Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 63 (1912)

Heft: 3

Artikel: Aphorismen zur Biologie des Waldes

Autor: Meister, U.

DOI: https://doi.org/10.5169/seals-767652

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schweizerische Zeitschrift für Forstwesen

Organ des Schweizerischen Forstvereins

63. Jahrgang

März 1912

Nº 3

Aphorismen zur Biologie des Waldes.

Bon Dr. 11. Meifter, Stadtforstmeifter, Bürich.

Die Forstwirtschaft steht nicht in dem unmittelbaren Abhängigkeitsverhältnis zu den klimatischen Erscheinungen, wie die Landwirtschaft. Der Grad der Fruchtbarkeit oder Unsruchtbarkeit eines Jahres ist bei der Waldwirtschaft nicht meßbar wie bei letzterer, wo die Größe der Ernte und der Charakter derselben einen sichern Maßstab bildet. Sichtbar und meßbar ist nur die klimatische Waldschädigung.

Veranlaßt durch die eigenartigen Witterungserscheinungen der Zeitperiode 1880—1910 und in Berücksichtigung der weitragenden Folgen derselben, möchten wir die Beziehungen des Klimas zur Waldwirtschaft, speziell mit Bezug auf die auffälligen Erscheinungen der Schneeschädigungen einer nähern Würdigung unterbreiten.

Man ist in unserm Forstgewerbe nur allzu leicht geneigt, die Wirkungen der organischen oder unorganischen Natur auf die Waldentwicklung als Zufälligkeiten zu bezeichnen, währenddem sie sich bei genauer Prüfung umgekehrt als unausbleibliche Folgen der Mißeachtung des biologischen Charakters unserer Waldbäume und des aus diesen sich zusammensebenden Walde entpuppen dürsten.

Im Jahrgang 1908 dieser Zeitschrift hat der verdiente Adjunkt unserer forstlichen Versuchsanstalt, Herr Ph. Flury, den außergewöhnslichen Schneefall vom 23./24. Mai desselben Jahres einer einläßlichen Analyse unterzogen. In den Betrachtungen über die Ursachen der so bedeutsamen Schneebruchschädigungen und den Folgerungen für die künftige Vestandserziehung ist er zu Schlüssen gelangt, denen wir im einzelnen beipflichten können, sie aber nicht für weitgehend genug erachten. Die Wiederholung einer ähnlichen Schädigung im

Frühjahr 1910 und der Umstand, daß wir im Verlauf von nahezu drei Fahrzehnten leider die Gelegenheit erhalten hatten, in ein und demselben Waldgebiet die Wirkungen derartiger elementarer Schädizungen auf den Wald bevbachten zu können, bieten uns ausreichende Veranlassung, der gewichtigen Frage näher zu treten.

Das Vorkommen einer einmaligen Waldschädigung durch Natursgewalten, speziell Witterungs-Erscheinungen kann als Zusallssaktor betrachtet werden. Es wird kaum einen bestimmenden Einfluß aus- üben auf die Bestandsbegründung und die Bestandserziehung, wie das innert einer längern Zeitperiode sich mehrsach wiederholende und deshalb biologisch sich im Walde geltend machende meteorologische Vorkommnis, bestehe es nun in Schneebruch oder Frostschäden. Und unsere Beobachtungen und die daraus zu ziehenden Schlußsolgerungen sühren nun in der Tat dazu, daß alle Veranlassung vorliegt, in die Biologie des Waldes die Tatsache auszunehmen, daß unter den drei Faktoren der Standortsgüte: Lage, Voden und Klima das letztere einen viel maßgebenderen Einfluß ausübt, als gemeinhin angenommen wird.

