Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 64 (1913)

Heft: 5

Artikel: Tagesfragen zur Etatermittlung und Wirtschaftskontrolle [Fortsetzung]

Autor: Flury, Philipp

DOI: https://doi.org/10.5169/seals-765910

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Flößerei-Einrichtungen Dalekarliens und Norrlands stellen einen Wert von 30 bis 40 Millionen Kronen dar. Das Flößen wird gemeinschaftlich betrieben, und zwar durch sehr gut organisierte Gesellschaften, zu denen die Forst- und die Sägewerkbesitzer gehören. Die Transportkosten sind äußerst mäßig: für die wohl regulierten Gewässer betragen sie höchstens ½10 Centime per Kilometer und per Block, wozu noch die Sortierungskosten kommen, die sich auf 2 bis 6 Cts., je nach der Größe der geslößten Stämme, belaufen. Anderseits kommt auch das Reisten und Schlitteln des Holzes im Winter sehr billig zu stehen. Sogar die Sägereien am Meeresuser verarbeiten Hölzer, die oft von den entferntesten Grenzen des Landes kommen, aus Entfernungen von bisweilen 200 bis 300 Kilometern vom Werk.

Die Flößwege Schwedens besitzen eine Gesamtlänge von 25,000 Kilometern. Man schätzt, daß sie jährlich fast 40 Millionen Blöcke befördern, die zum Sägen oder zur Papiersabrikation bestimmt sind. (Schluß folgt.)

Tagesfragen zur Etatermittlung und Wirtschaftskontrolle.

Referat, gehalten an der Jahresversammlung des Schweiz. Forstvereins in Solothurn am 5. August 1912, von Philipp Flury, Adjunkt der eidg. forstlichen Versuchsanstalt. (Fortsetzung.)

V.

Mit den letten Bemerkungen berühren wir die Grundlagen, auf welche sich der Etat stüt, d. h. auf die Vorrats= und Zuwachs= erhebungen.

Der Holzvorrat als das eigentliche Betriebskapital darf vermöge seiner Wichtigkeit auf besondere Beachtung und Sorgfalt bezüglich seiner Ermittlung Anspruch machen.

Die verschiedenen Methoden der Bestandesmassenberechnung sind so ziemlich abgeklärt. Feder Taxator und Wirtschafter benutt je nach Bedürsnis bald dieses, bald jenes Versahren, weshalb ich speziell darüber nicht viele Worte verlieren will. Doch möchte ich einzelne Vunkte herausgreisen, so weit sie unser heutiges Thema berühren.

¹ Das Sägewerk von Bomhus erhält Holz, das im Mittel 200 Kilometer weit geflößt wurde; für einen von der norwegischen Grenze kommenden Block kostet so der Transport nicht mehr als die Eisenbahnfracht für eine Strecke von etwa zwanzig Kilometern.

Die Verfahren der Holzmassenberechnung für stehende Bestände und spezieil für die nachherige Massenkontrolle, welche zum Zwecke der Aufstellung und Revision von Wirtschaftsplänen in Anwendung stehen, lassen sich nach drei Gruppen unterscheiden, nämlich:

- 1. Berechnung der stehenden Holzmasse nach irgend einer der der üblichen Methoden (Probestammversahren, Massentaseln, Massensfattor $\frac{V}{G}$ usw.), und nachherige Benutung der durch liegende Einmesung und Aufrüstung erhaltenen Schlagergebnisse für die Zwecke der Kontrolle, also das bei uns und auch anderwärts am meisten verbreistete, gewöhnliche Versahren, wenn man es so nennen darf;
 - 2. das bündnerische Verfahren, und
 - 3. das Verfahren der "Méthode du contrôle".

Wenn ich in der Besprechung derselben gemeinsam mit den zwei letteren beginne, so geschieht das, weil diese beiden Methoden miteinander nahe verwandt sind und ausschließlich den Zwecken der Forsteinrichtung dienen.

