direkte Messung, mit Hilfe einer mit Meßeinrichtung versehenen Binokularlupe, auf Zehntelmillimeter genau. (Vgl. Abb. 7).

Herkunft der untersuchten Stammscheiben.

Zahl	NY 11	Standort	I	Des Baumes			
der Bäume	Waldort	Höhe m ü. M.	Alter Jahre	Ø in 1,3 m cm	Höhe m		
16 16	Fichte, Voralpen Jura	750—1530 460—1350	76—195 80—260	42—92 36—60	30-40 24-33		
28 12 9 7	Mittelland Tanne, Voralpen Mittelland Jura	480—1000 950—1250 490— 690 480— 830	60—130 75—200 88—150 55—120	30-80 $46-86$ $46-77$ $40-80$	25-41 29-39 31-40 22-38		
4 12	Föhre, Alpen Mittelland	850— 950 370— 708	180 80—125	42—52 41—64	14—28 18—37		
13 1 1	Lärche, Alpen Mittelland Jura	1050—2080 630 500	117 100 55	41—84 64 24	19—30 32 18		
3 1	Arve, Alpen	1980—2020	237 - 277	48 - 68	18-22		
. 10	Buche, Mittelland	400 - 760	70—100	28-60	26—42		
11	Eiche, Mittelland	400 - 570	90-180	42—78	14—24		
3 2	Esche, Mittelland Jura	600— 760 500	80— 90 55— 60	39—48 28	34—36 22		
148							

Sämtliche Messungen besorgte Forstingenieur H. Leibundgut, die Zusammenstellungen größtenteils Oberförster F. Oppliger, damals Assistent der Abteilung für Forstwirtschaft.

Im ganzen wurden benützt:

60	Fichten	10	Buchen
28	Tannen	11	Eichen
16	Föhren	5	Eschen
15	Lärchen	26	Laubhölzer
3	Arven		Nadelhölzer
122	Nadelhölzer	148	Bäume

Die aus je drei Messungen bestimmten mittleren Jahrringbreiten wurden für jede Scheibe auf Papierstreifen mit Vordruck in Zahlen und graphisch eingetragen.

Die erhaltenen Kurven sind von gleicher Art wie die von Zofingen. Da aber die Versuchsbäume sehr verschiedenartigen und nicht so gleichmäßig erwachsenen Beständen entstammen wie die Zofinger Bäume, sind die Unterschiede von Baum zu Baum bedeutend größer als dort. Stark zackig sind die Kurven im allgemeinen da, wo die Jahrringe durchschnittlich breit sind, also bei den Stämmen von den

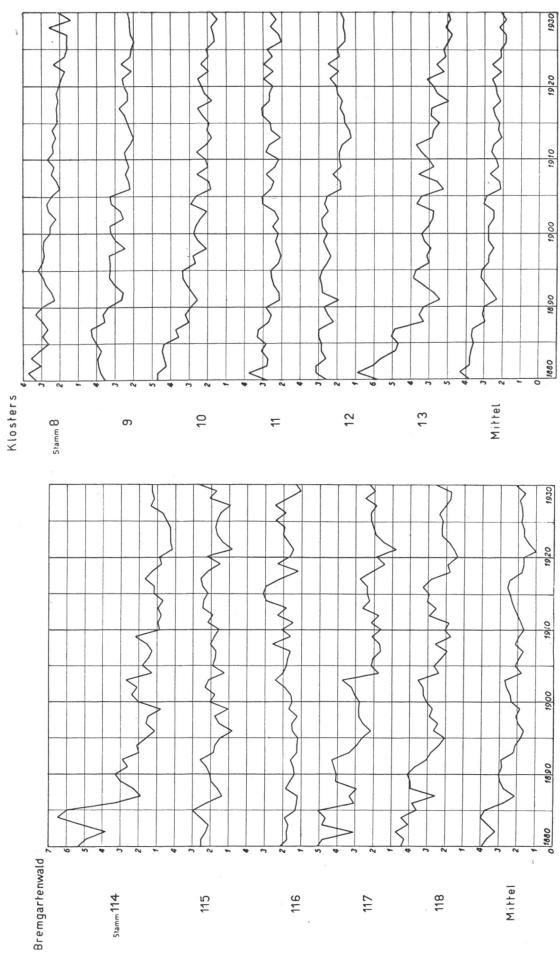


Abb. 8. Jahrringbreiten 1880—1930 dominierender Fichten von Bern (Bremgartenwald), 550 m, und Klosters, 1300—1500 m ü. M. Die Schwankungen sind in der Niederung größer als im Gebirge.

