Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 74 (1923)

Heft: 12

Artikel: Bakterien des Waldbodens [Schluss]

Autor: Düggeli, M.

DOI: https://doi.org/10.5169/seals-765760

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

"rechtswidriger Vorsat," sestgestellt wird, mit Strafe belegt, hat man im Entwurf, wie das in andern Spezialgesetzen der Fall ist, auch die Fahrlässigkeit unter Strafe gestellt. Es gibt ja Delikte innert den Rahmen des Jagd- und Vogelschutzgesetzes, bei welchen wirklich Fahrlässigkeit vorkommen kann, so daß gegenüber raffinierten Sündern, denen der rechtswidrige Vorsatz nicht strikte nachgewiesen werden kann, wenigstens die Strafe der Fahrlässigigkeit verhängt werden kann.

Im heutigen Stadium der Angelegenheit kritische Bemerkungen über die Vorlage anzubringen, scheint wenigstens durch uns nicht am Plate zu sein. Es soll das aber von fachkundiger oder interessierter Seite geschehen, und wenn speziell die Forstwirtschaft ihre gewiß berechtigten Anregungen rechtzeitig anbringt, wird sie auch Gehör finden. Die ständerätliche Kommission wird das Ergebnis der Beratungen des Nationalrates reiflich überprüfen, und es ist das notwendig, denn so wie der Entwurf jetzt vorliegt, ist er lückenhaft, öfters unklar und bedarf auch manchmal einer bessern Redaktion. Eine vollständig reinliche, alles abschließende Vorlage konnte nicht geschaffen werden, und man darf den vorbereitenden Organen und auch der beratenden Instanz keinen Vorwurf dafür machen, daß nicht alles glatt geraten ist. Die Unmasse von Positionen, wie sie selten in einem Rahmengesetze, das ja nach zwei Richtungen ausgearbeitet werden sollte, Fagd und Vogelschut, machen es beinahe unmöglich, daß bei noch so ängstlicher Überlegung alles abgeklärt wird. Der Ständerat hat also reichlich Gelegenheit einzugreifen und zu verbessern. Wir wissen, daß sich dessen Kommission schlüssig gemacht hat, erst nach der Dezembersession zusammenzutreten, aber die einzelnen Mitglieder derselben beschäftigen sich nunmehr mit der Vorlage. Wer also Anregungen machen will, hat jett Gelegenheit, dieselben bei der ständerätlichen Kommission, die von Herrn Ständerat Dr. Savoy in Freiburg präsidiert wird, anzubringen. Wir wünschen nur, daß das rechtzeitig geschehe und daß nicht, wie zur Zeit, als die Vorlage bei der nationalrätlichen Kommission lag, die besten Anregungen erst dann kommen, wenn auf dieselben nicht mehr eingetreten werden kann. Die Vorlage ist kein Gerippe mehr. Sie hat Substanz an= genommen, aber diese Substanz muß noch mehr geordnet, geglättet und auch verschönert werden. Das wird geschehen, und wenn dieselbe dann Gesetz werden sollte, dürfte ein wirtschaftliches Werk geschaffen sein, das der schweizerischen Gesetgebung zur Ehre gereicht.

Die Bakterien des Waldbodens.

Von Prof. Dr. M. Düggeli, Zürich. (Schluß.)

Ein auch nur flüchtiges Durchgehen dieser Angaben überzeugt uns, daß die 19 für die Untersuchung herangezogenen Bodenproben sehr ver-

schiedene chemische und physikalische Eigenschaften besitzen. Diese Böden wurden auch in verschiedener Weise in den Dienst der Pflanzenproduktion gestellt.

In der folgenden Tabelle 1 sind die mittelst des Spühlverfahrens oder der Schlämmethode von Kopecky bei den in Frage
stehenden Böden erzielten Resultate zusammengestellt. Ich hielt die Prüfung auf die Korngröße ihrer Bestandteile für angezeigt, da die für das
Bakterienwachstum bedeutungsvollen Durchlüstungs- und Wärmeverhältnisse, sowie der Wasserhaushalt des Bodens von dieser Eigentümlichkeit
abhängig sind. (Siehe Tabelle 1.)