Beide Verfahren verlangen für die Holzmassenberechnung Kluppierung aller Stämme von einer gewissen Stammstärke an (16 cm nach bündnerischem Usus, 17,5 cm nach der Méthode du contrôle) und zwar sowohl für die Berechnung des stehenden Holzvorrates, wie auch in ganz gleicher Weise für sämtliche Stämme der jährlichen Nutungen. Die Holzmassen werden alsdann mit den gleichen rech= nerischen Hilfsmitteln berechnet, wozu man irgend eine beliebige Massentafel verwenden könnte. Tatsächlich benuten beide Verfahren eigene Massentafeln. Es besteht also der Grundsat: Wirtschaftsplan= masse und Ruzungsmasse werden mit dem gleichen Maßstab stehend gemessen und für die Kontrolle auch stehend miteinander verglichen. Sie sind deshalb auch für die Zuwachsberechnung direkt vergleichbar. Ob nun die geschlagene Rutungsmasse in Wirklichkeit mehr oder weniger ergibt als diese sogenannte Taxationsmasse, ist für die Zuwachsberechnung und Kontrolle selbst gleichgültig. Der Waldeigentümer erhält eben jedes Jahr die gleiche stehend gemessene Taxationsmasse, während die effektiv nachher liegend eingemessene und wirklich zur Verwertung gelangende Holzmasse — gewöhnlich nach stattgehabtem Transport ins Tal — wesentlich kleiner ist. Diese Differenz nennen die Bündner kurzweg "Ernteverlust", worin natürlich wirklicher Holzverlust enthalten ist, aber auch sonstige Massendifferenzen auftreten können, z. B. weil die genutten Stämme tatsächlich mehr oder weniger massenhaltig sind, als die Massentafeln angeben.

Für die Zwecke der Kontrolle und Zuwachsberechnung allein eignen sich diese beiden Versahren vorzüglich, garantieren die Massenstontrolle in denkbar einsachster und zugleich sicherer Weise, brauchen sich nicht zu kümmern um die unvermeidlichen, störenden Messungsstifferenzen und Reduktionen manchersei Art, auch nicht um den sogenannten "Ernteverlust" usw., aber Voraussehung dabei ist: Stammweise Messung aller etatsmäßigen Stämme der jährlichen Nutzungen anläßlich der Schlaganweisungen.

Daß dies nun speziell in Granbünden mit seinen äußerst leicht zugänglichen, meist ebenen Waldungen durchführbar ist, wird niemand in Erstaunen setzen; ganz anders dagegen in unserm Hügelland mit seinen abgelegenen, schwer zugänglichen, von jedem Verkehr abgeschnittenen, unermeßlichen Waldgebieten, bei uns — ja, da geht so etwas nicht, und man wird es wohl oder übel glauben müssen!

So gut sich nun die zwei besprochenen Versahren für die Zwecke der Wirtschaftskontrolle und auch für die Zuwachsberechnung eignen, so wenig passen sie für die Vorratsermittlung und Wertsberechnung eines einzelnen Bestandes, beispielsweise zum Zwecke des Verkauses; denn hierbei nützt uns die Taxationsmasse in obigem Sinne nicht viel, und anderseits können wir dabei nicht mit "Sylven" rechnen, sondern wir müssen die Holzmasse in wirklichen Kubikmetern kennen.

Damit sind wir beim ersten der drei genannten Verfahren angelangt.

Nach demselben werden zum Zwecke der Statberechnung die Holzvorräte stehend in allbekannter Weise nach irgend einer Methode ermittelt, und die nachherige Massenkontrolle ersolgt dann auf Grund der durch Aufrüstung und Sinmessung erhaltenen Schlagergebnisse.

Die stehend und liegend ermittelten Holzmassen sind nun aber mit gewissen Fehlern und Ungenauigkeiten behaftet, die bald positiv, bald negativ wirken können (Messungsdifferenzen verschiedener Art, Durchmesserabrundung, Zumaß, Reduktionsfaktoren für Schichtmaß, Holzverlust aus mancherlei Ursachen, als Ernteverlust usw.). Deshalb ist die Zuwachsberechnung nicht so objektiv, stütt sich nicht auf so unmittelbar vergleichbare Grundlagen wie bei den vorher besprochenen Versahren, und darin liegt die prinzipielle Differenz.

