Zeitschrift: SuchtMagazin

Herausgeber: Infodrog

Band: 44 (2018)

Heft: 1

Artikel: Pharmakologisches Neuro-Enhancement mit Psychostimulanzien

Autor: Neumann, Stefanie / Franke, Andreas G.

DOI: https://doi.org/10.5169/seals-800926

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Pharmakologisches Neuro-Enhancement mit Psychostimulanzien

Pharmakologisches Neuro-Enhancement beschreibt den Versuch, geistige Fähigkeiten mit Hilfe von psychoaktiven Substanzen – insbesondere mit Psychostimulanzien - zu steigern. Während das Phänomen in den Quellen aus der Mitte des 20. Jh. primär noch mit Kriegsführung oder Showgeschäft verbunden war, scheint heute der Wunsch nach verbesserten Hirnfunktionen auch in der modernen Leistungsgesellschaft angekommen zu sein. Der Einsatz von Psychostimulanzien zum «Hirndoping» ist jedoch mit teilweise schwer einschätzbaren Missbrauchs- und Abhängigkeitspotentialen verbunden.

Stefanie Neumann

MA Social Work, Doktorandin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München, Klinik und Poliklinik für Psychiatrie und Psychotherapie, stefanie.neumann@lmu.de

Andreas G. Franke

Prof. Dr. med. et Dr. disc. pol., MA, Dekan des Fachbereichs Soziale Arbeit, Bildung und Erziehung, Hochschule Neubrandenburg - University of Applied Sciences, Brodaer Str. 2, D-17033 Neubrandenburg, franke@hs-nb.de

Schlagwörter:

Neuro-Enhancement | Stimulans | Kognition | Abhängigkeit | Missbrauch |

«Pharmakologisches Neuro-Enhancement» (PN) oder auch «Cognitive Enhancement» (CE) meint die Einnahme psychoaktiver Substanzen zur geistigen Leistungssteigerung.¹ Die dafür eingesetzten Substanzen sind zahlreich und auf verschiedenen Wegen verfügbar.² Für eine Strukturierung empfiehlt sich daher zunächst eine Unterteilung, die auf zweierlei Arten möglich ist: a) Stimulanzien und Nicht-Stimulanzien sowie b) verschreibungspflichtige, illegale und frei verkäufliche (sog. over-the-counter, OTC-Drugs) Substanzen.3 Weitere Einteilungen sind z.B. mit dem Begriff «Soft-Enhancement» möglich, der die Einnahme bestimmter OTC-Drugs meint (z.B. Kaffee, koffeinhaltige Getränke oder Nahrungsergänzungsmittel). ⁴ Alle Substanzgruppen haben einen mehr oder weniger grossen Einfluss auf kognitive Leistungen (Vigilanz, Wachheit), Aufmerksamkeit, Konzentration, Gedächtnisleistung etc.) sowie auf emotionale Fähigkeiten (Affektlage, Motivation etc.). Zusätzlich ist bis heute strittig, ob Betablocker und Sedativa (v.a. Benzodiazepine) zu den PN-Substanzen zählen, da sie mitunter nach der Stimulanzien-Einnahme zur Gegenregulation genutzt werden.⁵

Es wird davon ausgegangen, dass weltweit etwa 34 Mio. Menschen regelmässig Psychostimulanzien missbrauchen (in der Definition gemäss ICD-10).6 Der Zweck des Missbrauchs scheint allerdings uneinheitlich zu sein und rangiert von Partyzwecken bis hin zu geistiger Leistungssteigerung.7

Da sich Psychostimulanzien in Substanzart, Zugang, Wirkung und v.a. in den Risiken hinsichtlich Missbrauch und Abhängigkeit unterscheiden,8 beschränkt sich dieser Artikel auf eine Übersicht mit dem Schwerpunkt Psychostimulanzien.

OTC-Stimulanzien

Die weltweit verbreitete legale «Alltagsdroge» Koffein gehört zur chemischen Methylxanthine-Gruppe und ist auf Grund des stimulierenden Charakters im PN sehr relevant, wird aber wegen der kulturellen Einbettung oftmals nicht als PN-Substanz verstanden. Zu den Koffein-Enhancern zählt Kaffee, der als Espresso, Café Latte oder in «Flavoured Coffee»-Varianten Konsumierende aller Altersklassen und Milieus erreicht. Andere methylxanthinhaltige Getränke sind Tee, Mate oder Cola. Darüber hinaus ist Koffein als $\label{eq:praparat} \textit{(z.B. Coffeinum@)} \textit{zwar nur in Apotheken (Apothekenpflicht)},$ aber ohne Rezeptpflicht im Vergleich zu verschreibungspflichtigen Medikamenten relativ leicht verfügbar.

