Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 83 (1932)

Heft: 1

Artikel: Beobachtungen und Aufnahmen in Buchen-Urwäldern der Wald-

Karpathen

Autor: Roth, Conrad

DOI: https://doi.org/10.5169/seals-765762

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schweizerische Zeitschrift für Forstwesen

Organ des Schweizerischen Forstvereins

83. Jahrgang

Januar 1932

Mummer 1

Beobachtungen und Aufnahmen in Buchen-Urwäldern der Wald-Karpathen.

Bon Conrad Roth, Forstingenieur, Zollifon.

Beobachtungen und Aufnahmen in Urwäldern sind erst in neuerer Zeit aktuell geworden, seitdem die Forstwirtschaft durch das Versagen bestimmter Wirtschaftsmethoden, wie z. B. des Kahlschlages in Verbindung mit fünstlicher Verjüngung der Bestände, auf die Notwendigkeit besserer Berücksichtigung der Naturgesetze aufmerksam gemacht wurde. Der Wirt= schafter sucht heute nach Möglichkeit die künstlich beeinflußte Entwicklung von Einzelbaum und Bestand im Wirtschaftswald den in der ungestörten Natur entsprechenden Verhältnissen und Vorgängen anzupassen. Infolge von praktischen Erfahrungen im Wirtschaftswald und Beobachtungen im Naturwald berücksichtigt man heute bei der Aufforstung von Neu- und Kulturland die naturgesetzliche Sutzession der Pflanzengesellschaften und ist ferner zur Erhaltung oder Schaffung ungleichaltriger Bestände in Verbindung mit natürlicher Verjüngung und zur Holzartenmischung übergegangen. Seitdem sich die Ueberzeugung Bahn gebrochen hat, daß die Rückfehr zu naturgemäßer Waldbehandlung unerläßlich sei, sind Beobachtungen und Aufnahmen namentlich in ofteuropäischen Urwäldern verwendet worden, um Vergleiche mit unseren Wirtschaftswäldern zu ziehen und Rückschlüsse auf unsere Wirtschaftsmethoden zu machen, insbesondere auf die Bestandesbegründung und die Bestandespflege. Seit zirka 30 Jahren sind in der Literatur zahlreiche Abhandlungen über Urwälder in Böhmen, Schlessen, Bosnien, der Herzegowina, Dalmatien, den Karpathen, dem Baltikum und Rußland erschienen; nur wenige bringen aber genaue zahlenmäßige Aufnahmen aus solchen Waldungen.

Von den hier interessierenden Arbeiten aus neuerer Zeit erwähne ich:

- K. M. Müller, Aufbau, Wuchs und Verjüngung der südosteuropäischen Urwälder. 1929.
- Fr. Markgraf, Aus den südosteuropäischen Urwäldern. Zeitschrift für Forstund Jagdwesen, Heft 1, 1931.
- K. Mauve, Ueber Bestandesausbau, Zuwachsverhältnisse und Verjünsgung im galizischen Karpathen-Urwald. Inauguraidisserstation, Eberswalde, 1931.

In den Monaten November Dezember 1930 hatte ich für eine schweiszerische Firma in den Ostkarpathen durch Begehungen, Probesiächenauf nahmen und Probesällungen ein großes zusammenhängendes Waldgebiet aufzunehmen, d. h. dem Austraggeber möglichst genaue Angaben über die vorhandenen Holzmengen und Holzqualitäten zu machen und ihn über die Ausbeutungs und Transportmöglichseiten zu orientieren. Mein Arbeitsgebiet besand sich im sog. Karpato-Rußland, dem östlichsten Teil der Tschechoslowakei, und zwar in den eigentlichen Waldkarpathen, einem Gebiet, das zwischen Ungarn, Kumänien und Polen liegt, vor dem Kriege zu Ungarn gehörte und seither unter tschechischer Verwaltung steht. Es gehört zum Einzugsgebiet der Theiß, liegt also auf der Südabdachung der Ostkarpathen.

Die Gegend besitzt kontinentalen Klimacharakter, trockene, heiße Sommer und lange schneereiche Winter. In den Niederungen, den uns mittelbar benachbarten Talböden, auf einer Meereshöhe von 200—300 m, wird vorwiegend Ackerbau getrieben, Mais und Getreide, die neben dem Fleisch sast die einzige Nahrung der einheimischen KuthenensBevölkerung bilden. Die Hauptniederschläge fallen im Vorsommer; nach meinen Beobachtungen sind die Niederschläge im Gebirge allgemein bedeutend häusiger und größer als im Tiefland.

Das aufgenommene Waldgebiet, gut arrondiertes Eigentum eines ehemals ungarischen Großgrundbesitzers, mit einer totalen Fläche von 7700 ha, wovon rund 400 ha Wiesen und Weiden sind, nimmt den außgedehnten hinteren Teil des Borsavatales ein; dieses gliedert sich in ein langgestrecktes Haupttal mit nordsüdlicher Abflugrichtung und eine größere Zahl von engeren, steilen Seitentälern, das Ganze auf drei Seiten umschlossen von bis 1678 m emporsteigenden Höhenzügen, die den untenliegenden Wald mit einem breiten Gürtel von Alpweiden gegen oben abschließen. Der tiefste Punkt im Haupttal liegt auf 350 m ü. M. Das ganze Gebiet ist somit ziemlich stark durchtalt, indem tief eingeschnittene "Gräben" und "Kanten" (Ausdrücke der anfässigen Jäger) einander ständig ablösen. Der Alpgürtel oberhalb der Waldgrenze ist nach dem Krieg dem ursprünglichen Eigentümer gegen geringe Entschädigung durch den tschechischen Staat enteignet und den benachbarten Gemeinden zugeteilt worden. Der Charakter dieser Gebirgsgegend ist landschaftlich und floristisch einförmig. Die Geländeformen sind trot der intensiven Talbildung in der Höhe nie scharf, sondern eher sanft; die Tallehnen zeichnen sich jedoch vielfach durch auffallende Steilheit auß; der allgemeine Landschaftscharakter entspricht annähernd demjenigen des Faltenjuras.