Zwar lassen sich die meisten der angeführten Fehlerquellen methos disch eliminieren, wenn für die Ermittlung der stehenden und liegenden Holzmassen konsequent nach gleichen Grundsätzen versahren wird.

Deshalb ist sehr zu wünschen, daß in den Wirtschaftsplänen und Revisionen angegeben wird, was und wie gemessen wurde, Durch= messerabrundung, Verwendung der rechnerischen Hilfsmittel, Angabe der Reduktionsfaktoren für Schichtholz usw., und auch in den bezüg= lichen Instruktionen sollte dieser Grundsat Aufnahme sinden.

Und was machen wir denn mit dem unglücklichen Ernte = verlust, der vielen Taxatoren so schwer auf dem Magen liegt?

Wenn es sich um die Holzmassenermittlung und Wertberechnung eines einzelnen, vielleicht hiebsreifen Bestandes handelt, so kann eine Reduktion der berechneten Masse aus mancherlei Gründen ange= zeigt und durchaus gerechtfertigt sein. Hat man es aber mit einer Summe von Beständen ganz verschiedenen Alters, mit verschiedenen Holzarten, in verschiedenen Höhenlagen und namentlich mit verschiedenen Verwert ungsmöglichkeiten zu tun, kurzum mit einem vielverzweigten Wirtschaftsganzen und dessen taxatorischer Einrichtung, so ändert sich die Sache. So hat es z. B. keinen Sinn, für einen 30 oder 40 Jahre alten, zudem noch meist okular geschätzten Bestand bei der Ansehung seines Holzvorrates einen Ernteverluft in Abzug zu bringen. Im weiteren wäre vielleicht für einen jett schwer zugäng= lichen Bestand hoch oben über den Felsen ein Abzug von vielleicht einem Drittel der Masse geboten und einige Jahre nachher durch den Bau einer Straße nur noch 5%. Würden wir nun aber in dieser Weise Bestand für Bestand reduzieren, so verlieren wir den Kontakt für die direkte Vergleichbarkeit zweier zeitlich auseinanderliegender Aufnahmen, d. h. eine zuverlässige Beurteilung der Zuwachsleistung; und schließlich wissen wir dann nicht einmal mehr, was ist Driginalaufnahme, was ist Messung und was ist bloß Schätzung. Wenn es daher geboten ist, aus diesem oder jenem Grunde eine Reduktion vorzunehmen, so geschehe dies für die Zwecke der Forsteinrichtung unter entsprechender Motivierung grundsäklich am berechneten Etat, in Form einer berechtigten Reserve. Setze man also die Bestandesmassen mit demjenigen Betrage in die Wirtschaftspläne ein, wie sie durch direkte Messung tatsächlich gefunden werden.

Übrigens hätte die Praxis genügend Hilfsmittel, diesen Ernteverlust, sowie auch andere vorhandene Differenzen rechnerisch festzusstellen bezw. zu eliminieren, und zwar einsach dadurch, daß einzelne isolierte und daher leicht kontrollierbare Schläge der Jahresnutzungen vor der Fällung stammweise kluppiert werden. Alsdann ergibt die tatsächlich aufgearbeitete und eingemessene Holzmasse und die ihr entsprechende Stammgrundsläche den Wert von $\frac{V}{G}$, den Massensahl.

Die Stadtforstverwaltung Zosingen hat sich schon seit Jahren in dieser einfachen Weise für jede Abteilung ein höchst wertvolles Taxationskorrektiv verschafft, mit Hilfe dessen die budgetierten und wirklichen Nutungen meist überraschend genau miteinander übereinstimmen. Damit kann die Frage des Ernteverlustes in einfachster Weise gelöst werden.