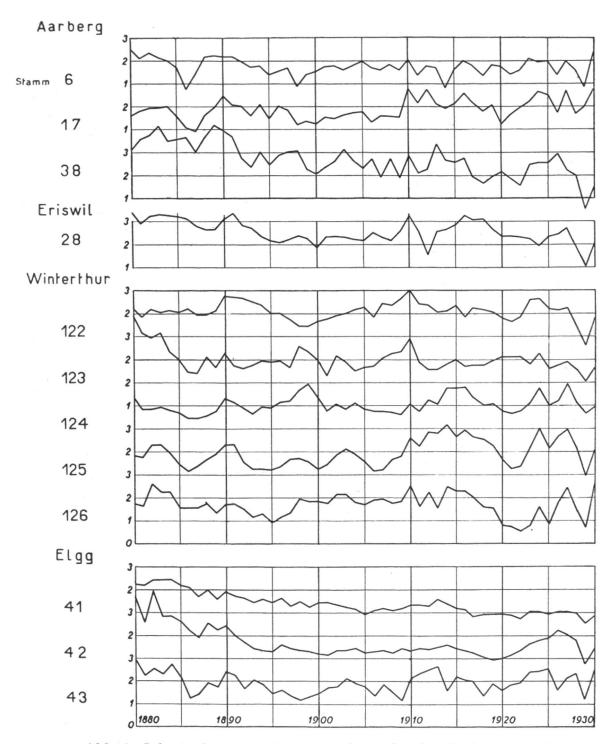


Abb. 9. Jahrringbreiten 1880-1930 herrschender Fichten aus dem schweizerischen Mittelland.

guten Standorten der Niederung (Abb. 8—10). Am größten sind die Schwankungen bei den Stämmen des Jura, wo der Einfluß der Niederschlagsmenge auf den ersten Blick zu erkennen ist (Abb. 10). Klein sind die Schwankungen bei den Bäumen des Hochgebirges und auch bei manchen, auf durchlässigen Böden erwachsenen Bäumen der Niederung, wie z. B. den Föhren und Eichen von Rheinau. Gering sind die Schwankungen auch bei den Fichten und Tannen der Voralpen, obwohl dort die Jahrringe verhältnismäßig breit sind. (Vgl. z. B. Einsiedeln, Gurnigel, Klosters, Abb. 8 und 10).

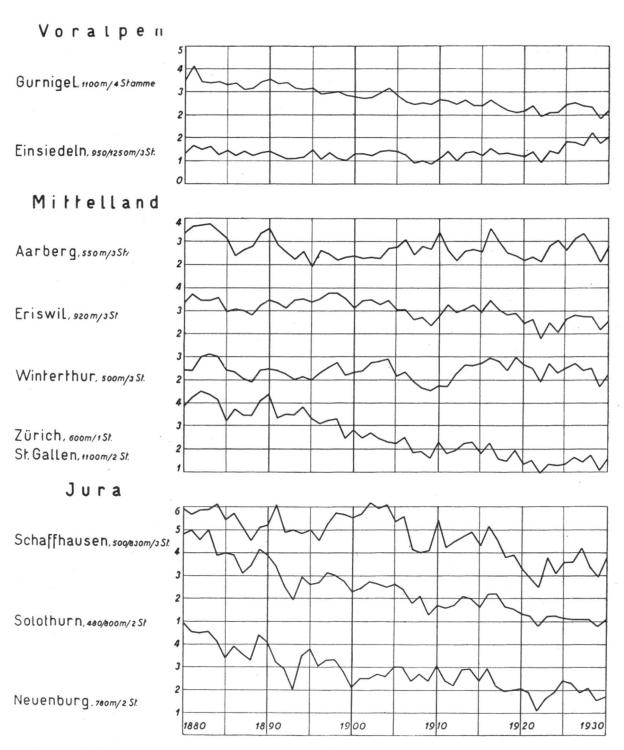


Abb. 10. Jahrringbreiten 1880-1930 herrschender Tannen der Voralpen, des Jura und des Mittellandes.