Die Karpathen sind ein großes Kettengebirge, entstanden durch Faltungen und Ueberschiebungen von Süden her. Das ganze Borsavagebiet gehört stratigraphisch dem Flysch an; der geologische Untergrund besteht durchwegs aus einem harten, grünlichen Sandstein, ähnlich unserem Tavehannazsandstein, meist überdeckt von tiefgründigen Verwitterungssichichten. Der Felsuntergrund tritt nur äußerst selten zutage.

Ausgedehnte Waldungen, die ihren ursprünglichen natürlichen Zustand bewahrt haben, also eigentliche Urwälder, sind heute auch in der Tschechoslowakei nur noch in sehr beschränkter Ausdehnung vorhanden, in den abgelegensten, ungangbarsten Gebietsteilen wie den Waldkarpasthen. Denn in den übrigen Gebieten ist durch Private und Gemeinden in ausgedehntem Maße rücksichtsloser Kaubbau am Walde getrieben worden; nur die Waldungen, die in den Händen des Großgrundbesitzes lagen und vornehmlich der Jagd dienten, haben zum Teil ihren Urzustand beibehalten. Gesetzlich wirksame Maßnahmen zum Schutze des Waldes bestehen nur insosern, als die Erhaltung einer Schutzwaldzone von zirka 100 m Breite an der oberen Waldgrenze vorgeschrieben ist.

Die aufgenommenen Waldungen stehen unter der Oberaussicht des durch den Gutsbesitzer angestellten Forstwerwalters mit forstlicher Mittelschulbildung, der auch den großen Landwirtschaftsbetrieb regelt. Ihm unterstellt sind drei Jäger, die ständig im Waldgebiet in Jagdhäusern wohnen; sie haben den Jagdherrn im Herbst oder Winter auf der Jagd zu begleiten und während des ganzen Jahres regelmäßig Kontrolltouren zu machen. In den höheren Teilen der abgelegenen Waldungen befinden sich eine Anzahl primitiver Jagdhütten als Stützunkte. Bis zu den im vorderen Teil des Haupttales gelegenen Jagdhäusern führt ein schmales, teilweise sehr schlechtes Fahrsträßchen; im ganzen großen Waldgebiet aber ist man auf die Benützung der "Pirschsteige" angewiesen, schmale Wegspuren, auf denen die größten Hindernisse aus dem Wege geräumt sind.

Schon aus diesen kurzen Bemerkungen läßt sich vermuten, daß diese ausgedehnten Waldungen bis heute nie in forstlichem Sinne bewirt= schaftet wurden, sondern fast ausschließlich der Jagd dienten. Erst in den letten zwanzig Jahren erfolgten geringfügige Holzverkäufe aus diesen Waldungen, ausschließlich Eschen und Bergahorne aus den untersten Teilen der Seitentäler. Es wurde schon darauf hingewiesen, daß nicht das ganze Gebiet mit Wald bestockt ist. Die obere Waldgrenze liegt bei zirka 1300 m ü. M., künstlich heruntergedrückt durch die vom Alp= gürtel aus erfolgende Beweidung der Randpartien, zungenförmig verdrängt auf den "Kanten" (d. h. den Rippen zwischen den Nebentälern), wo im Frühighr und Herbst das Bieh durchzieht (Abb. 1). Unter dem Einfluß der menschlichen Wirtschaft stand und steht heute noch die unmittelbare Nachbarschaft der 100-300 m breiten Sohle des Haupttales und der zerstreuten Waldwiesen, die sich vereinzelt an flacheren Stellen der Hänge vorfinden (Abb. 2). Wirkungen von Waldbränden (Bodenfeuer) beobachtete ich nur auf einer einzigen kleinen Fläche am Südhang eines Seitentales. Das ganze übrige Gebiet mit seinen riefigen Ausdehnungen ist unberührt von fremden Einflüssen, also eigentlicher Urswald, in dem der Mensch wohl gelegentlich auf der Jagd durchgeht, auf das Wesen des Waldes bis heute aber keinen Einfluß ausgeübt hat. Das sind die wertvollen Waldpartien, für die sich der denkende und beobsachtende Forstmann wie der unternehmungslustige Holzhändler so sehr interessieren. Diese Urwälder unterscheiden sich bei oberflächlicher Bestrachtung von schweizerischen, natürlich entstandenen Buchenbeständen häusig nur durch die mächtigen, den Weg verbarrikadierenden Baumsleichen.