Es ist hier vielleicht am Plaze, nochmals kurz auf die drei besprochenen Versahren der Massenermittlung und Massenkontrolle zurückzukommen.

Das erste derselben besitzt den Vorzug größerer Beweglichkeit und Anpassungsfähigkeit, eignet sich sowohl für die Zwecke der Konstrolle, als auch für diejenigen der Wertberechnung. Wird, wie das bei einem Wirtschaftssystem mit natürlicher Verjüngung zutrisst, bei den jährlichen Schlaganzeichnungen stets und in erster Linie auf die Nutzung des schlechteren, kurzschaftigen, astigen Holzes hingearbeitet, so tritt dadurch nach jeder Nutzung die zum schließlichen Abtrieb eine qualitativ zunehmende Verbesserung dieser Bestände ein. So kann eine ganze Abteilung oder ein größerer Waldkomplex vershältnismäßig höher, vollholziger und damit relativ massenreicher werden. Diese qualitative Steigerung des Bestandesmaterials, als Resultat einer bestimmten, wirtschaftlichen Behandlung, kommt bei

Der Wert von $\frac{V}{G}=H\times F$ wird vielfach "Formhöhe" genannt. So weit hierunter das Produkt $H\times F$ verstanden ist, kann diese Benennung als zutreffend bezeichnet werden. Erfolgt dagegen eine direkte Ermittlung von V und G, Masse und Kreisstläche, ohne Kenntnis oder Benutzung von Höhe und Formzahl, so liegt im Quostienten $\frac{V}{G}$ keinesfalls ein Begriff der Form oder Höhe, sondern er bedeutet einsach das Verhältnis von Masse und Kreisstläche, und kann sinngemäß mit dem Ausdruck "Massensfaltor" oder "Massenschl" bezeichnet werden.

der Einmessung und Buchung der Schlagergebnisse bezw. bei einer jährlichen gegenseitigen Vergleichung am raschesten und direktesten zum Ausdruck. Den besten und einfachsten Maßstab für diese Versgleichung bilden die Werte von $\frac{V}{G}$.

Das bündnerische Versahren und dasjenige der "Methode du contrôle" sind in dieser Beziehung etwas schwerfälliger, und gestatten keinen direkten Schluß über eine qualitative Steigerung der Bestände.

Zwar ist dies beim bündnerischen Versahren in beschränktem Maße möglich, nämlich je von einer Revision zur andern. Die Ansgaben der Massentafeln sind nämlich für starke, aber relativ kurze Stämme zu hoch. Dadurch wird die jährlich zur Nutung gelangende Taxationsmasse bei wirtschaftlich rückständigen Waldungen rechnerisch zu stark belastet; die wirkliche Masse bleibt hinter der vorgesehenen zurück. Später ändert sich dies, kann aber wegen des spezisischen Charakters dieser Methode nicht zahlenmäßig zum Ausdruck gebracht werden. Erst bei einer neuen Revision mit neuer Massenermittlung können die inzwischen von kurzem, schlechtem Material befreiten Bestände vermöge größerer Durchschnittshöhen auch massenreicher ausssallen, was alsdann neben andern Ursachen erhöhend auf den neuen Etat einwirken kann.

Noch weniger als das bündnerische Versahren gestattet die "Méthode du contrôle" einen direkten Schluß nach der besprochenen Richtung hin. Der Grund liegt im gänzlichen und absichtlichen Ausschalten der Stamm= und Bestandeshöhen. Für die Massen=tasel der "Méthode du contrôle" ist allein der Stammdurchmesser maßgebend. Ob nämlich ein Stamm von 40 cm Brusthöhendurch= messer 30 oder nur 15 m hoch sei, ist nach der bezüglichen Massen=tasel sür dessen Inhalt gleichgültig. Seder Durchmesser (20, 25, 30 . . . cm) respektive dessen Kreisssläche ist in der Massentasel einfach mit einem bezüglichen konstanten Faktor multipliziert und gibt so den Stamminhalt.