Tabelle 1. Untersuchung von 19 Bodenproben aus verschiedenen Nadel- und Laubholzbeständen nach der Schlämmethode von Kopecky.

Januar-Februar 1923. Die einzelnen Bodenproben enthielten die verschiedenen Korngrößen in folgenden Gewichtsprozenten:

Boden. probe	Fraktion 1 < 0,01 mm	Fraction 2 0,01 - 0,05 mm	Fraktion 3 0,05—0,1 mm	Fraftion 4	Steine > 2 mm
N 1	44,4	24,4	15.	15,9	0,3
N 2	43,9	i .	15,0	5757	
		22,6	12,9	16,8	3,8
N 3	50,2	23,4	11,5	13,3	1,6
N 4	44,1	26,5	11,4	15,0	3,0
N 5	33,7	17,2	11,0	20,5	17,6
N 6	27,1	15,1	9,3	16,2	32,3
N 7	32,4	21,4	22,3	23,9	0,0
N 8	23,4	33,9	21,3	21,1	0,з
N 9	30,2	35,5	22,3	11,9	0,1
N 10	17,6	10,6	21,5	31,8	18,5
L 1	44,7	25,3	13,8	14,8	1,9
L 2	50,9	23,4	9,5	11,9	4,3
L 3	50,7	24,5	11,7	12,9	0,2
L 4	29,9	13,2	9,4	24,5	23,0
L 5	18,8	10,3	8,4	20,6	41,9
L 6	44,2	19,8	12,3	23,1	0,6
L 7	18,2	13,1	12,7	32,3	23,7
L 8	30,0	31,8	22,0	16,2	0,0
L 9	21,6	31,0	12,4	13,2	21,8

¹ Bei der Ausführung der Schlämmanalhse und der noch zu besprechenden bakteriologischen Untersuchung konnte ich mich der Mithülse von Herrn A. Stöckli, Assistent des landwirtschaftlich-bakteriologischen Instituts der Eidgen. Technischen Hochschule erfreuen, wofür ich ihm auch an dieser Stelle verbindlich danke.

Die Zusammenstellung zeigt, daß die untersuchten Böden hinsichtlich ihrer physikalischen Eigenschaften große Unterschiede ausweisen müssen, da ihr Gehalt an den einzelnen, verschiedene Korngrößen ausweisenden Bestandteilen bedeutende Differenzen zeigt. Vielsach weisen Böden, die räumslich nicht weit voneinander entfernt liegen, auffallend große Unterschiede auf, was durch den Hinweis erklärt werden kann, daß es sich vorwiegend um Böden handelt, die durch Verwitterung von Glazialschutt entstanden sind. Da dieser Schutt in seiner petrographisch-chemischen Zusammensetzung auch in benachbarten Gebieten öfters bedeutende Differenzen zeigt, so ist es nicht verwunderlich, wenn der aus ihm hervorgegangene Boden wechselnde Zusammensetzung ausweist.

In den solgenden Tabellen 2 und 3 sind die Befunde über Reaktion, Wasser-, Kalk- und Humusgehalt, sowie über die bakteriologische Beschaffenheit der 19 Waldböden enthalten. Die angegebenen Keimzahlen sind, wie ich früher aussührte, als Minimalwerte aufzusassen. (Siehe Tabellen 2 und 3.)

Wir wollen hier nicht näher auf die gewonnenen Untersuchungsresultate eingehen, da die Zahl der geprüften Erdproben eine zu bescheidene ist, als daß die erhaltenen Ergebnisse verallgemeinert werden dürfen. Überdies werden die Untersuchungen fortgesetzt, und die Resultate sollen seinerzeit im Zusammenhang veröffentlicht werden. Dagegen sei doch darauf hingewiesen, welch große Bedeutung der Reaktion des Bodens für die Entwicklung seiner Mikroflora zukommt. Bei den untersuchten Nadelwalderden besitzen die neutral reagierenden Proben N 6 und N 9 den höchsten Gehalt an Mikroorganismen, die auf Gelatineplatten zu wachsen vermögen, und bei den Laubwaldböden ist die neutrale Probe L 9 diejenige, die die andern, sauer reagierenden Böden an Gelatine- und Agarplatten wüchsigen Keimen weit übertrifft. Bergleichen wir überhaupt den Gehalt der einzelnen Erdproben an Mikroorganismen, welche auf Gelatine- oder auf Agarplatten zu wachsen vermögen, so fällt uns auf, daß sehr verschiedene Mengen von Spaltpilzen in den einzelnen Broben feststellbar sind. Ühnliche Unterschiede in der Zahl der nachweisbaren Keime lassen sich vielfach auch bei andern Gruppen von Bakterien feststellen. Diese Differenzen sind zurückführbar auf die stark verschiedenen chemischen und physikalischen Eigenschaften der Böden, sowie auf ihre verschiedene Nutung.