Bei den nun folgenden Ausführungen beschränke ich mich auf die von der menschlichen Wirtschaft bis heute unberührt gebliebenen Waldungen. Es ist eine überraschende Tatsache, daß im ganzen Waldgebiet tein Nadelholz vorkommt, keine einzige Fichte oder Tanne, sondern nur Laubhölzer, nämlich zirka 98 % Buchen (der Masse nach) und maximal 2 % Berg= und Spikahorne, Ulmen und Eschen; von ganz nebensächlicher Bedeutung sind Birke, Hagebuche und Weißerle, die in den vom Menschen beeinflußten Gebieten dagegen häufig sind. Ohne Nebertreibung darf man deshalb von eigentlichen Buchenurwäl= dern sprechen, da die andern Laubhölzer oft auf weite Strecken über= haupt nicht zu finden sind. Im allgemeinen besitzt die Karpathen-Buche sehr gute Stamm- und Kronenformen und ein rasches Wachstum (Abb. 4 und 5). Baumhöhen von 42—45 m und Brusthöhendurchmesser von 1,0--1,2 m find in guten Beständen keine Seltenheit. Ungunftige Standortsverhältnisse wirken aber auch hier sehr nachteilig auf Höhen= und Dickenwachstum, Schaftlänge und Kronenform, so daß wir je nach Exposition, Höhenlage, Terrainneigung usw. deutliche Unterschiede in der Bestandesqualität der verschiedenen Gebietsteile feststellen können (Abb. 6). Der Bergahorn beteiligt sich am Bestandesaufbau hauptsächlich dort, wo der Bestandesschluß weniger dicht ist, also an der oberen Waldgrenze, auf den "Kanien" oder an lichteren Südhängen; aber immer bildet die Buche das eigentliche Bestandesgerüst (Abb. 3). Häusig stößt man auf Prachtsexemplare von Bergahornen, bei denen Brusthöheu-Durchmesser von 1,40 m keine Seltenheit sind; je nach Beschaffenheit des umliegenden Bestandes sind sie bald sehr langschäftig, bald kurzstämmig, aftig und frumm, ältere Exemplare häufig hohl; sie zeigen oft einen eigenartigen welligen Verlauf der Holzfaser und werden dann als "Flader-Ahorne" und "Bogelangen-Ahorne" bezeichnet, die im Handel einen hohen Wert besitzen. Ulme, Spikahorn und Esche treten weit seltener auf; sie bevorzugen feuchte Hangpartien und Mulden, sowie die tieferliegenden Teile der Seitentäler. Helle Begeisterung erweden vereinzelt stehende Ulmen, die weniger durch auffallend große Durchmesser, als durch die gewaltig aufstrebenden astreinen Stämme mit hochansetzenden Kronen und außergewöhnliche Höhe imponieren.

Abb. 3. Buchen-Bergahorn-Bestand dicht an der Waldgrenze, zirka 1200 m ú. M.

Abb. 4. Reiner Buchenbestand in zirka 800 m Höhe, Nordexposition.



Abb. 5. Buchen-Altholzgruppe auf der breiten "Kante" zwischen

zwei Seitentälern, zirka 600 m ü. M.

Abb, 6. Schwacher Buchenbestand auf einer trodenen, steilen "Kante" in ennem Seitental, zirka 800 m ü. M.

Der Grund, warum im ganzen Gebiet kein Nadelholz vorkommt, ist vermutlich in den besonderen klimatischen Verhältnissen zu suchen: denn in den nördlich angrenzenden, jenseits der das Gebiet abschließen= den Höhenzüge liegen auf gleicher geologischer Unterlage riefige Urwäl= der, gemischt aus Fichte und Buche. Ich beobachtete dies an einem kalten, klaren Wintertage vom Gipfel des Sztoj (1678 m ü. M.) aus. Das von mir aufgenommene Gebiet hat vorwiegend südliche Exposition und somit höhere Vegetationstemperaturen als das gegen Norden offene Nachbargebiet. Damit und mit der Tatsache, daß infolge der relativ hohen, luftabtühlenden, das Borfavatal umschließenden Gebirgszüge häufige und bedeutende Niederschläge fallen, mag das überraschende Domi= nieren der Buche begründet werden. Dazu kommt, daß auf den tiefgrün= digen Zersetzungsprodukten des Sandsteins die Buche eine bedeutend stärkere Lebensenergie besitzt als die Fichte, zumal in einer Höhenlage, die noch nicht der eigentlichen Heimat der Fichte entspricht. Wahrschein= Lich hat also die Buche die Nadelhölzer, die sicher früher auch hier vorhanden waren, im Laufe der Zeit vollständig zu verdrängen vermocht; 1 überraschend ist aber immerhin, mit welcher Gründlichkeit die Buche dies infolge ihrer günstigeren Stellung im Konkurrenzkanipf getan hat. Einige kleine 40-50jährige Fichten-Pflanzbestände, die im unteren Teil des Haupttales stoden, beweisen mit ihrem guten Gedeihen deutlich, daß es sich nicht um eine Begetationsfrage schlechthin, sondern um eine Ronfurrengfrage handelt. Beim wochenlangen Durchwandern dieser Waldgebiete kommt man zur Neberzeugung, daß die Buche hier denkbar günstige Vegetationsverhältnisse gefunden hat. Allerdings erkennt man auch deutlich, wie leicht und augenfällig sie auf alle möglichen äußeren Einflüsse reagiert, die selbst der gut beobachtende Forstmann nicht immer genau zu erfennen vermag, da sie nicht einfach auf be= stimmte, äußerlich erkennbare Licht=, Luft= und Bodenverhältnisse zurück= geführt werden können, sondern sich aus einer vielfältigen Kombination aller möglichen, ihren Einfluß ausübenden Begetationsfaktoren ergeben.