Von den untersuchten Holzarten verhalten sich Fichte, Tanne und Buche ähnlich. Am stärksten scheint der Zuwachs bei der Buche zu schwanken. Bei der Esche kommen ebenfalls bedeutende Schwankungen in der Jahrringbreite vor, doch stimmen diese mit denen der drei zuerstgenannten Holzarten schlecht überein. Da nur wenige Stämme untersucht worden sind, dürfen hinsichtlich des Verhaltens dieser Holzart keine weitgehenden Schlüsse gezogen werden. Dasselbe gilt auch von den Eichen, von welcher Holzart nur sieben Stämme untersucht wurden, die alle sehr geringe Zuwachsschwan-

kungen aufweisen. Die Lärchen hoher Lagen haben, wie die andern Bäume dieser Region, auffallend konstante Jahrringbreiten, während bei Lärchen aus der Niederung starke Schwankungen vorkommen. Mit Rücksicht auf die zu geringe Zahl von untersuchten Stämmen anderer Holzarten und von Bäumen aus den Voralpen und des Hochgebirges, betrachten wir im folgenden nur noch das Verhalten der Fichten, Tannen und Buchen aus tiefen Lagen.

Bei den meisten Zuwachskurven erkennt man auf den ersten Blick Übereinstimmungen im Verlauf, und zwar sowohl bei Bäumen des gleichen Standortes, als auch bei Bäumen verschiedener Holzarten und Standorte. Die Kurven der Fichten Nr. 124, 125 und 126 von Winterthur, Lindberg (Abb. 9) zum Beispiel stimmen fast genau miteinander überein. Ebenso haben die Fichtenkurven 122 und 123 von Winterthur, Eschenberg, viel Ähnlichkeit miteinander, weichen aber von den erstgenannten erheblich ab, so daß die Kurve der Mittelwerte aller fünf Stämme ziemlich flach verläuft.

Sehr ähnlich sind auch die Kurven der Bäume 115, 117 und 118 aus dem Bremgartenwald bei Bern (Abb. 8), diejenigen der Tannen von Eriswil, Baum 27 und Baum 29, oder Gurnigel, Baum 146 und 147 (Abb. 10) usf. Die auffallende Übereinstimmung im Zuwachsverlauf der 12 Zofinger Tannen wurde bereits erwähnt (Abb. 6).

Es gibt Maxima und Minima in den Zuwachskurven, die gleichzeitig, sehr ausgesprochen, bei zahlreichen Bäumen des gleichen und verschiedener Standorte auftreten, Perioden des Steigens, des Fallens, hohen, niederen, ruhigen und unruhigen Zuwachsverlaufs, die zeitlich und zum Teil auch in ihrem Ausmaß weitgehend miteinander übereinstimmen. Daneben kommen überall Bäume vor, deren Zuwachsverlauf fast im ganzen Untersuchungsbereich oder in einzelnen Jahren und Perioden von dem der Großzahl der Bäume abweicht.

Um kleine Zufälligkeiten möglichst auszuschalten, dafür aber allfällig vorhandene, durchgehende Eigentümlichkeiten des Zuwachsverlaufs besser zu erkennen, müssen Mittelwerte aus verschiedenen Bäumen berechnet werden, wobei aber jeweilen nur Stämme mit ähnlicher Wachtumsenergie zusammengefaßt werden dürfen. Auch bei Anwendung dieser Vorsichtsmaßregel verlaufen die Kurven der Mittelwerte stets viel flacher als die der Einzelstämme, was zum großen Teil daher rührt, daß manche Bäume sofort, andere aber erst nach einem Jahr auf die äußern Einflüsse reagieren.

In Abb. 11 sind die Mittelwerte aller Bäume derselben Holzart wiedergegeben.

Zur Gewinnung eines bessern Überblickes wurde ferner in der Abbildung 12 nur die Tendenz «Steigen» und «Fallen», sowie die Lage der ausgesprochenen Maxima und Minima für die Zeit von 1880—1930 dargestellt.