Vergleichen wir verschiedene forst und landwirtschaftlich benutte Böden hinsichtlich ihrer Bakterienflora, so lassen die letztern im allgemeinen bedeutend größere Keimmengen feststellen als die erstern. Die Bearbeitung und Düngung der landwirtschaftlich benutzten Böden erklären uns diesen Befund.

Ebenso werden wir erwarten dürfen, daß ein Boden, in verschiebenen Jahreszeiten der bakteriologischen Untersuchung unterworfen,

Ergebnisse der bakteriologischen Untersuchung von 10 Vodenproben aus verschiedenen Nadelholzbeständen. Innuar-Februar 1923. Reimzahlen pro Gramm feuchte Erde. Tabelle 2.

	STATE OF STREET	THE PROPERTY AND PROPERTY OF THE PERSON NAMED IN		SECURE SE	-					
Reaftion, Wasser., Kalf. u. Humus- gehalt. Spaltpilzgruppen	_ Z	N 2	S N	4 N	N 2	9 N	N 7	8	6 N	N 10
						,		i	,	i.
Reaktion (nach Hafenbäumer)	ft. fauer	ft. fauer	ft. fauer	ft. fauer ft. fauer	ft. fauer	neutral	tt. lauer	tt. jauer	neutral	it. janer
Baffergehalt in % der feuchten Erde	14,2	10,3	7,3	28,7	16,8	27,0	23,3	32,9	23,0	33,3
Gehalt an kohlensaurem Kalk in %	0	0	0	0	0	1,8	0	0	1,8	0
Humusgehalt in %	7,2	4,0	3,0	4,8	5,6	4,8	1,2	11,9	7,4	22,8
Auf Gelatineplatten wachsend	710 000	1 120 000	225 000	470 000	320 000	2 270 000	510 000	410 000	1 510 000	350 000
Auf Agarplatten gedeihend	570 000	1590000	790 000	920 000	800 000	1 900 000	460 000	260 000	260 000 1 200 000	270 000
In Zuckeragar hoher Schicht wach= fend	000 09	150 000	000 09	000 06	140 000	000 009	000 09	20 000	300 000	000 09
Harnstoffvergärer	10 000	100 000	10 000	10 000	10 000	100 000	1 000	10 000	100 000	1 000
Denitrifizierende Bakterien	100	100	100	100	100	100	1 000	1 000	1 000	100
Rektinvergärer	1 000	1 000	10 000	1 000	1 000	100 000	10 000	1 000	100 000	1 000
Anaërobe Butterfäurebazillen	10 000	1 000	1 000	1 000	1 000	1 000	100	10 000	10 000	10 000
Anaërobe Eiweißzerseter	100	100	1 000	100	100	1 000	100	1 000	10 000	100
Anaërobe Zellulofevergärer	0,2	0,2		0,2	I	0,2	I	1	62	0,2
Aërobe, stickftoffbindende Bakterien	1			ı	I	200	ı	l	0.1	1
Anaërobe, fticktoffbindende Bak- terien	1 000	10 000	100	100	100	10 000	100	100	10 000	1 000
Mitrifizierende Bakterien	1	1	-		1	01	1	1	100	

Ergebnisse der bakteriologischen Untersuchung von 9 Bodenproben aus verschiedenen Laubholzbeständen. Innax-Februar 1923. Tabelle 3.

Reimzahlen pro Gramm feuchte Erbe.