Die Schneebruchschädigungen, die wir in der schweizerischen Hochebene und in den Vorbergen in dreimaliger Wiederholung in den Jahren 1885, 1908 und 1910 erlebt haben, fallen nicht etwa bloß in Betracht mit Bezug auf die Masse des gebrochenen und geworfenen Holzes; viel bedeutsamer ist die Nachwirkung auf den verbleibenden Bestandsrest. Beim strengen Nachhaltigkeitsbetrieb findet jede Schädigung eines einzelnen Bestandes sofort mehrsachen Ausdruck. Die Schädigung zerfällt in eine direkte und eine indirekte. Der im 45. Altersjahr durch Schneebruch geschädigte, auf die Hälfte seiner Stammzahl reduzierte, unregelmäßig gelichtete Bestand bedingt ebensosehr eine Veränderung des Durchforstungsetats, wie des Hauptetats des Gesamtwaldes. Die durchbrochene Normalität bewirkt im Zuwachs des Haupt-, wie des Nebenbestandes eine Anderung im Sinne der Herabsetzung. Wenn beim Mittelwald= betrieb die Kategorie der Laßreidel in erheblichem Umfange durch Schneebruch geschädigt oder beseitigt wird, so ist dadurch die Rut= nießung oder die Ernte ein Jahrhundert später in fühlbarster Weise geschädigt, ja sogar der Fortbetrieb des Mittelwaldes verunmöglicht.

Die Biologie des Waldes hat mit all diesen Faktoren zu rechnen, und es will uns scheinen, daß insbesondere der Waldbetrieb der schweizerischen Hochebene damit zu rechnen hat. Bloß mit Vorschlägen für die zweckmäßigste Art der Behandlung oder der Wiederinstandstellung der durch Schneebruch beschädigten Bestände ist die Frage der Schneebruchschäden nicht gelöst.

Die einmalige Schädigung eines 30—50 jährigen Bestandes kann oft nur den Charakter einer Reihe zum voraus "eskomptierter" Durchforstungen der folgenden Dezennien annehmen, sodaß bei erreichter Haubarkeit ein Ausfall der Bestandsmasse nicht wahrzusnehmen ist. Aber die Störung des normalen Ganges der Wirtschaft ist damit nicht beseitigt. Die Rückwirkung auf die Bodendecke und auf den Nachwuchs unter dem gelichteten Bestand sind Momente von weitragendster Bedeutung.

Wenn wir der Zukunft einen normalen Wald überliefern wollen, so muß dieser gegen elementare Schädigungen, wie durch Schnee, Fröste usw. immun sein. Die Witterungsverhältnisse vermögen wir nicht zu ändern; wir können das spezisische Gewicht des Schnees nicht herabsehen, wir vermögen die bei der Schneeschädigung so ganz besonders in Betracht fallende Windstärke und Windrichtung nicht zu regulieren, aber wir müssen bestrebt sein, unsere Bestandszussammensehung und unsere Bestandspflege derart zu gestalten, daß die Wiederstandskraft der Bestände den möglichst höchsten Grad erreicht.

Die waldbaulichen Erörterungen der Gegenwart nehmen auf diese wichtigste Seite der Walderziehung mehrteils zu wenig Rücksicht. Für die von ihnen vorgeschlagene Bestandssorm ist maßgebend diesienige Romposition der Holzarten, die, theoretisch betrachtet, den höchsten Bestandswert zutage fördert. Die normale Entwicklung derselben gilt dabei als Voraussetung und der vermeintliche normale Zustand nach erreichtem Hiedsalter ist bestimmend für ihre Schlußsolgerungen. Wie wenig aber dieser normale Zustand dannzumal in der Regel noch vorhanden ist, dafür siesert nebst andern Erscheinunsen die Tatsache den Beweiß, daß die Benutharkeit von Versuchssslächen normaler Beschaffenheit selten die Dauer von zwei Dezennien übersteigt. Nicht vorgesehene Störungen, wie Stürme, Schnee oder Rauhreif usw., haben den Normalzustand beseitigt. Die Beobachtungen,

die wir während einer fünzigjährigen forstlichen Dienstzeit zu machen die Gelegenheit hatten, haben uns bei der Würdigung älterer Bestände mit unregelmäßigem Schluß zu einer milderen Beurteilung der frühern Wirtschaft geführt. Statt diese lässigen Betriebes zu beschulz digen, finden wir heute eine andere Ableitung statthafter, wenn auch eine urkundliche Bestätigung dasür nicht vorliegt. Es mögen in den Perioden, die diese Bestände durchlausen haben, auch Schneebruchzlichtungen, die nicht mehr vernarbten und wie wir sie wiederum erlebten, vorgekommen sein.