Bei Vergleichung der Kurven finden wir bei fast allen Bäumen der Niederung Übereinstimmung in folgenden Zeitpunkten und Perioden:

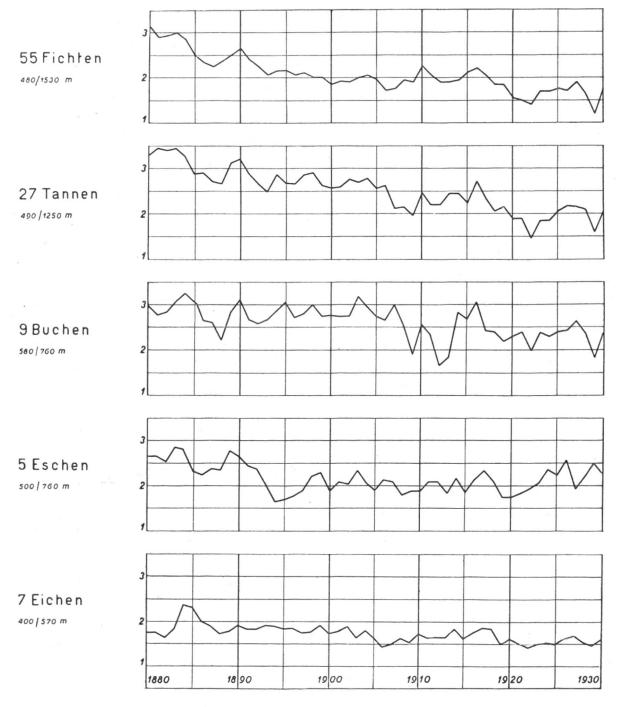


Abb. 11. Mittlere Jahrringbreiten 1880-1930 verschiedener Holzarten des schweizerischen Mittellandes, des Jura und der Voralpen.

1883—1887 Abnahme des Zuwachses, mit Minimum im Jahre 1887, dann Ansteigen bis 1890, mit sehr deutlichem Maximum in diesem Jahre. Von 1890—1893 sinkt der Zuwachs und bleibt dann, nach kurzem Anstieg, leicht schwankend bis etwa zum Jahre 1905. Nach kurzem Abstieg folgt eine deutliche Zunahme bis zum ausgesprochenen, durchgängig zu beobachtenden Maximum im Jahre 1910.

Nach 1910 folgt leichte Abnahme des Zuwachses bis 1912, dann Anstieg bis zum deutlichen Maximum im Jahre 1916. Von da an nimmt die Jahrringbreite bei allen Hauptholzarten deutlich ab, und zwar bis zum ausgesprochenen, durchgehenden Minimum des Jahres 1922. Dann Anstieg bis 1927, starker Abfall bis 1929 und energische Erholung im Jahre 1930.

In Übereinstimmung mit der graphischen Darstellung Nr. 11 ist in der Übersicht auf Seite 377 der Zuwachsverlauf getrennt für die drei Hauptholzarten nochmals zusammengestellt.

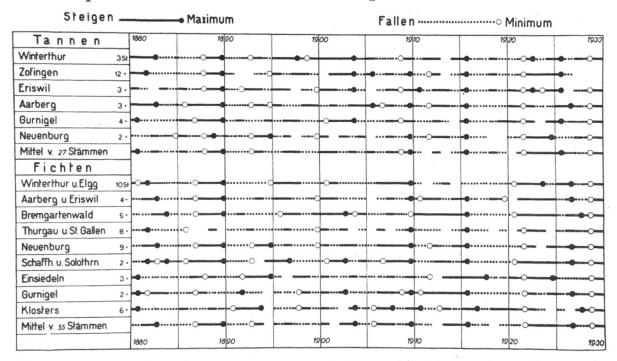


Abb 12. Man beachte die übereinstimmende Lage der Maxima besonders in den Jahren 1889, 1909, 1916, der Minima in den Jahren 1886—1888, 1922, 1929, ferner die Übereinstimmung im Zuwachsverlauf in kürzern oder längern Zeitabschnitten, besonders seit dem Jahre 1909.

Vergleichen wir nun zunächst die Ergebnisse dieser neuen Untersuchung mit den im Forstwissenschaftlichen Centralblatt 1930 veröffentlichten von Zofingen, so finden wir fast lückenlose Übereinstimmung. ¹ Wir stellten damals fest:

1882—1888 Abnahme des Zuwachses, mit Minimum im Jahre 1888,

1888—1890 deutliche Zunahme, mit Maximum im Jahre 1890,

1904—1916 stark schwankender Zuwachs,

1916—1922 deutlicher Zuwachsrückgang mit Minimum im Jahre 1922.