Reaktion, Wasser, Kalk und Humus. gehalt. Spaltpilzgruppen	L 1	L 2	L 3	L 4	L 5	9 7	L 7	L 8	6 T
Reaktion (nach Hafenbäumer)	fauer	fc. fauer	fά). fauer	ft. fauer	nentraí				
Wassergehalt in % der feuchten Erde .	29,7	30,6	32	16,8	16.4	20.9	27.	66	30 °
Gehalt an kohlensaurem Kalk in %.	0	0	0	0	0	0	0	, C	2,00
Humusgehalt in %	7,9	7,1	8,7	5,8	6.7	0.6	7.	> 4	19.
Auf Gelatineplatten wachsend.	780 000	000 006	1 230 000	000 008	750 000	540 000	370 000	550 000	6 700 000
Auf Agarplatten gedeihend	1 530 000	860 000	1 290 000	000 089	1 020 000	820 000	560 000	440 000	9 300 000
In Zuckeragar hoher Schicht wachsend	000 06	70 000	100 000	160 000	390 000	120 000	000 02	70 000	400 000
Harnstoffvergärer	10 000	100 000	100 000	10 000	10 000	10 000	10 000	1 000	10 000
Denitrifizierende Bakterien	1	1	1	100		100	1 000	100	100
Pettinvergärer	1 000 000	1 000 000	1 000 000	1 000	1 000	1 000	1 000	10 000	10 000
Anaërobe Butterfäurebazillen	10 000	10 000	1 000	1 000	1 000	1 000	1 000	1 000	100 000
Anaërobe Eiweißzerseher	1 000	100	100	100	100	100	1	100	10 000
Anaërobe Zellulofevergärer	67	0,2	0,2	67	0.2	0.9	1	0,0	000 01
Aerobe stickftoffbindende Bakterien	-	0,2	.	i	}	}	1	2	006
Anaërobe, sticktoffbindende Bakterien .	10 000	100	100	100	1 000	1 000	100	1 000	00000
Ritrifizierende Bakterien		1			3	3 1	3		000 01
)

Unterschiede ergeben wird, bedingt durch die Witterungseinflüsse und durch die Kulturmaßnahmen (Bearbeitung und Düngung des Bodens). Solche bakteriologische Untersuchungen führte ich bei verschiedenen Bodentypen zu fünf verschiedenen Jahreszeiten aus (Anfang Dezember 1918, Anfang Januar 1919, Ende März 1920, Mitte Mai 1920 und Ende Juli 1920). Folgende Angaben entwerfen ein Bild von der Herkunft und der bodenkundlichen Beschaffenheit der aus Zürich und Umgebung stammenden sieben Erdproben.

Laubwalderde. Laubwald beim Adlisberg. Graugelber, humusarmer, steinhaltiger, kalkfreier, zäher Lehmboden, von Pflanzenwurzeln durchsetzt.

Na delwalderde. Fichtenbestand beim Adlisberg. Bräunlicher, humus- und steinhaltiger, kalkfreier, tonreicher Lehmboden, von Pflanzen- wurzeln durchwachsen.

Gartener de. Garten des land- und forstwirtschaftlichen Institutes der E. T. H. Graubrauner, humus-, stein- und kalthaltiger, ziemlich ton-reicher Lehmboden.

Weinbergerde. Weinberg beim eidgen. Physikgebäude. Brauner, humus-, kalk- und steinhaltiger, tonreicher Lehm.

Ackererde. Limmattal bei Altstetten. Bräunlicher, humus- und kalkhaltiger, steinfreier, tonreicher Lehm.

Wiesenerde. Limmattal bei Altstetten. Dunkelgrauer, humus-, kalk- und steinhaltiger, tonreicher, von Pflanzenwurzeln dicht durchsetzter Lehmboden.

Riedlanderde. Streuwiese im Limmattal bei Altstetten. Graugelber, humusfreier, steinhaltiger, von Pflanzenwurzeln durchsetzter, tonzeicher, kalkfreier Lehmboden mit hohem Wassergehalt.

In den Tabellen 4 bis 8½ sind die Resultate der bakteriologischen Untersuchung dieser sieben Böden in den fünf verschiedenen Zeiten zussammengestellt, wobei die Bodenreaktion und der Gehalt an Humusstoffen in den Übersichten nicht angegeben sind. Die mitgeteilten Keimzahlen sind im Hinweis auf die frühern Aussührungen als Minimalwerte aufzusassen.