Andauernd auf eine Pflanzenart bezw. Holzart einwirkende Schädigungen führen zur Verkümmerung bezw. zum Verschwinden einer Art, wie umgekehrt die Pflege der Art durch eine angemessene Zuchtwahl zur Veredelung derselben führt.

Den Charakter der zum Untergang einer Art führenden Schädisgungen können vorab die atmosphärischen Einwirkungen annehmen. Wiederholte Spätsröste haben in der ersten Hälste der neunziger Jahre nach unsern Beobachtungen eine derartige Reduktion in der Zweigsund Blattbildung unserer so schönen Sihlwaldbuche hervorgerusen, daß die Aronenentwicklung eine vollständig veränderte wurde. Die Samenjahre ersolgten spärlicher und infolge dessen machte sich eine Veränderung der Bestockung wahrnehmbar.

Wenn wir an anderer Stelle in der Lage sind, historisch einen Wechsel der Holzarten in der Sihlwaldbestockung nachzuweisen und heute wiederum konstatieren müssen, daß sich neuerdings ein Wechsel geltend zu machen beginnt, so suchen wir eine stichhaltige Erklärung in der Einwirkung klimatischer Einflüsse auf die Entwicklung der betreffenden Holzarten.

Ein und derselbe Sihlwald lieserte in dem Zeitraum von 1630—1900 nachstehende Hiebsergebnisse mit Bezug auf Nadelholz und Laubholz:

Laubholz	Madelholz	Zeitperioden	Laubholz	Madelholz
$^{\mathrm{o}}/_{\mathrm{o}}$	$^{\rm o}/_{\rm o}$		$^{\rm o}/_{\rm o}$	0/0
45	55	1661 - 1670	43	57
39	61	1671 - 1680	46	54
40	60	1681 - 1690	49	51
	°/0 45 39	$ \begin{array}{ccc} 0/0 & 0/0 \\ 45 & 55 \\ 39 & 61 \end{array} $	0/0 0/0 45 55 1661—1670 39 61 1671—1680	0/0 0/0 0/0 45 55 1661—1670 43 39 61 1671—1680 46

^{*} Meister: Die Stadtwaldungen von Zürich.

Zeitperioden	Laubholz	Nadelholz	Zeitperioden	Laubholz	Madelholz
	$^{\rm o}/_{\rm o}$	⁰ /o		0/0	0/0
1691—1700	51	49	1791 - 1800	86	14
1701 - 1710	58	42	1801—1810	91	9
1711 - 1720	57	43	1811 - 1820	93	7
1721 - 1730	56	44	1821 - 1830	88	12
1731—1740	60	40	1831 - 1840	88	12
1741—1750	68	32	1841 - 1850	82	18
1751—1760	70	30	1851 - 1860	83	17
1761 - 1770	72	28	1861 - 1870	84	16
1771 - 1780	75	25	1871 - 1880	86	14
1781—1790	84	16	1881—1900	71	29*

Es hat deingemäß ein allmählicher Übergang von der überwiegenden Nadelholzbestockung zum Laubholzwald stattgesunden. In den letzten 20-30 Jahren macht sich nun die umgekehrte Erscheinung geltend; in der natürlichen Verjüngung zeigt sich speziell in den untern Lagen ein auffallendes Plus der Nadelhölzer: Weißtanne und Fichte, ganz abgesiehen von der Ergänzung des natürlichen Ausschlages mit Nadelhölzern.