1922—1926 Zunahme mit Maximum im Jahre 1926.

Die in verschiedenen Waldungen des schweizerischen Mittellandes beobachteten Zuwachsschwankungen stimmen somit, und zwar sehr deutlich, mit den schon früher in Zofingen beobachteten überein.

¹ Unrichtig war die Beobachtung eines geringen Zuwachses in Zofingen im Jahre 1927, die daher rührt, daß die z. T. schon im Sommer 1927 gefällten Stämme von Zofingen den Zuwachs noch nicht abgeschlossen hatten. Der Zuwachs war im Jahre 1927 groß, nicht klein, und das Maximum der Periode fällt sehr deutlich auf dieses Jahr, nicht auf das Jahr 1926, wie in der oben erwähnten Veröffentlichung angegeben worden ist. Kleine Verschiedenheiten in der Lage der Maxima und Minima von Baum zu Baum kommen sonst natürlich häufig vor. In bezug auf das Jahr 1927 aber finden wir auf allen Standorten der Niederung eine deutliche Übereinstimmung.

Verlauf des Durchmesserzuwachses 1884—1930.

Holzart	Zahl	Abnahme	Minimum	Zunahme	Maximum				
Holzart	Stämme	in den Jahren							
Fichte	55			1882—1883	1883				
		1884—1887	1887	1888—1890	1890				
2		1891—1893	1893						
		*		1901-1904	1904				
ļ		1905 1906	1906	1907 - 1910	1910				
		1911 - 1912	1912	1913—1916	1916				
		1917 - 1922	1922	1923—1927	1927				
A		1928—1929	1929	1930					
. Parati					<u> </u>				
Tanne	27			1881—1883					
		1884 - 1888	1888	1889—1890	1890				
		1891—1893	1893						
		1905-1909	1909		1910				
	1 1			1916	1916				
, " " B		1917 - 1922	1922	1923—1926					
8 -		1928 - 1929	1929	1930					
Buchen	9			1882—1884	1884				
		1885 - 1888	1888	1889—1890	1890				
		1891—1892							
		1904 - 1906		1907	1903				
		1908—1909	1909	1910	1910				
		1911—1912	1912	1913—1916	1916				
1		1917—1922	1922	1923 - 1927	1927				
		1928—1929	1929	1930					

Wie verhält es sich nun mit den zu Beginn des Abschnittes II erwähnten Zuwachsschwankungen im Neuenburger Jura?

Wir sind darüber unterrichtet durch zwei Veröffentlichungen von Forstinspektor Favre (1928 und 1931). Die erste bezieht sich auf den Gemeindewald von Couvet, dessen Zuwachs während 37 Jahren nach der genauesten Methode, die uns für Bestandeszuwachsuntersuchungen zur Verfügung steht, verfolgt worden ist, die zweite auf den Gemeindewald von Boveresse für den Zeitabschnitt 1893—1929. Brieflich teilte uns Herr Favre ferner noch einige Ergebnisse aus der Gemeinde Môtiers mit. Der Bestandeszuwachs in diesen drei Waldungen war folgender:

Couvet, Betriebsklasse I, 55 ha, Nordhang

					1	890 - 1896	1897 - 1902	1903—1908	1909—1914	1915 - 1920	1921 - 1926
Hauptbestand						6,0	6,9	8,5	10,1	8,0	7,1 sv
Einwachs .				٠.		2,3	1,2	1,2	1,2	1,0	1,2 sv
	2	Zus	an	ıme	en	8,3	8,1	9,7	11,3	9,0	8,3 sv

Boveresse, 115 ha, Südost-Exposition

	7	Zus	am	me	en	9,6	8,0	8,0	10,2	6,9	9,4 sv
Einwachs .						3,5	1,7	1,5	2,1	1,5	2,2 sv
Hauptbestand						6,1	6,3	6,5	8,1	5,4	7,2 sv
						1898	1904	1910	1916	1922	1929
						1893—	1899	1905	1911—	1917—	1923—