Die Multiplikationskonskante, deren sich die "Méthode du contrôle" bedient, ist nichts anderes als eine $\frac{V}{G}$ -Kurve, abgestust nach dem Brusthöhendurchmesser, wie die nachfolgende Übersicht zeigt.

Kurvenwerte von $\frac{V}{G}$ der Méthode du contrôle, abgestuft nach dem Brusthöhendurchmesser.

Durchmesser	Kreisfläche in	Inhalt des Stammes	v für Derbholz als		
in	1,3 m	an Derbholz	Multiplikations=		
1,3 m	m²	Fm	konstante		
20	0,0314	0,27	8,60		
30	0,0707	0,69	9,76		
40	0,1257	1,43	11,38		
50	0,1963	2,42	11,33		
60	0,2827	3,60	12,73		
70	0,3848	4,95	12,86		
80	0,5027	6,44	12,81		
90	0,6362	8,03	12,62		
100	0,7854	9,70	12,35		

Der Sylvenwert wird bekanntlich im Quotienten Subike Rubikmeter außegedrückt, und auß einem Steigen des Sylvenwerteß glaubt die "Methode du contrôle" auf eine qualitative Verbesserung des Bestandeßematerials schließen zu dürsen. Nun hängt aber der Sylvenwert noch von verschiedenen anderen, sehr maßgebenden Faktoren ab — Überwiegen oder Zurücktreten der höheren Stärkeklassen, Nutzung relativ kurzer oder relativ langschaftiger Stämme, starkeß Vorwiegen vollsholzigen oder abholzigen Materials usw., und da die Höhe rechnerisch ganz außgeschaltet ist, so darf auß einem Steigen des Sylvenwertes nicht ohne weiteres auch auf eine qualitative stetige Steigerung des Nutzungse und Vestandesmaterials geschlossen werden. Es kann dies wohl gleichzeitig der Fall sein, es muß aber nicht. Nur eine gewisse Stetigkeit der Nutzungse und der wirtschaftlichen Grundsätze vermag hier eine etwelche Außgleichung der positiv und negativ wirkenden Faktoren herbeizussühren.

Noch ein kurzes Wort zu den Bestandesmassenberechnungen mittelst Massentafeln und der Massenzahl $\frac{V}{G}$. Wenn es sich um die Massenermittlung einzelner Bestände handelt und namentlich um die Kenntnis der Ausstattung aller Stärkestusen mit den entsprechenden Stammzahlen und Massen, so verdienen die Massentaseln

den Vorzug. Legt man dagegen auf diese detaillierte Durchmesser= stusenausstattung kein besonderes Gewicht, und handelt es sich im fernern um Taxationen zu wirtschaftlichen Zwecken, so gewährt die Benutzung der Massenzahl $\frac{V}{G}$ mancherlei Annehmlichkeiten vor den Massentafeln. Einmal läßt sich mit Hilfe derselben die schon besprochene qualitative Steigerung des Bestandesmaterials und der Nut= zungen am einfachsten und am sichersten nachweisen. Sobann kann eine $\frac{V}{G}$ - Mittelkurve leicht auf einen lokal geltenden Aurvenwert transformiert werden, was bei den Massentaseln bedeutend schwieriger, auch unsicher ist, und zu endlosen Korrekturen führen würde. Endlich werden die rechnerischen Arbeiten gegenüber den Massentaseln ganz bedeutend vermindert. Man kann die Holzmasse eines Bestandes jeweils gleich an Ort und Stelle in kürzester Zeit berechnen, und das ist ein großer Vorteil. Wünscht man die Bestandesmasse in ihrer Verteilung auf größere Hauptstärkeklassen zu kennen, so läßt sich dies auch hier leicht durchführen, ohne daß dadurch eine weitere Fehler= quelle entsteht. Die Resultate aus 15 Kahlschlagaufnahmen mit genauer stammweiser Messung weisen nämlich nach, daß die Bestandesmassen, einmal ermittelt als eine Zahl aus dem mittleren $\frac{V}{G}$ -Wert, das andere Mal berechnet als Summe von 3 oder 4 Hauptstärkeklassen mit ihren zugehörenden $\frac{V}{G}$ = Werten, meistens bloß um etwa 1 $^{0}/_{0}$, höchstens aber um 3% von einander abweichen.