Beim Durchgehen der Tabellen 4 bis 8 können wir feststellen, daß diesenigen landwirtschaftlich benutzen Böden, welche bearbeitet und gesdüngt werden, wie die Gartens, Weinbergs und Ackererde, sehr beträchtliche Mengen von vielseitig tätigen Bakterien im Gramm seuchten Materials nachweisen lassen. Aber auch in der zwar vom Menschen nicht bearbeisteten aber gedüngten Wiesenerde, ist eine nach Zahl und Art hervorragende Mikroslora feststellbar. Viel bescheidener ist die in der Laubwalds und

Diese Tabellen mußten aus Sparsamkeitsgründen hier weggelassen werden. Sie sind jedoch in den Separatabzügen enthalten. Red.

der Nadelwalderde, sowie im Riedlandboden nachweisbare Spaltpilzwelt.

Bergleichen wir die Befunde der bakteriologischen Untersuchung ein und desfelben Bodentypus bei den verschiedenen Brüfungsdaten. Wir werden erwarten, daß Ende Juli das große Beer der Bodenbakterien, wie es uns in den Gelatine- und Agarplatten-wüchsigen Reimen entgegentritt, begünftigt durch die höhern Bodentemperaturen, eine Stärkung erfahren müßte. Dies- ift aber, wie aus einem kurzen Vergleich der Tabelle 8 mit den Tabellen 4 bis 7 ersichtlich ist, durchaus nicht immer der Fall. In manchen Fällen, so bei Garten-, Weinberg-, Acker- und Wicsenerde ist die im Sommer feststellbare Keimzahl wesentlich kleiner als die im Winter, oder im Frühling gefundene. Dieser befremdende Befund ift wohl darauf zurückzuführen, daß fich einerseits öfters Mangel an Wasser und an leicht zersetlichen organischen Stoffen einstellen kann, anderseits aber, und diesem Umstand lege ich das Hauptgewicht bei, die bodenbewohnenden Protozoen die Batterien dezimieren. Diese niedern Tiere ernähren sich entweder ausschließlich, oder doch vorwiegend von Spaltpilzen. Durch die steigende Bodenwärme begünftigt, entwickeln sich diese, im Verhältnis zu den Bakterien großen Organismen sehr ftark und vermögen durch ihre lebhafte Frestätigkeit die sich rasch vermehrenden Bodenbatterien zurückzudrängen.

Diese Vorgänge lassen sich außerhalb des Bodens hübsch beim Nachweis der aeroben Stickstoff firierenden Bakterien in den Rohkulturen von Azotobacter chroococcum verfolgen. Mit Sülfe tausendfacher Vergrößerung können die Protozoen, zum Beispiel Amöben, bei der Aufnahme von Nahrung, die aus Bakterien besteht, beobachtet werden. Die im Innern der Amöbe sich anhäufenden Bakterienzellen gehen, durch das Undeutlichwerden der Zellkonturen erkennbar, ziemlich rasch der Verdauung entgegen und die entstehenden Abbauprodukte gelangen zur Resorption. Der Appetit dieser Amöben ist nicht selten so bedeutend, daß die Bakterienzellen trotz lebhafter Vermehrung (braucht doch ein Individuum für die Teilungsvorgänge bis zur Bildung von zwei gleich großen Zellen unter optimalen Bedingungen nur 20-30 Minuten), im Laufe einiger Tage sast vollständig eliminiert werden. Dabei läßt sich mit Hülfe des Mikroskopes auch leicht feststellen, daß nicht alle Bakterienarten als Protozoen-Nahrung in gleichem Maße willkommen sind. Nach meinen bisherigen Erfahrungen ist Azotobacter chroococcum, diese aerobe, bodenbewohnende, Stickstoff fixierende Bakterienart besonders gesucht.