So verschieden der einzelne Baum auf die besonderen Begetations= bedingungen in seiner Entwicklung (Buchsform) reagiert, so mannigsaltig ist das Gedeihen der unter verschiedenen Bedingungen lebenden Be= stände. Bei vielen Beobachtungen in unseren Birtschaftswäldern ist nie flar ersichtlich, inwieweit der Mensch die heute vorliegenden Ber= hältnisse beeinflußt hat. Das ist beim Urwald nicht der Fall, so daß er ein einwandfreies und dankbares Untersuchungsobjekt für forstwissen= schaftliche Studien darstellt. Gerade hier könnten die Zusammenhänge zwischen Bestandesklima, Bodeneigenschaften und Bestandesentwicklung

¹ Par, Grundzüge der Pflanzenverbreitung in den Karpathen, Bd. 2, S. 48, 1908.

am sichersten ermittelt werden. Ich halte es aber für gefährlich, an Hand einer einzigen oder weniger kleiner Probeflächenaufnahmen verall= gemeinernde Schlüsse über Aufbau, Zusammensetzung und Verjüngung, kurzum die ganze Lebensentwicklung eines Urwaldes, zu ziehen. Denn in den gesehenen Wäldern tritt uns auf Schritt und Tritt ein derart rascher Wechsel der Eigenschaften des Waldes entgegen, daß höchs stens aus einer großen Zahl von Aufnahmen ein einigermaßen der Wirklichkeit entsprechendes Bild der komplizierten Verhältnisse erhalten werden kann. Die Eigenschaften des Urwaldes lassen sich nicht so leicht feststellen und in eine klare Definition fassen, wie dies bei unseren westeuropäischen Kulturwäldern gerne gemacht wird. Meine Aufnahmen tonnen nur einen bescheidenen Beitrag zum großen Gebiet der Urwald= forschung geben. Die Art der mir gegebenen Aufgabe, die sehr beschränkte Zeit kurz vor Einsetzen des Winters und die durch die Schneefälle ohne= hin erschwerte Tätigkeit verunmöglichten mir die Durchführung genauer und umfangreicher Aufnahmen zu rein wissenschaftlichem Zweck.

Im Brennpunkt des Interesses steht unzweiselhaft die Frage nach des Bestandes form des Buchen-Urwaldes. Sie ist in erster Linie dahin zu beantworten, daß es keine einheitliche Bestandes into rm gibt! Sicher ist, daß der Urwald in seiner Gesamtheit ungleich-altrig ist, was er ja seiner Natur nach auch sein muß. Gleichsörmigkeit kommt gelegentlich auf sehr beschränkter Fläche vor; wirkliche Gleich-altrigkeit erstreckt sich aber nur auf Gruppen und Horste. Größere, wirklich gleichaltrige Flächen, die infolge von Naturkatastrophen (Feuer, Windwurf) entstanden sind und von anderen Beobachtern in anderen Gebieten gelegentlich konstatiert wurden, konnte ich nirgends seststellen.

Nach meiner Ansicht kämpsen im Urwald zwei Kräfte gegeneinander, nämlich die Tendenz zur Gleichaltrigkeit, bewirkt durch den Konkurrenz-kamps um das Licht, und die Tendenz zur Ungleichaltrigkeit, die ihren Ursprung im Bestreben der Natur hat, sich skändig fortzupslanzen und allen versügbaren Kaum nach Möglichkeit auszunützen. Deshalb sinden wir unregelmäßig wechselnd, vom zufälligen Schicksal und Einfluß des Altholzes auf die Umgebung abhängig, bald Bestandesbilder, die sich mit unseren Begriffen des Plenterwaldes (reiner Buch en = Plenterwaldes, die Achnlichkeit mit schirmschlagartig entwickelte Bestände, oder solche, die Achnlichkeit mit schirmschlagbehandelten Beständen haben. Es können also entweder alle Altersklassen auf kleiner Fläche nahe beissammen vorkommen, häusig ist aber auch eine gruppens oder horstweise Mischung, oder dann findet sich die Berjüngung auf größerer Fläche als annähernd gleichalter dichter Jungwuchs unter dem mehr oder weniger

¹ Der Vergleich bezieht sich auf Wirtschaftsbestände, die im Stadium der Lichtung vor der eigentlichen Abräumung des Altholzes stehen.

gleichförmigen Altholz. Je nachdem die alten Bäume nur einzeln und allmählich, oder in kurzer Zeit und auf größerer Fläche zusammens brechen, bilden sich Bestände, die alle Uebergangsstusen von der völligen Ungleichaltrigkeit bis zu annähernder Gleichaltrigkeit einnehmen können. Im Urwald ist die Bestandesform durch den Standort bedingt!

In den Buchenurwäldern des bulgarischen Rilagebirges stellte K. M. Müller (zitierte Publikation, S. 292 ff.) vorwiegende Gleichsförmigkeit der Bestände fest, über deren Ursache und Entstehung er aber keine sicheren Angaben machen kann. Da im Buchenwald das Feuer als Ursache katastrophenbedingter, großslächenweiser Bestandesverzünzung nicht in Betracht fällt, kommt vermutlich nur Sturmwirkung in Frage. Müller bringt deshalb die in den Ostkarpathen vorherrschende horst- und gruppenweise Verzüngung in Zusammenhang mit der hier bedeutend geringeren Sturmwirkung und dem dadurch bedingten einzelstammweisen Untergang des Altholzes.