Môtiers, 170 ha, hauptsächlich Nordwest-, zum Teil auch Südost-Exposition

						19	004—1910	1911—1917	1918—1924	1925—1931
Hauptbestand							6,4	7,3	4.1	7,2 sv
Einwachs							1,8	2,4	1,6	2,0 sv
	Zusammen				me	en	8,2	9,7	5,7	9,2 sv

In Abbildung 13 sind die Perioden des steigenden und fallenden Zuwachses der drei Gemeindewaldungen durch ausgezogene und gestrichelte Linien dargestellt und mit analogen Darstellungen des

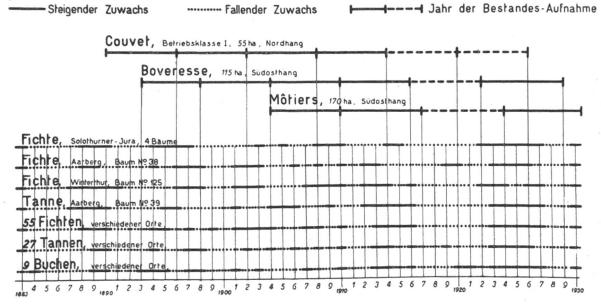


Abb. 13. Verlauf des Bestandesmassenzuwachses in den Gemeinden Couvet, Boveresse und Môtiers (Neuenburger Jura), verglichen mit dem Durchmesserzuwachs einzelner dominierender Fichten, Tannen und Buchen aus verschiedenen Gegenden der Schweiz 1883—1930.

Durchmesserzuwachses von Fichten, Tannen und Buchen verschiedener Gegenden des schweizerischen Mittellandes und des Jura in Verbindung gebracht worden. Dieser etwas zu klein geratenen Darstellung ist zu entnehmen, daß die Periode der Zuwachsrückgänge in den Neuenburger Waldungen, wie vermutet wurde, zusammenfällt mit Zuwachsrückgängen in andern Gegenden. Aus der Darstellung geht z. B. deutlich hervor, daß in allen Waldungen des Mittellandes und des Jura ungefähr vom Jahre 1916 an bis ungefähr zum Jahre 1922 ein niedrigerer Bestandeszuwachs stattgefunden hat als in den anschließenden Zeitabschnitten. Bestandesaufnahmen, die in diesen Grenzjahren durchgeführt worden sind, müssen einen starken Ausfall


im Zuwachs ergeben. Je mehr links und rechts anschließende Jahre in die Zuwachsberechnung mit einbezogen werden, desto mehr wird der Zuwachsausfall verschleiert.

Damit dürfte der Beweis erbracht sein, daß die in den Waldungen des Neuenburger Jura festgestellten Zuwachsrückgänge weder mit der Umwandlung der gleichalterigen in ungleichalterige Bestände, noch mit der Zunahme des Starkholzanteils oder der Überalterung vieler Bestände zusammenhängt, sondern, wie die zuständigen Forstinspektoren richtig vermutet haben, auf äußere, durch den Forstmann nicht beeinflußbare Faktoren zurückzuführen sind.

Mit diesem Nachweis sind aber die Ursachen der Zuwachsschwankungen noch nicht abgeklärt. Der jahrweise ermittelte Durchmesserzuwachs herrschender Bäume, auf den diese Studie sich stützt, dürfte sich aber eignen für die Durchführung der umfangreichen Korrelationsrechnungen, die zur Erforschung des Einflusses der einzelnen Klimafaktoren durchgeführt werden müssen.

Wir beschränken uns darauf, hier die Regenkurve für einen Ort, der ungefähr in der Mitte des schweizerischen Mittellandes liegt, Aarau, wiederzugeben und auf die zum Teil vorhandene Ähnlichkeit mit unsern Zuwachskurven hinzuweisen.

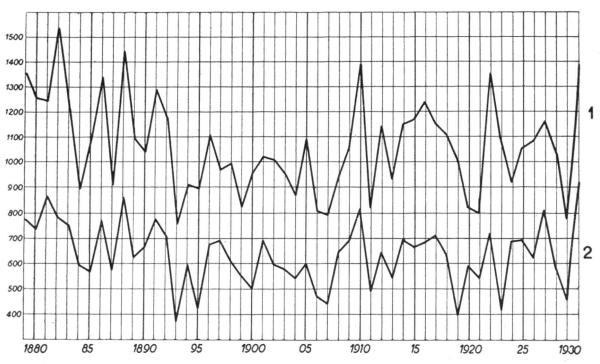


Abb. 14. Niederschläge in Aarau 1879-1930.