Aus den für die einzelnen Aulturarten angeführten Keimmengen läßt sich die Gesamtzahl der pro Gramm seuchten Bodens nachweis-baren Bakterien berechnen. Es kann sich dabei aber, wie ich schon früher erwähnte, nicht um eine bloße Addition der bei den einzelnen Bakteriengruppen sestgestellten Keimzahlen handeln, sondern es muß die Art der zur Entwicklung gelangten Spaltpilze mitberücksichtigt werden. So

gibt es beispielsweise unter den Harnstoff vergärern, den den itrifizieren den und den Pektinvergärern manche Arten, die auf den Geslatines oder den Agarplatten gut gedeihen und dort gezählt werden, während andere Spezies dieser spezissisch arbeitenden Mikroorganismen, auf die genannten Nährsubstrate übertragen, keine Entwicklung zeigen. Es ist aber auch darauf aufmerksam zu machen, daß einzelne Arten gleichzeitig auf verschiedenen Nährmedien zu gedeihen vermögen, so der Bacillus amylodacter in Zuckeragar hoher Schicht Kultur, in der Nährlösung für Stickstoff sixierende Anaerobe, bisweilen auch in anaerob verschlossener Milch und im Nährsubstrat für Pektinvergärer. Die Berechnung der Gesamtzahl der im Boden nachweisbaren Keime setzt besdeutende Kenntnisse der Biologie und der Systematik der bodenbewohnenden Mikroorganismen voraus.

Im Boden wird mit zunehmender Tiefe die Mikroflora spärlicher, da die Ernährungsverhältnisse ungünstigere werden, der Sauerstoffgehalt zurückgeht und der Boden dichtere Struktur annimmt. Ich möchte diese, bei den verschiedenen Bodentypen zu machende Beobachtung durch ein Beispiel belegen.

Zur Beurteilung der Fundamentierungsarbeiten wurden im Garten des land- und forstwirtschaftlichen Institutes der Eidgen. Technischen Hochschule in Zürch Probegruben aufgeworfen, die ich für das Studium der Abnahme der Mikroflora mit zunehmender Bodentiese benutzte. Die bodentundliche Charakterisierung der enthobenen Erdproben kann durch solgende Angaben kurz erfolgen. Die Bodenproben aus 2 und 40 cm Tiese stammend, bestehen aus einem braunschwarzen, humosen, kalkreichen, steinhaltigen, sehr fruchtbaren Lehmboden mit bedeutendem Tongehalt. Die Bodenproben aus 100, 166 und 266 cm Tiese entnommen sind hellgelber, humusfreier, kalkreicher, steinhaltiger, sehr zäher Glazialmergel.

Diese Bodenproben, enthoben im Februar 1921, wurden dem oben angeführten bakteriologischen Untersuchungsversahren unterworfen. Die erhaltenen Resultate sind in Tabelle 9 zusammengestellt. (Siehe Tabelle 9.)

Der Tabelle 9 können wir entnehmen, daß beim untersuchten Bodensprosil mit zunehmender Bodentiese der Wassergehalt abs, der Gehalt an kohlensaurem Kalk aber zunimmt. Was die Mikroflora ansbelangt, so läßt sich im allgemeinen seststellen, daß mit zunehmender Bosdentiese die Keimmengen rasch abnehmen, so daß in 266 cm Tiese nur noch sehr bescheidene Bakterienquantitäten im Gramm seuchten Bosdens nachgewiesen werden konnten. Die zu beobachtenden Ausnahmen dürsten entweder auf Zufälligkeiten, wie kleine Tierreste, Regenwurmerstremente, ungünstig wirkende Stosse usw. zurückzuführen sein, oder aber sie sind in der Biologie der nachgewiesenen Spaltpilzgruppen begründet. So ist es verständlich, wenn die luftscheuen, mittels Zuckeragar hoher Schicht Kultur nachweisbaren Bakterien in 40 und sogar in 100 cm

Eabelle 9. Ergebnisse der bakteriologischen Untersuchung eines Bodenprosils. Keimzahlen pro Gramm feuchte Erde.