Der Urwald als Ganzes ist sicher, wenigstens an unseren kurzen menschlichen Zeiträumen gemessen, in stabilem Zustande; Gesamtausbau und Holzvorrat bleiben sich ständig gleich; fortwährend ändert sich nur das Waldbild auf kleiner Fläche infolge der fortschreitenden Entwicklung des einzelnen Baumes. Tiefergreisende Veränderungen allgemeiner Natur sind nur denkbar als Folge von allmählichen Klima= oder Boden= veränderungen oder von Katastrophen (Sturm, Feuer, Schädlinge).

Es ist auffallend, mit welcher Intensität sich die Buche im ganzen Waldgebiet verjüngt. Wo nur eine Lücke im Kronendach ist, ja selbst unter geschlossenen Altholzgruppen, kommt der Jungwuchs auf; Kahlsslächen gibt es nirgends. Geradezu überraschend ist die Schattensestigkeit der jungen Generation, die trot jahrzehntelanger Unterdrückung gesunde Jungwuchssormen beibehält. K. Mauve (zitierte Publikation, S. 50) bestätigt diese Erscheinung für den galizischen Karpathensurwald, indem er beobachtete, daß namentlich Tanne und Buche oft hundert und mehr Jahre Druckstand ertragen.

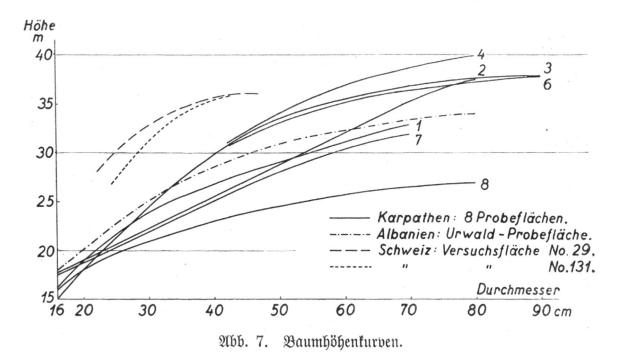
Trozdem das Borsavagebiet reinen Buchenwald trägt, konnte ich nirgends Anzeichen der namentlich von solchen Beständen in Deutschsland bekannten "Buchenmüdigkeit" des Waldbodens und der Bestände seststellen. Bodens und Bestandesdegeneration und dadurch bedingter Holzartenwechsel scheinen nicht vorzukommen, mit Ausnahme von steil exponierten Südhängen, wo insolge der für die Buche ungünstigen Bestingungen diese mit anderen Holzarten gemischt ist. Unter den vorhansdenen örtlichen Begetationsverhältnissen kann sich also offenbar der reine Buchenwald dauernd völlig normal erhalten.

Nach K. Mauve (S. 5) sind Rohhumusbildung und Podsolidierung in den gemischten Tannen-Buchen-Fichten-Urwäldern auf der rauheren Nordabdachung der Waldkarpathen keine Seltenheit.

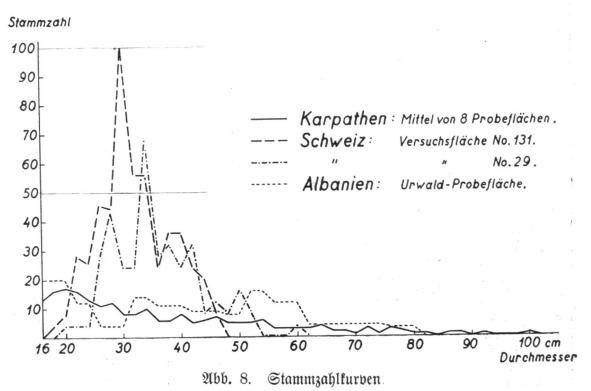
Die Aufnahmeresultate.

Die Aufnahme von Probeflächen und Bornahme zahlreicher Probesfällungen hatten den Zweck, meine Schätzungen zu überprüfen und die Holzeigenschaften zu kontrollieren. Beim Urwald ist die Gefahr der Uebertazierung besonders groß, indem die Lücken in den Beständen und die überall vorkommenden schwächer bestockten Partien zu wenig berücksichtigt werden. Die endgültige Massenberechnung ersolgte so, daß die Bestockungsdichten auf der Karte eingezeichnet und die Flächen, getrennt nach Einzugsgebieten, planimetriert wurden. Eine Beröfsenklichung diesser Resultate ist aus naheliegenden Gründen nicht möglich.

Die Auswahl der Probeflächen erfolgte nach dem Grundsat, Bestände verschiedener Bonität in verschiedenen Höhenlagen und von versichiedener Exposition aufzunehmen, und zwar normale Bestände, die als Mittelwerte für größere Flächen anzusehen sind. Demgemäß gelangten weder extrem gute, noch sehr schlechte Bestandespartien zur Aufnahme. Gemessen wurden acht Probeslächen von je ein Katastralsoch (Quadrat von 76 m Seitenlänge, horizontal gemessen). Die Absteckung erfolgte mit Winkeltrommel und Meßband. Sämtliche Stämme über 16 cm Brustshöhendurchmesser wurden kluppiert und auf jeder Fläche eine größere Zahl Höhenmessungen gemacht, aus denen eine Höhenkurve konstruiert wurde. Die Massenberechnungen erfolgten mittels der V/g-Zahlen sür Buchenhochwald der schweizerischen Versuchsanstalt.


