Zeitschrift: Schweizerische Zeitschrift für Forstwesen = Swiss foresty journal =

Journal forestier suisse

Herausgeber: Schweizerischer Forstverein

Band: 60 (1909)

Heft: 3

Artikel: Zur Ermittelung des laufenden Zuwachses, speziell im Plenterwalde

[Schluss]

Autor: Christen

DOI: https://doi.org/10.5169/seals-767156

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bulver bestreut, 76 m² intakt belassen. Die Zählung der gebrauchs= fähigen Pflanzen ergab im Frühjahr 1908 43 Stück per m² im bestreuten Beet, 28 Stück im anderen.

Viele bestreute Beete in verschiedenen Pflanzschulen wurden nicht nachgezählt, der Erfolg war aber augenfällig; Engerlingsfraß war nur zu konstatieren durch seitliche Einwanderung einzelner Larven.

Diese ganz im kleinen ausgeführten Versuche ergeben natürlich keinen Beweiß für die Brauchbarkeit des Mittels; der Zweck dieser Zeilen ist aber der, darauf hinzuweisen, daß die Bekämpfung des Engerlingschadens während der kurzen Periode des Käferfluges, auch wenn dabei der Pflanzschulbetrieb verzögert wird, anzusehen hat, namentlich aber die Herren Kollegen zu Versuchen mit dem Käferpulver anzuregen.

Sollten eingehende und ausgedehnte Versuche die gute Wirkung des Teerpräparates bestätigen, so würde dasselbe den Baumschulen, Gärten, Reben usw. später gute Dienste erweisen. C.

Zur Ermittelung des laufenden Zuwachses, speziell im Plenterwalde.

Bon Oberförster Christen, Zweisimmen.

(Schluß.)

2. Beispiel.

Derselbe Bestand werde im 7. Jahre kahl abgetrieben. Es ist in diesem Zeitpunkt $V_2 = 500 \cdot 1,015^7 = 500 \cdot 1,109 = 554,5 \text{ m}^3$.

Nach der Formel (7) erhalten wir:

$$Z = \frac{0 - 500 + 555}{1 - \frac{3 \cdot 555}{10 \cdot 500}} = \frac{55}{1 - 0,333} = 82,5$$
 und $\frac{Z}{10} = 8,25$

somit den gleichen Betrag wie oben, statt wie nach der einsachen Formel $V_2 - V_1 + N$ gerechnet 5,5 m³. Die Differenz von 82,5 gegen= über 75 kommt daher, daß streng genommen p nicht ganz genau gleich ist $\frac{Zv}{T\ V_1}$, sondern gleich $\frac{Zv}{T\ (V_1 + Zv)}$. Die Berwendung setzerer

Größe führt aber zu der komplizierten Schlußformel:

(9)
$$Z = \frac{\sqrt{(V_1 - \frac{\Sigma \ln}{T} - M)^2 + 4 M V_1 - (V_1 - \frac{\Sigma \ln}{T} - M)}}{2},$$

wo $M = V_2 - V_1 + N.$

deren Berechnung immerhin nicht so große Schwierigkeiten bietet, als man auf den ersten Blick glauben möchte. Für eine Vergleichsperiode von bis zu 10 Jahren genügt auch die einfache Formel (7).

Auch wenn man nur letztere (7) anwendet, so erhält man immerhin eine weit größere Genauigkeit, als wenn man einfach nach $V_2 - V_1 + N$ arbeitet.

3. Beispiel.

Es werden nach 3 Jahren 250 m^3 geschlagen. Alsdann ist der ursprüngliche Vorrat angewachsen zu $500 \cdot 1,015^3 = 500 \cdot 1,045 = 522,5 \text{ m}^3$. Der Rest von 522 - 250 = 272 Festmetern bleibt noch 7 Jahre stehen und wächst sich auß zu $272 \cdot 1,110 = 302 \text{ m}^3$, d. h. es ist $V_2 = 302$.

Auf gewöhnliche Weise berechnet, erhielten wir für

$$Z = 302 - 500 + 250$$
 = 52 m³

Nach der einfachen Formel (7) ermittelt, ist
$$Z = \frac{52}{1 - \frac{7 \cdot 250}{10 \cdot 500}} = \frac{52}{1 - 0.35} = 80 \text{ m}^3$$

Nach der genauen Formel (9) dagegen zu Z=74.5 statt wie richtig $75~\mathrm{m}^3$.

In den Staatswäldern im Obersimmental schwankt der Nutzungs= faktor zwischen 0,65 und 0,93.

Wir sehen, daß in allen Fällen der Nutzungsfaktor den gesuchten Zuwachs erhöht, niemals erniedrigt.

Für den Fall, daß der gesamte Vorrat schon im ersten Fahre genutt würde, wird der Divisor $1-\frac{\Sigma \ln}{T V_1}$ zu 0, aber auch der Zähler zu 0, der gesamte Ausdruck somit unbestimmt. In diesem mehr theoretischen Falle kann aber von einem laufenden Zuwachs nicht gesprochen werden.