Waffer und Kalkgehalt. Spaltpilz= gruppen	2 cm Tiefe	4() cm Tiefe	100 cm Tiefe	166 cm Tiefe	266 cm Liefe
Waffergehalt in % der feuchten Erde	25,5	22,3	12,4	10,2	7,4
Gehalt an kohlensaurem Kalk in %	7,2	12,2	37,2	48,0	50,8
Auf Gelatineplatten wachsend	6 700 000	5 200 000	62 000	7 400	0
Auf Agarplatten gedeihend	5 400 000	3 700 000	83 000	6 200	0
In Zuckeragar hoher Schicht wach=					
send	340 000	520 000	470 000	1 400	80
Harnstoffvergärer	100 000	- 10 000	1 000	0	0
Denitrifizierende Bakterien	1 000	100	0	0	0
Pektinvergärer	100 000	100 000	10 000	10 000	2
Anaërobe Butterfäurebazillen	100 000	1 000 000	10 000	1 000	0
Anaërobe Eiweißzerseter	10 000	10 000	1 000	100	0
Anaërobe Zellulosevergärer	1 000	2	0,2	0,2	0
Aërobe stickstoffbindende Batterien	1 000	1 000	0	0	0
Anaërobe stickstoffbindende Bat=					
terien	100 000	100 000	1 000	100	2
Nitrifizierende Bakterien	10 000	100	0	0	0

Tiefe in größern Mengen feststellbar sind, als an der Oberfläche, da der Sauerstoffabschluß in bedeutenden Tiefen ein relativ guter ist. Ebenso ist es erklärlich, daß die anakroben Buttersäurebazillen in 40 cm Tiefe zahlreicher sind als in 2 cm Tiefe.

Nicht bloß in den Böden der Ebene, sondern auch in Erdproben alpiner Herkunft, können stattliche Bakterienmengen nachgewiesen werden. Zum Beweiß seien die Ergebnisse der bakteriologischen Untersuchung von sechs alpinen Bodenproben aus der Umgebung von St. Morit im Engadin, untersucht im September 1920, angeführt. Die Böden stammen aus Meereshöhen von 1900 bis 2700 m und zeigen, wie aus nachstehenden Angaben zu entnehmen ist, recht verschiedene physikalische und chemische Eigenschaften. Die bodenkundliche Charakterisierung der sür die bakteriologische Untersuchung herangezogenen alpinen Erdproben kann folgendermaßen kurz geschehen:

Boden 1. Weideboden der Alp Laret 2100 m. Ungedüngt. Gelbbrauner, humushaltiger, stein- und kalkfreier, dicht von Pflanzenwurzeln durchzogener schwerer Lehm.

Boden 2. Aus der eingefriedigten Mähwiese der Alp Laret, 2100 m. Mit gelagertem Kinderkot stark gedüngt. Sbenfalls ein gelbbrauner, humushaltiger, stein- und kalksreier, dicht von Pflanzenwurzeln durchzogener schwerer Lehm.

Boden 3. Weideboden der Alp Muottas da Celerina, 2280 m. Sehr magere Jungviehweide. Ungedüngt. Von Rohhumus durchsetzter, gelbbrauner, steinhaltiger, kalkfreier Lehm, mit mittlerem Tongehalt.

Boden 4. Boden des Viehlägers der Alp Stat, 1950 m. Sehr stark mit frischem Rinderkot gedüngt. Graubrauner, humus- und stein- haltiger, kalkfreier, ziemlich schwerer Lehm.

Boden 5. Boden von Ova Cotschna, nicht beweidet, 2680 m. 10 cm mächtige, dunkelbraune, humusreiche, steinhaltige, kalkfreie Schicht tonarmen Lehmbodens.

Boden 6. Magere Ziegenweide am Fuß des Piz Nair, 2730 m. Ungedüngt. 15 cm mächtige, bräunlich violette, humusreiche, steinhaltige, kalksreie Schicht tonarmen Lehmbodens.

Mittels der oben beschriebenen Untersuchungsmethode wurden diese sechs alpinen Bodenproben einer bakteriologischen Prüfung unterzogen, deren Resultate in Tabelle 10 zusammengestellt sind. (Siehe Tabelle 10.)

Eabeste 10. Ergebnisse der bakteriologischen Untersuchung alpiner Bodenproben. Keimzahlen pro Gramm seuchte Erde.