Das Zuwachsmaximum des Jahres 1910 fällt z. B. zusammen mit einem Niederschlagsmaximum und gleiche Übereinstimmung finden wir auch in den Jahren 1916, 1927 und 1930. Die Zu- und Abnahme der Niederschläge in der Periode 1912 über 1916 (Maximum) nach 1921 stimmt überein mit den Zuwachskurven dieses Zeitabschnittes. Die geringe Niederschlagsmenge des Jahres 1911 kommt zum Aus-

druck in Zuwachsausfällen der Jahre 1911 und 1912, das Jahr 1929 mit niedrigem Zuwachs hatte geringe Niederschläge. Die Tatsache, daß auf das sehr niederschlagsreiche Jahr 1922 ein deutliches Zuwachsminimum fällt, kann durch die Trockenheit der beiden vorausgegangenen Jahre hinreichend erklärt werden, der nachfolgende Anstieg des Zuwachses, trotz geringer Niederschläge, mit der Nachwirkung des nassen Vorjahres.

Aber es ist notwendig, die Zusammenhänge zwischen Klima und Wachstum, vor allem die Wirkung der jahreszeitlichen Verteilung der Niederschläge, sowie auch die Wirkung anderer Klimafaktoren noch genauer zu untersuchen, um alle Eigentümlichkeiten unserer Kurven erklären zu können. Wir hoffen, die Ergebnisse der weitern Auswertung unseres Grundlagenmaterials in einem spätern Zeitpunkt mitteilen zu können.

Literatur.

Burger, H.: Untersuchungen über das Höhenwachstum verschiedener Holzarten. «Mitteilungen der Schweiz. Zentralanstalt f. d. forstliche Versuchswesen», XIV. Bd., 1. Heft, S. 29—158. Zürich 1926.

Carnegie Institution of Washington, Washington; Quaternary Climates. Publ. Nr. 352, Juli 1925.

Antevs, Ernst: The Big Tree as a Climatic Measure, S. 115-154.

- Ellsworth Huntington, Tree Groath and Climatic Interpretation, S. 155—204.
 Vgl. auch Publ. Nr. 192, The Climatic Factor.
- Cieslar, A.: Einige Beziehungen zwischen Holzzuwachs und Witterung. «Zentralblatt f. d. ges. Forstwesen» 1907.
- Douglas, A. E.: Climatic Cyclus and Tree Growth. Carnegie Institut, Washington, Publ. Nr. 289, 1919.
- The Secret of the Southwest Solved by Talkative Tree Rings. «The National Geographic Magazine», Dezember 1929, S. 737—770.
- Favre, E.: Application de la Méthode du Contrôle à la forêt de Couvet. (37 années) « Journal forestiers suisse » 1928, S. 49—58, 84—94.
- Nouvel exemple d'aménagement par la Méthode du contrôle. Forêt de Boveresse. « Mitteilungen der Schweizerischen Zentralanstalt für das forstliche Versuchswesen », XVII. Band, Heft 1, Zürich 1931.
- Friedrich, J.: Ueber den Einfluss der Witterung auf den Baumzuwachs. Mitt. aus dem forstlichen Versuchswesen Oesterreichs. XXII. Heft, 1897.
- Flury, Th., Dr.: Ueber den Einfluss von Trockenperioden auf das Bestandeswachstum. « Mitt. der Schweiz. Zentralanstalt f. d. forstliche Versuchswesen ». XIV. Bd., 2. Heft. Zürich, 1927.
- Hesselmann, H.: Om tallens hoidstillväst och skottbildning somrarne S. 1900—1903. Skogsvards—Föreningens Tidskrift 1904.
- Knuchel, H. und Brückmann, W.: Holzzuwachs und Witterung. «Forstwirtschaftliches Centralblatt» 1930, S. 188—211.
- Marshall, Robert: Influence of Precipitation Cycles on Forestry. « Journal of Forestry », Volume XXV, Number 4, Washington, April 1927.