	TOTAL STREET		- LAVER ZVI-	and the base of the	100 TO 100 TO 100
Sährlicher laniender Zuwachs Total per ha	9,3	8,0	9'6	12,1	
	65	57	58	83	
$=\frac{\sum_{1-\sum tn}^{N}}{\frac{1-\sum tn}{T}}$	1303	585	577	835	
V2-V1+N	1147	503	545	835	
Nuquingsfattor $1 - \frac{\sum tn(1-k)}{T \ V_{1}}$	0,88	68'0	0,94	T	
УY	9′0	0,4	8'0	1,0	
Etn	2724 8358 1781 19591 476	4208	4072		
×	1781	526	509	2195	
V1	3358	2805 2828	1474	3760 5120 548	
V2	2724	2805	1480 1474 947	3760 548	
T	20 11 ha	10 5	р. па 10 и ра	р. на 10 р. hа	
Fläche	7,05	7,05	5,99	98'9	
Holzart Polzart	Ta4, Fi 3	6 110	Fi 10	Fi 7, Ta 3	
Geologijáer Untergrund	1020 Surafalf Ta4, Fi 3	.25	Hornfluh=	970 Herin 1350 geftein	
Höbber über Meer	1020	-1440	1020	970 -1350	
ß1	1 T		II A 6	II A 5	
2Baldung	Dorfreuti		Bannwald II A 6 1020 Hornfluh	Schlegelholz II A 5 970 Hornfluh: Fi 7, Ta 3 a -1350 geftein	

In nachstehender Tabelle seien nun noch einige Resultate aus Plenterwäldern des vierten Forstkreises berechnet, die ich als zuverlässig erachte, d. h. so zuverlässig als gewöhnliche sorgfältige Taxationen zum Zwecke der Betriebseinrichtung zu sein pflegen.

Bei der Anwendung der Kontrollmethode sind möglichst Vergleichsperioden von 20 Jah= ren anzustreben. Auf diese Weise üben die unvermeidlichen Taxationssehler nicht mehr bedeutenden Einfluß aus, der lausende Zuwachs wird kon= stanter und zuverlässiger.

Stets aber sollte diese Art der Zuwachsberechnung verbunden werden mit einer direkten Aufnahme durch eine nur auf die letten 10 oder 20 Jahre ausgedehnte Stammanalyse an Probestämmen. Man wird die z. B. nach Drauth ausgewählten Probestämme außer auf Masse und Alter auch auf ihren 10 ober 20jährigen Zuwachs untersuchen und das an ihnen ge= fundene Zuwachsprozent auf die betreffenden Stärkeklaffen anwenden. Gewöhnlich wird hierbei einfach so verfahren, daß man für das Massen= zuwachs das Kreisflächenprozent einsetzt und letzteres nach der Schneiderschen Formel ermittelt. Diese Art der Berechnung führt aber meist zu viel zu niedrigen Resultaten, wie an nachstehenden Beziehungen gezeigt werden soll.

Es ist der Inhalt eines Baumes $m = g \cdot h \cdot f$ (10) Diese Gleichung differentiert gibt $\triangle m = hf \triangle g + gf \cdot \triangle h + gh \triangle f$ woraus sich durch Division mit (10) ergibt (11) Zuwachsprozent während einer kürzeren Periode

$$\frac{\Delta m}{m} = \frac{\Delta g}{g} + \frac{\Delta h}{h} + \frac{\Delta f}{f}$$
 (12)

d. h. das Massenzuwachsprozent ist gleich der Summe aus Kreisflächenzuwachsprozent, Höhenzuwachsprozent und Formzahlzuwachsprozent.

Für den Fall, als $\frac{\Delta f}{f} = 0$, d. h. daß die Formzahl während der ganzen Vergleichsperiode konstant geblieben sei, heißt die Formel

$$\frac{\Delta m}{m} = \frac{\Delta g}{g} + \frac{\Delta h}{h} \tag{13}$$

d. h. man braucht zum Kreisflächenzuwachsprozent nur das leicht zu bestimmende Höhenzuwachsprozent beizufügen, um das Massenzuwachsprozent zu erhalten.

Man beachte aber wohl, daß ganz geringfügige Änderungen der Formzahl schon bedeutende Fehler verursachen können. Gewöhnlich ist mit steigendem Alter $\frac{\triangle f}{f}$ negativ.

Es wird somit meist notwendig werden, auch die frühere Formzahl, d. h. die ganze frühere Stammasse zu ermitteln, um das ganze, richtige Massenprozent mit Sicherheit zu erhalten.

Wie große Fehler man begeht, wenn man statt des Massen= prozentes einfach das Kreisflächenprozent benutzt, erhellt aus folgender Überlegung.