Bereits wurde erwähnt, daß die Stadtforstverwaltung von Zosingen solche lokal ermittelte $\frac{V}{G}$ -Werte besitzt. Das gleiche Versfahren befolgen seit langer Zeit Viel, Winterthur, einige bernische, sowie die solothurnischen und neuerdings auch die zürcherischen Forstkreise.

Aus der nachfolgenden Übersicht ersieht man, daß die Werte der Massenzahl $\frac{V}{G}$ aus Aufnahmen der Praxis, und speziell diesenigen von Winterthur, nur wenig von denjenigen der forstlichen Versuchsanstalt abweichen. Für Bestandeshöhen von 20 m an aufwärts differieren erstere bei Fichte und Tanne um -3 bis höchstens -5% (bei der hier beigezogenen Föhre Sachsen steigt die Differenz auf -6,9%). Die Ursache dieser Differenz liegt einfach in der Durchmesserundung nach geraden Zentimetern gegenüber derzenigen nach Millimetern,

weshalb eine Transformierung der von der forstlichen Versuchsanstalt publizierten $\frac{V}{G}$ - Werte für die Zwecke der Praxis leicht vorgenommen werden kann.

Derbholz-Massenzahlen $\frac{\mathbf{v}}{\mathbf{G}}$ Vergleichung zwischen den Ergebnissen der forstlichen Versuchsanstalt

und denjenigen der Praxis.

	Fichte		Tanne		Buche		Föhre		
Beftan= be3= höhe m	Schweiz. Ertrags= tafel	Auf= nahme aus der Praxis Differenz	Winter= thur Differen3 °/0	Schweiz. Ertrags= tafel	Winter= thur Differenz °/0	Schweiz. Ertrags= tafel	Auf= nahme aus der Praxis Differenz	Sachfen nach Kunze	Winter= thur Differenz °/o
10	4,61	_		5,08		2,96		4,56	
15	8,14	- 2,9	_	7,64		6,89	+ 10,3	7,12	
20	10,82	- 1,1	- 4,7	10,24	+10,5	9,89	+ 2,1	9,31	- 6,9
25	12,79	+ 0,9	- 4,0	12,84	+ 4,2	12,48	- 1,0	11,35	- 6,4
30	14,42	+ 1,2	— 3,7	15,37	0,0	14,93	- 1,9	13,34	- 5,8
35	15,64	+ 4,2	- 3,5	17,41	- 1,8			15,29	- 5,4
									folgt.)

Die Witterung des Jahres 1912 in der Schweiz.

Von Dr. R. Billwiller, Affistent an der schweizer, meteorologischen Zentralanstalt.

Der Dezember war zu warm und zeigte daher wenig winterslichen Charakter. Der Wärmeüberschuß über das Normale betrug zirka 2 Grade; strenger Frost kam nie vor, dagegen lag die Temperatur einigemale sehr beträchtlich über der normalen. Die Niederschlagsmengen blieben etwas unter dem langjährigen Dezembermittel. Die Bewölkung war kleiner und dementsprechend die Sonnenscheinsdauer größer als normal. Zu einer anhaltenden Schneedecke kam es im Mittelland nicht; erst in der ungefähren Höhe von 1000 Meter vermochte sich eine solche bis in die letzte Dekade des Monats zu halten.

In der Nacht vom 30. November/1. Dezember traten am Südfuß der Alpen starke, in Schneefall übergehende Niederschläge ein (Locarno am 1. 28 cm Schneehöhe); nordwärts der Alpenkette waren die Niederschläge, abgesehen vom Genfersee, am 1. unbedeutend, dagegen sielen dann am 2. auch hier Schnee und Regen. Vom 4. an hatte das Mittelland unter einer Nebeldecke, die seit dem 6. oft dem Boden auf-