Ist nun diese Erscheinung auf klimatische oder auf Bodenveränderungen zurückzuführen, oder fann angenommen werden, daß eine Beränderung der Wirtschaftsführung zu derselben Veranlassung geboten habe? Der Sihlwald wurde seit Jahrhunderten als Hochwald im 90—100jährigen Umtrieb bewirtschaftet. Er ist heute ausgesprochener Buchenhochwald. Wenn in der zweiten Hälfte des 17. Jahrhunderts zwischen 55 und 60 % Radelholz und nur 40-45 % Laubholz zum Hiebe gebracht werden konnten, so mußte die Bestandsentwicklung, die hundert und mehr Jahre vorangegangen war, den diesbezüglichen Einfluß ausgeübt haben. Dieser Einfluß kann nicht etwa darin bestanden haben, daß das Plus der Nadelhölzer sein Dasein der Einpflanzung von solchen oder einer Begünstigung derselben anläßlich der Bestandspflege zu verdanken hatte. Eine etwelche forstliche Wirt= ichaftsführung war allerdings vorhanden in Form der Hiebsregulie= rung. Schon im Jahre 1422 ist für den Sihlwald ein bestimmter Etat von 20,000 Holz festgesett, der dann im Jahre 1547 auf 30,000 Holz und im Jahre 1579 auf 40,000 Holz erhöht wurde, worauf

^{*} In diese Beriode fällt der Schneebruch 1885 mit 60,000 m3.

anno 1581 eine Fachkommission erklärte, der Sihlwald sei überhauen und es habe derselbe auf unbestimmte Zeit zu ruhen. Wie lange daraufhin die jährlichen Schläge eingestellt worden waren, ist nicht nachsuweisen; die Wirtschaftssührung des 16. Jahrhunderts verfügte jedensfalls über keinen Sihlwald mit normalen Verhältnissen. Nun finden wir in den chronologischen Aufzeichnungen der Stadt Zürich und deren Landschaft unter der Rubrik: Schnee, daß im Verlause des 15. und speziell im Verlause des 16. Jahrhunderts häusig starke Schneefälle und Spätsröste im Frühjahr und Herbst, also in den belaubten Wald, verzeichnet sind.

- 1501 war am Pfingstmontag eine solche Kälte mit Schnee und Regen, daß die Spyren und Schwalben erfroren und tod aus der Luft herabsielen.
- 1517 fielen bis zum 10. Heumonat in die 40 Reifen.
- 1546 fiel am 4. Mai in der Nacht ein großer Schnee, welcher die Üste an den Bäumen niederdrückte.
- 1551 fiel am St. Michaelstag (29. September) ein tiefer Schnee, der hin und her die Aste an den Bäumen niederdrückte und vier Wochen lang währte.

Vom 28. September 1885 ist die ähnliche Erscheinung zu konstatieren.

- 1577 am 22. Juli fiel ein so großer Schnee, daß man das Vieh ab den Alpen treiben mußte. Am 26. ging er ab mit Regen.
- 1594 den 11. Mai hat es um Zürich geschneit, daß sich der Schnee in den Bergen und Hügeln gelegt, doch ging er in zwei Tagen, nicht ohne Schaden, wiederum ab.
- 1605 fiel ein großer Schnee, der viele hundert Bäume zerriß.

Die Aufzeichnungen des 17. Jahrhunderts zeigen dann eine wesentlich kleinere Zahl der zeitlich außergewöhnlichen Schneefälle.

Wir folgern nun aus den Aufzeichnungen des 16. Jahrhunderts:

1. Die auffallendrasche Steigerung der Hiebsmassen, die im 16. Jahrhundert ersolgte und die dazu führte, daß 1581 beschlossen wurde, den Wald eine zeitlang ruhen zu lassen, steht wohl in unverkennbarem Zusammenhange mit den Schneebruchschädigungen der gleichen Periode.

^{*} Bluntichti: Memorabilia Urbis et Agri Tigurini. 1711.

- 2. Die Schädigungen, welche die außergewöhnlichen Schneefälle im Sihlwald bewirken mußten, haben sich in erster Linie auf die Laubhölzer und unter diesen vorab auf die Buchen erstreckt. In der Folge hat sich ein Rückgang in der natürlichen Verjüngung derselben geltend gemacht und an ihre Stelle sind die Nadelhölzer getreten.
- 3. Das Überwiegen der Nadelhölzer in den Schlägen des 17. Jahrhunderts dürfte daher von den ein Jahrhundert vorher erfolgten außergewöhnlichen Witterungseinflüssen, wie Schnee, Früh- und Spätfröste abgeleitet werden.