Waffer, und Kalfgehalt. Spaltpilzgruppen	Boden 1	Boden 2	Boden 3	Boden 4	Boden 5	Boden 6
Wassergehalt in % der						
feuchten Erde	21,2	31,1	26,2	31,9	56,2	29,6
Gehalt an kohlensaurem						
Kalf in %	0	0	0	0	0	0
Auf Gelatineplatten wach=						8
fend	7 100 000	16 400 000	260 000	43 000 000	5 400 000	2 700 000
Auf Agarplatten gedeihend	9 100 000	15 200 000	200 000	44 100 000	6 400 000	2 900 000
In Zuckeragar hoher Schicht						
wachjend	17 000	14 000	12 000	170 000	400 000	600
Harnstoffvergärer	10 000	100 000	10 000	100 000	100	1 000
Denitrifizierende Bakterien	10	10	100	10	0	0
Pektinvergärer	1 000 000	100 000	100	10 000	1 000	100
Anaërobe Butterfäureba=						
zillen	100 000	100 000	10 000	1 000	100	10
Anaërobe Eiweißzersetzer .	0	1 000	0	100	0	0
Anaërobe Zellulosevergärer	0	2	. 0	2	0	0
Aërobe stickstoffbindende				. ,		
Bakterien	0	0	0	0	0	0
Anaërobe stickstoffbindende						
Batterien	1 000	1 000	100	10 000	1 000	100
Nitrifizierende Bakterien .	2	100	0	10 000	2	0

Wie aus der Tabelle 10 ersichtlich ist, weisen die untersuchten alpinen Bodenproben einen recht verschiedenen Baffergehalt auf, stimmen aber darin überein, daß sie keinen kohlensauren Ralk enthalten. Durch hohen Gehalt an nachweisbaren Mikroorganismen zeichnen sich insbesondere die Proben 2 und 4 aus. Die hohen Reimzahlen sind ohne weiteres verständlich, wenn wir darauf hinweisen, daß der Boden 2 einer eingefriedigten, gut gedüngten Mähwiese entnommen wurde und der Boden 4 einem Viehläger mit reicher animalischer Düngung entstammt. Diese beiden Erdproben beweisen durch ihren Batterienreichtum, daß die Ungunft des alpinen Klimas an und für sich die Mitroflora des Bodens teineswegs zurückzudrängen vermag. Sehr bescheiden dagegen ift die nachweisbare Spaltpilzflora des Bodens 3, der einer magern Viehweide entnommen worden war. Beachtenswert ist das gänzliche Fehlen der geroben Stickstoff fixierenden Bakterien vom Typus des Azotobacter chroococcum. Auch auf das spärliche Vorkommen der angeroben Zellulosevergärer und der denitrifizierenden Batterien in diesen alpinen Bodenproben sei hingewiesen.

Aus den vorstehenden Ausführungen ist ersichtlich, daß die beschriebene, auf der Kombination der Verdünnungsmethode mit der elektiven Kultur beruhende bakteriologische Untersuchungsmethode gestattet, hübsche Einblicke in das Vakterienleben unserer Böden zu gewinnen. Wir erhalten durch solche Prüsungen die Überzeugung, daß im Boden eine Unsumme von Zersehungs und Umsehungsprozessen siehen stattsindet, die für die Fruchtbarkeit große Bedeutung besihen. Ze tieser wir in das Studium der Lebenseigentümlichkeiten der bodenbewohnenden Organismen eindringen, desto mehr erhalten wir die Überzeugung, daß noch eine Reihe von mikrobiologischen Vorgängen der nähern Ersorschung harren. Die Bakteriologie des Bodens und speziell diesenige des Waldbodens ist ein noch junger Wissenszweig, in welchem zahlreiche Probleme der Lösung harren.

Zürich, 27. November 1923.

Dr. M. Düggeli.

Nochmals zur forstlichen Studienplanreform.

Von Prof. C. Zwicky.

Nach mehrfachen Erörterungen an Forstversammlungen und in Kommissionen hat zu dieser Frage in Nr. 10 dieser Zeitschrift auch noch Herr Dr. Flurh Stellung bezogen und dies durch seine "engen Beziehungen zu Schule und Praxis" begründet. Form und Inhalt seiner Ausführungen sind nun aber derart, daß sie nicht mit Stillschweigen hingenommen werden können. Unsereseits wollen wir uns in der Entgegnung indessen zur Hauptsache auf zwei Gegenstände beschränken, nämlich auf das Prüfungswesen einerseits und auf die bautechnischen Fächer anderseits.