Gewöhnlich ist für Höhen von über 20 cm in geschlossenen Beständen der Quotient $\frac{\text{Stammhöhe}}{\text{Brustdurchmesser}}$ ziemlich konstant und etwa gleich 110, d. h. es ist $h = 110 \cdot d$ (14)

Für diesen Fall berechnet sich $\frac{\Delta h}{h}$ folgendermaßen:

Es ist
$$g=rac{d^2}{4}\pi$$
 und daraus $d=2\sqrt{rac{g}{\pi}}$

d. h. es ist
$$h = 110 \cdot 2 \cdot \sqrt{\frac{g}{\pi}}$$
. Diese Größe differentiert, gibt
$$\triangle h = \frac{110}{\sqrt{gh}} \cdot \triangle g \tag{15}$$

und durch Division von (15) durch (14) wird $\frac{\Delta h}{h} = \frac{\Delta g}{2g}$

d. h. im Durchschnitt beträgt das Höhenzuwachsprozent in geschlossenen Beständen die Hälfte des Grundflächenzuwachsprozentes, also eine durchaus nicht zu unterschätzende Größe.

Ich hatte im Jahre 1892 den laufenden Zuwachs des in Heft 9 des letzten Jahrgangs vorliegender Zeitschrift zitierten 61 ha großen Plenterbestandes in Sumiswald an der Hand von Zuwachsbohrungen an Probestämmen, aber unter ausschließlicher Benutung des Areisflächenprozentes ermittelt zu zirka 7,5 m³. Unter Voraussetung konstanter Formzahl wäre somit der Höhenzuwachs annähernd auf 3,75 gekommen, der Massenzuwachs also auf zirka 11,2 m³. Die Berechnung nach der Kontrollmethode (siehe die betreffende Tabelle in vorgenanntem Heft, pag. 255) ergab einen Massenzuwachs von 12,3 m³.

Es ist nun freilich etwas langweilig und gar nicht ohne Krastsanstrengung zu vollbringen, eine solche Menge Probestämme anzubohren; die Mühe lohnt sich aber der Zuverlässigkeit des Resultates halber doch. Schon einsacher geht die Sache, wenn dem Taxator gestattet wird, die Probestämme in z. B. 4 m lange Trämel zu zersägen. Diese 4 m langen Sektionen gestatten sowohl die jetzige und die frühere Formzahl mit völlig genügender Genauigkeit zu ermitteln und es verursacht das Abmessen der letzten 10, resp. 20 Jahrringe gar keine besondere Mühe mehr. Nur muß man sich merken, die Breite dersselben an mehreren, wenigstens 3—4 verschiedenen Stellen der Baumsscheibe zu entnehmen, da solche nicht selten sich ziemlich verschieden darbieten.

Solche Messungen können auch sehr gut während der Wirtschaftsperiode gelegentlich der Fällung und des Zerschneidens der Jahresnutungen vorgenommen werden und sogar unter Umständen zuverlässigen Unterbeamten anvertraut werden. Werden in jedem Walde
jährlich auch nur 2—3 Stämme in dieser Weise analysiert, so macht
das in 10 Jahren schon das ganz respektable Material von 20—30
Zuwachsweisern aus.

Ich pflege den laufenden Zuwachs noch nach einer andern, mehr graphischen Methode zu berechnen, wobei dann gewisse Eigentümlich= keiten in sichtbarer Weise hervortreten. Doch davon vielleicht ein anderes Mal.

Fedenfalls können Belege über Erträge im Plenterwalde an Beweiskraft wesentlich gewinnen, wenn auch die Methoden ihrer Ermittelung nach verschiedenen Richtungen hin ausgearbeitet werden.

Wenn im schweizerischen Hügelland bis 800 m für gleichaltrige Fichtenbestände inklusive Vorerträge und Reisig ein lausender Zuwachs pro 80jähriger Betriebsklasse oder ein Durchschnittszuwachs von 19,2 m³ auf bester, von 9,3 m³ auf geringster Bonität, im Gebirge pro 120= jähriger Betriebsklasse ein lausender Zuwachs oder ein Durchschnitts= zuwachs von 18,6 m³ auf ersterer, von 8,0 m³ auf geringster Bonität — immerhin in Normalbeständen — herrschen, *) so verdienen doch Zahlen von 8—17,4 m³ für den lausenden Zuwachs in den zitierten, standortlich gar nicht ausgewählten Plenterwaldungen die höchste Beachtung, um so mehr, als einige der letzteren Resultate weder die Vorerträge noch das Reisig mit enthalten und bei keinem derselben — diejenigen im Obersimmental ausgenommen — der vorerwähnte Kor= rektionsfaktor zur Unwendung kam.

Vereinsangelegenheiten.

Aus den Verhandlungen des Ständigen Komitees.

Sitzung vom 27. Februar 1909 in Zürich.

- 1. Die Société forestière de Franche-Comté et Belfort hat dem Schweizerischen Forstverein eine Anzahl ihrer Publikationen übermacht; es werden diese Zuwendungen geziemend verdankt.
- 2. Folgende Herren werden als Mitglieder in den Schweizerischen Forstverein aufgenommen: A. Grünenhelder, Revierförster, Wangs, Kanton St. Gallen; Hans Steiger, Forstpraktikant, Biel.
- 3. Das generelle Programm für die Jahresversammlung 1909 wird im Einverständnis mit dem Lokalkomitee festgesetzt und unter anderem

^{*)} Mitteilungen der schweizerischen Zentralanstalt für das forstliche Versuchswesen, 1907, IX. Band.