Als einzige erreichbare Vergleichszahlen zu den Karpathen-Probeflächen werden im folgenden die Aufnahmen einer einzelnen Probefläche
in einem ungleichaltrigen Buchenurwald Albaniens (Markgraf-Dengler,
zitierte Publikation, S. 20 ff.) herangezogen und entsprechend umgerechnet,
ferner zwei typisch gleichaltrige Buchen-Versuchsflächen der schweizerischen
Zentralanstalt für das forstliche Versuchswesen, sowie die entsprechenden Ertragstafelwerte für Buchenhochwald, 120jährig. Nach Angabe des
Verfassers gibt die kleine albanische Probefläche durchschnittliche Verhältnisse im dortigen Waldgebiet wieder; dabei ist aber zu berücksichtigen, daß eine einzige Probefläche von nur 0,25 ha zu klein ist, um ein
einwandfreies Bild eines ganz unregelmäßig aufgebauten Urwaldes zu
geben.

In der Verteilung der Stammzahlen auf die einzelnen Durchmesserstufen kommt der von Grund aus verschiedene Charakter der Karpathen-Probeflächen einerseits und der gleichaltrigen schweizerischen Versuchsflächen anderseits klar zum Ausdruck; zwischen beiden steht die
albanische Probefläche. Während wir bei den gleichaltrigen Kulturbeständen ein rapides Ansteigen und Abfallen der Stammzahlen in einer
ganz kleinen Durchmesserspanne beobachten, sinden wir bei allen Karpathen-Probeflächen das Maximum der Stammzahl unter 24 cm Durchmesser und einheitlich ein ganz allmähliches Abfallen gegen die letzten


vereinzelten Stämme zwischen 80 und 104 cm Durchmesser. Der Aufbau und die Stammzahlverhältnisse der einzelnen Karpathenflächen sind trot der verschiedenen Standorte so einheitlich, daß mir eine Bereinigung der Einzelresultate in eine einzige Kurve statthaft erschien. Das etwas auffallende Ansteigen der Stammzahlen von 16-20 cm könnte vermuten lassen, daß übermittelalte Bestände aufgenommen wurden. Leider ge= langten die Jungwüchse infolge Zeitmangels nicht zur Aufnahme; ich glaube jedoch, daß das Maximum der Stammzahl bei der Mehrzahl der Flächen bestimmt unter 16 cm Durchmesser liegt. Die Eigentümlich= feit der albanischen Probesläche besteht in dem überraschenden Bervor= treten der Stammzahlen zwischen 30 und 60 cm Durchmesser, offenbar zurückzuführen auf eine ausgesprochene Verjüngungsperiode; von 0 bis 30 cm Durchmesser läßt sich das für ungleichaltrige Bestände normale Abnehmen der Stammzahl feststellen. Die Gefamtstammzahlen des Karpathenurwaldes sind gegenüber denen unserer gleichaltrigen Bestände und den Ertragstafelwerten auffallend niedrig. Die Schwankungen zwischen den einzelnen Probeflächen sind relativ gering und lassen keinen deutlichen Zusammenhang mit den Standortsverhältnissen erfennen.

Karpathen=Probeflächen Aufnahmeergebnisse mit Vergleichszahlen.

Ort	Höhe über Meer m	Erpo= sition	Stamm= 3ahl pro ha	Stamm= grund= fläche m² pro ha	Vorrat Derbholz Fm pro ha	- Corn nala
1. Karpathen-Probeflächen						
Mr. 5	550 850 1000 550 550 720 780	SSW SSE W NNE NNW NE	245 184 224 283 182 261 198	24,59 24,31 31,00 29,53 26,35 30,95 30,48	356 362 372 383 447 458 498	1,47 1,97 1,66 1,36 2,46 1,76 2,52
2. Albanien	600	NNE N	196 304	34, ₁₃ 47, ₀₀	581 710	2,97 2,34
3. Schweiz Versuchssläche 131, 1903, 129 j. 1), 1. Bonität	550	NNW	524	42,33	689	1,31
Versuchsstäche 29, 1900, 118 j.2), 1. Bonität	480	N	372	37,83	665	1,79
Ertragstafeln Bleibender Bestand. 1. Bonität 2. Bonität 4. Bonität			360 440 580	40,0 36,9 30,9	666 573 402	1,85 1,30 0,69
5 Bonitat	, - 1		700	27,9	322	0,46

Die starken Abweichungen im Verlauf der Höhen kurven der Karpathenflächen stehen zum Teil in deutlicher Beziehung mit Exposition und Höhenlage. Alle Kurven des Urwaldes zeigen in ihrem alls mählichen flachen Verlauf den schroffen Gegensatz in den Beziehungen von Durchmesser und Höhe zwischen ungleichaltrigem Naturs und gleichsaltrigem Wirtschaftswald.

Berteilung der Stammzahlen auf 2 cm-Durchmefferftufen pro Heftar.

— 11 **—**

Stammzahlen der Karpathen=Probeflächen pro Katastraljoch (0,58 ha).