Die Aufstellung dieser Schlußfolgerungen könnte nun angesichts des mangelhaft vorhandenen statistischen Materials als sehr gewagt erscheinen, wenn wir nicht in der Lage wären, Rückwirkungen anasloger elementarer Erscheinungen der letzten fünfzig Jahre auf die Bestandsbildung im Sihlwald nachweisen zu können.

Der Sihlwald kennt im wesentlichen nur zwei elementare Schädiger: den Schnee und die Fröste im Frühjahr und Herbst; gegen die Windgefahr ist er durch seine Lage geschützt. Als ausgesprochener Buchenhochwald von ungewöhnlicher Bonität bietet er deshalb für elementare Angriffe im belaubten Zustand ein äußerst dankbares Gebiet. Von der zweiten Hälfte des 19. Jahrhunderts, speziell von 1858 bis 1910 sind nun eine Reihe besonders starker Angriffe von Frost und Schnee zu verzeichnen, welche die vorhandene Normalität in weitgehendster Art geschädigt haben und zu einem ähnlichen Wechsel in der Bestandsbeschaffenheit führen, wie dies im 16. und 17. Jahrhundert der Fall gewesen sein muß; diesmal bei konsequent durchgeführter natürlicher Verjüngung mit allmählichem Abtrieb. Das Nadelholz beginnt wieder eine dominierede Stellung einzunehmen: an Stelle der Buche treten an den von Spätfrösten häufig heim= gesuchten Orten die Hainbuche und die gewöhnlich erst Ende Mai zur Belaubung gelangende Esche und vorab die Fichte. In den vom Schnee gelichteten Beständen erscheint nicht wieder die Buche in vorderster Linie, es kommt das Nadelholz.

Wenn nun bei der Erörterung der biologischen Verhältnisse der Buche als einzelne Holzart, Boden und Lage vornehmlich als maßgebende Faktoren gelten und das Klima dabei in den Hinter-

grund tritt, so machen sich offenbar in der Biologie des Buchenwaldes umgekehrt klimatische Faktoren in hohem Grade geltend. In dem gleichem Revier, das dank Lage und Boden der Buche eine ausenahmsweise Entwicklung ermöglicht, treten von Zeit zu Zeit Faktoren des Alimas ihrer Entwicklung hindernd entgegen. Zwischen dem, was uns die Biologie der einzelnen Holzart schrt und zwischen dem, was deren Gesamtheit in Form des geschlossenen Waldbestandes sehrt, macht sich ein wesentlicher Unterschied gestend. Wenn eine solche zu konstatieren ist, so kann sie nur aus der Art und Weise abgeleitet werden, in der die Gesamtheit gebildet wird. Die Biologie des Waldes bedarf demgemäß der Ergänzung, einer vermehrten Kücksichtnahme auf den Einfluß zu wenig gewürdigter Faktoren des Klimas.

Es sei uns gestattet, diesfalls noch auf andere, den Waldbau betreffenden Erscheinungen hinzuweisen, die beim Mittelwaldbetrieb, ebenfalls infolge der abnormen Schneeniederschläge, speziell im Gebiet der schweizerischen Hochebene, zu konstatieren sind. Der Überhalt unserer Mittelwaldbestände hat durch dieselben in den letten zehn Jahren in einer Art und Weise gelitten, daß dadurch an vielen Orten die Zukunft des Mittelwaldes in höchstem Grade gefährdet ist. Speziell die Kategorie der Laßreidel ist mancherorts in einer Art und Beise dezimiert, daß von einem Vorhandensein derselben nicht mehr gesprochen werden kann. Gerade diejenigen Holzarten, die, wie die Eiche, punkto Druckfestigkeit den höchsten Koeffizienten ausweisen, haben beim Schneedruck vom 8./9. Mai 1908 in belaubtem Zustand die geringste Widerstandsfähigkeit an den Tag gelegt. Hainbuche haben punkto Clastizität und Biegungsvermögen gegen= über den ihnen beigelegten Eigenschaften ganz versagt. Ihre morphologische Struktur hat den Anforderungen, welche die Waldbiv= logie des Mittelwaldes an seine Holzarten stellen muß, nicht ent= iprochen.