Brufthöhen= durchniesser	Nr. der Probestächen							Mittlere Stammzahl	
cm	1	2	3	4	5	6	7	8	pro Hektar
16 18 20	11 20 17	4 8 9	5 3 8	7 10 6	5 18 11	4 4 11	12 10 9	12 3 9	13 16 17
22 24 26 28 30	10 9 12 8 4	5 4 7 7 5	3 7 6 7 1	12 6 3 5 2	18 11 7 10 8	10 3 2 6 7	12 14 13 4 7	5 3 10 2	16 13 11 12 8
32 34 36 38 40	3 5 2 5	5 7 1 4 5	4 6 6 4 5	2 3 2 3 3	4 10 3 2 4	2 4 3 5 5	13 9 3 6 3	6 4 7 2 8	8 10 6 6 8
42 44 46 48 50	3 2 6 4 2	3 3 1 —	5 9 3	3 4 1 3 4	3 1 2 2 3	3 4 3 1 5	3 6 3 9 3	4 3 7 2 3	5 6 7 5 5
52 54 56 58 60	1 2 1 1 1	1 1 4 3	3 3 1 2 3	1 4 1 1 2	$\frac{4}{3}$	1 1 3 1	4 7 2 1 3	6 7 3 5 3	5 6 3 3
62 64 66 68 70	2 3 - 2	2 5 1 1	- 1 2 2	1 4 2 1	3 2 -	3 1 3 —	3 1 - 1	1 4 1 1	3 4 2 2 1
72 74 76 78 80	$\frac{2}{3}$ 1	3 - 1 1 1	1 1 3 1 2	2 1 2 —	1 1 1	1 5 2	2 - - -	1 - 1 -	3 1 3 2 1
82 84 86 88 90	1 1 1		1	1 2 -	_ _ 1	2 1 - 2 1			1 1 1
92 94 96 98 100	- - 1		1	1	_ _ _ 1	1		1 - -	1 - - 1
102 104						1	_		
Total	150	106	114	105	141	113	163	129	219

Der Einfluß von Exposition, Meereshöhe und Terrainneigung kommt bei den Aufnahmeresultaten der Karpathen-Brobeslächen in den verschieden großen Derbholzvorräten sehr deutlich zum Ausdruck. Die niedrigsten Massen weisen ausgesprochene Südhänge auf, in der Mitte stehen Bestände mit westlicher und östlicher Exposition, während die Nordhänge am massenreichsten sind. Die am besten entwickelten, vorratsreichsten Bestände liegen zwischen 400-800 m ü. M. Ein offensichtlicher Einfluß der Höhenlage macht sich erst von zirka 800 m ü. M. an aufwärts bemerkbar. Mit zunehmender Hangneigung nimmt die Bestandesqualität namentlich an Südhängen sehr rasch ab. Die besten Karpathen-Probeflächen sind in bezug auf die Derbholzmassen besteur gleichaltrigen Buchen-Altholzbeständen der Schweiz nicht ebenbürtig; sie haben Vorräte, die zwischen 1. und 2. Bonität der schweizerischen Er= tragstafel liegen. Bei einem Vergleich der Vorräte von ungleichaltrigen und gleichaltrigen Waldungen ist aber immer zu berücksichtigen, daß unter denselben äußeren Verhältnissen ein normal aufgebauter ungleich= altriger Bestand mit normaler Vertretung sämtlicher Altersklassen infolge des grundsätlich verschiedenen Entwicklungsganges nie einen so großen Vorrat besitzen kann, wie ein gleichaltriger Altbestand. außerordentlich hohe Vorrat der albanischen Probesläche erklärt sich aus den anormalen Verhältnissen in den mittleren Durchmesserstufen, die auf kleiner Fläche vorkommen können. Ausgesprochene Altbestände des Borsavagebietes, die ich aber nur in relativ beschränkter Ausdehnung und Häufigkeit beobachtete, enthalten nach meiner Schätzung 700-800 Fm Derbholz pro ha.

Da die Naturbestände bei gleichem Vorrat stets kleinere Stammzahk aufweisen, besitzen sie naturgemäß einen stärkeren Mittelstamm. Tatsächlich ist der Mittelstamm der schlechtesten Karpathenbestände größer als derjenige des Ertragstafelbestandes 2. Bonität; selbst für 1. Bonität gibt die Ertragstafel nur 1,85 Fm Mittelstamm an, während von meinem acht Probeslächen fünf über 1,70 Fm Mittelstamm ausweisen und die beste sogar 2,97 Fm.

Das ist der offensichtliche Beweis, sofern dieser nötig ist, daß die Urwaldbestände viel weitständiger und relativ startholzreicher sind als gleichaltrige Bestände unserer Gegenden. Wohl sind unsere Kulturwälder der Stammzahl und zum Teil auch der absoluten Masse nach überlegen, aber nur höchst selten entwickeln sie sich zu so imposanter Schönheit der Stämme und Kronen, zu solcher Schaftlänge und Baumhöhe. Natürlickstömmen auch schlechte Baumformen und Bestände vor, das ist ja selbstwerständlich, denn es war eben kein menschliches Interesse wirksam, das Säuberungen und Durchsorstungen nach "modernen" Gesichtspunkten gefordert und durchgeführt hätte; es ist aber interessant, zu beobachten, wie gut sich die Bestände gerade in voller Freiheit entwickeln!

Busammenfassung.

Aus den Beobachtungen im Wald und den Aufnahmeresultaten ergibt sich als Gesamtbild der Buchen-Urwaldungen im oberen Borsavatal:

Vorwiegend reine, ungleichaltrige Buchenwälder mit einem Bestansbesausbau, der sich sehr häusig mit unseren Begriffen des Plenterwaldes deckt. Die Verjüngung besindet sich selbst unter sast geschlossenen Altsholzgruppen in ständiger Bereitschaft; die Entwicklung erfolgt in der Regel horst- und gruppenweise in den Lücken der einzelstammweise zussammenbrechenden Althölzer.

Stark schwankende Gesamtvorräte mit deutlicher Vorherrschaft der Starkholzklasse (großer Mittelstamm) und auffallend kleine Stammzahlen sind die Merkmale dieser Naturwaldungen.

* *

Der eigenartige Eindruck der gewaltigen Wälder der Waldkarpathen in ihrer Natürlichkeit und Ruhe, nur belebt durch das Nauschen der Bergbäche und des Windes und hie und da unterbrochen durch das ferne Krachen eines zu Boden stürzenden alten Urwaldriesen, bleibt unverzgeßlich.

holz und Eisen im Brandfall.

Wer heute feuersicher bauen will, der greift zu Eisen und läßt das Holz beiseite, so hören wir nur zu oft von Fachleuten des Baugewerbes wie auch aus weitern Areisen urteilen. Nicht zu widerlegen ist, daß das Holz ein brennbarer Baustoff ist, und ebenfalls nicht zu bestreiten ist, daß das Eisen dem Einflusse des Feuers gegenüber nicht die Widerstandsfähigkeit ausweist, die ihm mancherorts zugemutet wird, denn ungeschütztes Eisen ist im Brandfall mindestens so feuergefährlich wie ungeschütztes Holz.

Die Erfahrungen, die in dieser Hinsicht seit einer Reihe von Jahren gemacht wurden und die auch im Frühsommer 1931 durch den Brand des Glaspalastes in München um ein weiteres bereichert wurden, haben allerdings schon viele Gegner des Holzbaues zur Ueberzeugung gebracht, daß auch der Eisenbau nicht als seuersicher bezeichnet
werden dürfte, insofern das Eisen nicht mit einer seuerwiderstandsfähigen Ummantelung versehen ist.

Wenn wir der Ursache von Brandfällen etwas näher nachspüren, so müssen wir feststellen, daß wohl die Mehrzahl der Brände im Innern von Gebäuden in aufgespeicherten Stoffen und Lagerwaren der verschiedensten Art entstehen, sei es durch Selbstentzündung, Unvorsichtigsteit, fahrlässige Behandlung derselben usw. Das Gleiche hat sich auch bei dem oben bereits erwähnten Großseuer in München gezeigt. Sehr

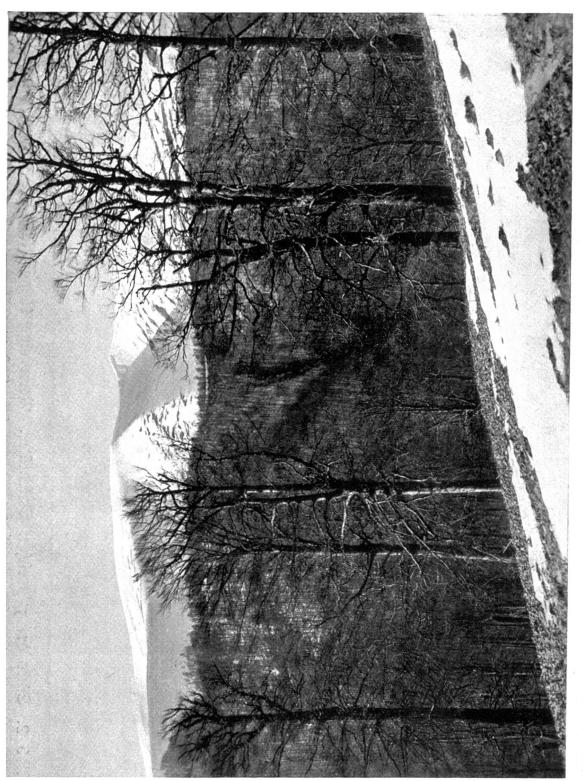


Abb. 1. Oberster Teil des Borsavales. Buchenurwälder an der Waldgrenze, zirka 1300 m ü. M. Im Hintergrund der Sztoj, 1678 m ü. M.

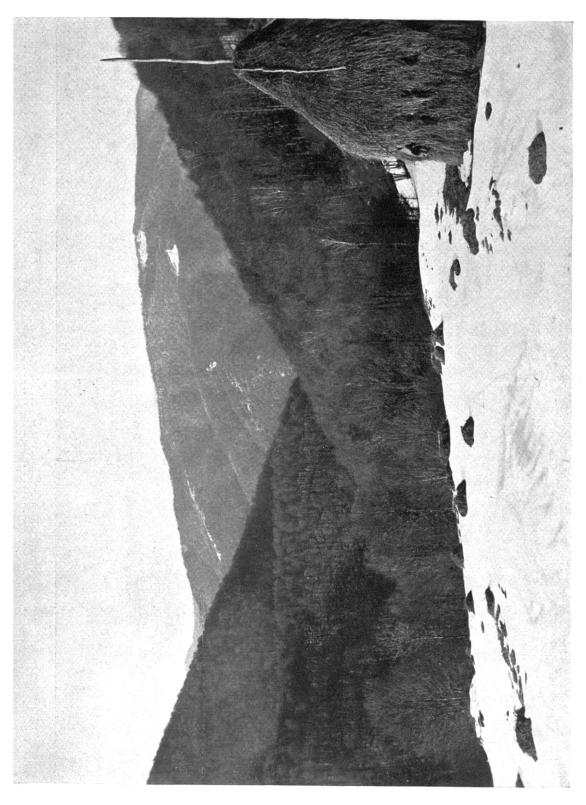


Abb. 2. Eines der zahlreichen Seitentäler. Vorn eine kleine Mähwiese mit alten Ameisen-haufen, in zirka 700 m Höhe.