Die Schädigungsformen, welche die von uns beobachteten Schnees drücke in den Jahren 1908, 1909 und 1910 hervorgerusen haben, weisen mehrteils darauf hin, daß eine allzu plane Bedachung der Bestände eine einheitliche Druckwirkung der gesallenen Schneemassen auf die einzelnen Individuen auszuüben vermochte. Daher das nesterweise Umkippen der Stangenholzbestände. Stärkere Vorwüchse

mit entwickelterer Krone, die zugleich einen größeren Stammdurch= messer aufzuweisen hatten, zeigten bald Kronenzersplitterung, bald mehr oder minder starkes Umbiegen. Die kegelförmigen Kronen der Nadelhölzer litten meistens nur durch Gipfelbrüche. Die Schnee= bruchkatastrophe, die sich am 28. September 1885 in der Form eines 300-500 m breiten Streifens in der Länge von drei Kilometern über eine mit 30-90jährigen Laubholzbeständen normal bestockte Waldfläche in der Richtung von Süd nach Nord erstreckte, zeigte in den Althölzern Zerspitterung der Bäume, d. h. Überschreitung der Druckfestigkeit, in den 30-50jährigen Stangenhölzern geringere Über= schreitung der Drucksestigkeit, dagegen unzureichende Biegungsfestigkeit und Clastizität, je nach Holzart und deren Entwicklungsgrad, daher Umbiegen der einzelnen Stämme oder Kronenbrüche. Bezeichnend für die Ausdehnung der Schneebruchsschädigungen 1885 ist der Umstand, daß sie hinsichtlich ihrer oberen und unteren Begrenzung bei den mit Radelholz gemischten Beständen halt machten.

Fassen wir die angeführten Bevbachtungen mit Bezug auf die Einwirkung klimatischer Einflüsse auf die Waldbiologie zusammen, so konstatieren wir, daß die Forstwirtschaft diesen ein wesentliches Gewicht beizulegen hat, sie muß dieselben bei ihren Maßnahmen in angemessener Beise berücksichtigen. Zwei Fragen drängen sich uns nach dieser Seite hin auf. Kann die Art der Walderziehung einen derartigen Einfluß auf die morphologische Struktur der einzelnen Holzarten ausüben, daß diese eine vermehrte Widerstandsfähigkeit gegen die Angrisse der anorganischen Natur zu bieten vermögen — oder haben wir in unsere Waldwirtschaft andere Betriebsformen einzusähren und mit diesen einen widerstandsfähigern Wald zu erhalten?

Bekanntlich hat sich die Gärtnerei die Kunst angeeignet, die morphologischen Eigenschaften ihrer Pfleglinge mannigfaltig umzugestalten. Zusolge der viel größeren, umfangreicheren Aufgabe kann die Forstwirschaft ihrer Kollegin nicht auf diesem Wege folgen. Ihr Objekt ist weniger der einzelne Baum, es ist der Wald. Hier ist es möglich, auf dem Wege früher und häufiger Durchsorstung durch zweckmäßige Einwirkung des zerstreuten und des direkten Lichtes die Kronen- und Stammentwicklung in ein der Widerstandskraft des einzelnen Individuums günstigeres Verhältnis zu bringen. Die Aus-

dehnung dieses Arbeitsseldes ist aber jeweilen eine derart große, daß eine Bewältigung desselben zeitlich und örtlich auch beim intensivsten Betrieb nicht möglich wird.

Wir sind also auf eine den klimatischen Einflüssen angepaßte Betriebsform angewiesen und glauben hierbei, in der Anlage und Erziehung des gemischten Waldes das Ausreichende und Richtige getroffen zu haben. Damit hoffte man, das ebene, für den Schnee-druck so günstige Kronendach vermeiden zu können.

Die Forstwirtschaft hat es nicht unterlassen, sich dieses Schutzmittels in verschiedenen Formen zu bedienen, aber sie hat insbesondere
in bezug auf die klimatischen Einwirkungen den erwarteten Ersolg
noch nicht erzielt. Reihensaaten und Reihenpflanzungen in den verschiedensten Mischungsvariationen wurden versucht und gepriesen. Es
wurde zur Einzel-Einpflanzung übergegangen und hernach erhielt
die gruppenweise Mischung die Führung. Auch wir ließen uns an
diesen Triumpswagen spannen, bis die Schneedruckersahrungen uns
zum Ausreißen bewogen haben.

Aber auch die natürliche Verjüngung mit allmählichem Abtrieb und mit nachherigem Einbau von Arten, die andere Kronengestaltung besitzen, als der dominierende Bestand, seit Dezennien im Sihlwald betrieben, hat uns in der Schneewirkung fatale Ersahrungen abermals nicht erspart. Der Einbau anderskroniger Holzarten vermochte nicht das ebene Kronendach zu verändern. Dabei mag allerdings der Umstand mitwirken, daß troh weitgehender Bestandspslege die Lichtstellung der eingepslanzten Holzarten und deren Wachstum nicht Schritt zu halten vermochte mit der für die ungestörte Entwicklung für einzelne Individuen benötigten Lichtstellung. Offenbar ist eine größere Formenverschiedenheit des Kronendaches nur bei Innehalstung einer längeren Verjüngungsdauer möglich und am weitgehendsten wird sie erzielt werden können durch den geregelten Plenterbetrieb.

Die Biologie des seit Jahrhunderten als Urwald seine Fortdauer behauptenden Waldes muß uns dazu führen, im geregelten Plenterbetrieb dasjenige System zu sinden, bei welchem die Existenzfähigkeit der einzelnen Holzarten, wie die Existenzfähigkeit des aus ihnen gebildeten Waldes angesichts der Einwirkungen des standörtlichen Rlimas gesichert

ist. Der normale Wald muß unser Ideal bleiben und ein Mischungsverhältnis, das möglichst jeder Gefährdung ent= zogen ist, wird dabei unsere Richtschnur bleiben.

Murgange.

Nach Herrn Professor Decoppet aus Nr. 6 1911 des "Journal forestier suisse" gefürzt übersetzt.

Die außerordentlichen Regenmengen vom Juni 1910, welche allenthalben in der Schweiz Überschwemmungen verursachten, haben auch im waadtländischen Tal der Ormonts verschiedene Murgänge hervorgerusen. Die dortige Gebirgsformation ist in der Hauptsache der Flysch, mit Kalkbändern abwechselnd.

Die völlige Durchtränkung des Bodens mit Regenwasser bewirkte an verschiedenen Orten das ungewöhnliche Anschwellen von sonst kleinen, unscheinbaren Bächlein. Die Wassermengen durchsetzten sich bald mit Schlamm und Geschiebe aus den lockern und aufgeweichten Einhängen; es entstanden regelrechte Murgänge, die über das Gelände, über die Straße hereinbrachen und Land und Leute gefährdeten.

Die diesem Hefte beigegebenen Abbildungen lassen die Wirkungen dieser Muren deutlich erkennen. Was dabei immer wieder verwundert, und dem Laien unverständlich erscheint, das ist die Möglichkeit der erfolgten Fortbewegung mächtiger, nach der Katastrophe zurückbleibens der Blöcke, deren Fuß das nun wieder harmlos gewordene Bächlein bespült. Es leuchtet ja jedermann ein, daß die Stoßkraft des Wassers allein nicht genügt hätte, um diese Wassen in Bewegung zu setzen. Und doch sind sie nun einmal da, mitten im kleinen Geschiebe und im losen Schlamme liegend, mit denen zusammen sie hervorgebrochen sind

Das besondere der Murgänge liegt aber gerade in deren Fähigeteit, gewaltige Lasten vorwärts zu bewegen. Dabei kommt dem Wasser eine doppelte Rolle zu: einerseits wirkt es als bewegende Krast, anderseits wird es zum Träger der einmal ins Kollen gelangten Geschiebe. Das Verhältnis zwischen Wasser und mitgeführtem Material verändert sich allmählich durch beständige Vermehrung des letztern. Der trübe Wildsach wird zur dickslüssigen Mure. Die Geschwindigkeit ihrer Fortbewegung nimmt allerdings ab, dafür aber erhöht sich ihr spezisisches Ges