Tatsächlich kann Koffein die Vigilanz und Aufmerksamkeit signifikant steigern sowie die Gedächtnisleistung – vermittelt über gesteigerte Vigilanz und dadurch bedingtes erhöhtes Konzentrationsvermögen – verbessern;9 nachgewiesen wurden ausserdem positive Wirkungen auf die Urteilskraft, Orientierung und Wahrnehmung.10

Die leistungssteigernden Effekte im Vergleich zu Placeboeffekten sind in zahlreichen Studien untersucht und z.B. von Franke und Kollegen zusammengefasst worden. 11 Die stimulierenden Wirkungen scheinen sich v.a. Jugendliche und junge Erwachsene von koffeinhaltigen «Energydrinks» (z.B. Red Bull®, Monster Energy®) zunutze zu machen. Im jugendlichen Sprachgebrauch als «Flüssigwecker» bekannt, enthalten sie zusätzlich hohe Zuckermengen und weitere Zusatzstoffe wie Taurin, dessen Wirkmechanismus und Effektivität wissenschaftlich kontrovers diskutiert werden. 12

Nicht zu unterschätzen ist die häufige Mischung mit hochprozentigem Alkohol, wie z.B. Wodka. Die Kombination birgt ein gewisses Risiko für Abhängigkeitserkrankungen, sodass man mittlerweile von einem «problematischen» Gebrauch von Energydrinks sprechen könnte – zumindest wird dies in Bezug auf den Co-Konsum von Alkohol bereits getan.13

Ob und inwiefern der Konsum von Stimulanzien vom Typ Koffein allein zu Abhängigkeit führt, wurde früher schon kontrovers diskutiert: Einigkeit besteht schon lange darüber, dass das abrupte Absetzen von Koffein zwar Entzugserscheinungen wie z.B. Kopfschmerz, Müdigkeit, Schläfrigkeit und Benommenheit auslösen kann, der Konsum aber nicht zu Abhängigkeit im eigentlichen Sinne führen könne. 14 Jedoch

scheinen Konsumierende von Energydrinks wiederum ein erhöhtes Risiko für den Einsatz anderer Psychostimulanzien zu haben. 15 Der Aspekt Missbrauch und Abhängigkeit von Metyhlxanthinen und Missbrauch bzw. Abhängigkeit von anderen Substanzen ist insgesamt daher komplex und differenziert zu betrachten.

Verschreibungspflichtige Stimulanzien

Im Bereich des PN durch stimulanzienbasierte Psychopharmaka ist zunächst Modafinil zu nennen, das in Deutschland z.B. mit dem Präparat Vigil® ausschliesslich zur pharmakologischen Behandlung von Narkolepsie («Schlafkrankheit») zugelassen ist. Allerdings ist Modafinil nicht im eigentlichen Sinne ein Stimulans bzw. fällt aufgrund des noch nicht vollends aufgeklärten Wirkmechanismus nicht unter das Betäubungsmittelgesetz (BtMG) wie die «eigentlichen» verschreibungspflichtigen Psychostimulanzien. Modafinil verbessert sowohl Vigilanz, Aufmerksamkeit, Konzentration und Reaktionsgeschwindigkeit¹⁶ als auch Teile des Gedächtnisses, hier v.a. in den Bereichen Arbeitsgedächtnis und episodisches Gedächtnis. 17 Anders als andere Psychostimulanzien scheint es jedoch nur ein geringes Missbrauchspotential zu haben bzw. sind Abhängigkeiten bislang nicht beschrieben. 18

Besondere Berücksichtigung im PN mit verschreibungspflichtigen Medikamenten finden Methylphenidat (z.B. Ritalin®) und v. a. Amphetamine (z.B. Attentin®, Adderall®). Beide sind Präparate zur Behandlung der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS). Amphetamine sind zwar als verkehrsfähige (d.h. der Handel bzw. die Abgabe damit ist erlaubt) Substanzen eingestuft, unterliegen aber wegen eines sehr hohen Abhängigkeitspotentials dem BtMG. Amphetamine steigern nicht nur Aufmerksamkeit und Konzentration, sondern im hohen Masse die Vigilanz und verkürzen zudem die Reaktionszeiten. 19 Positive Effekte sind nachgewiesen in Gedächtnisfunktionen, 20 v.a. beim Arbeitsgedächtnis 21 sowie in Verarbeitungsgeschwindigkeit, verbalem Lernen, schlussfolgerndem Denken und Problemlösekompetenz.²²

In der kontroversen Diskussion um die Verbreitung und das Missbrauchsrisiko von indizierten amphetaminbasierten Stimulanzien zur ADHS-Behandlung²³ ist man sich uneinig darüber, ob das Missbrauchsrisiko eher eine Nebenwirkung oder gar ein allgemeines Gesundheitsproblem²⁴ darstellt. Zumindest scheint aber der Gebrauch von amphetaminbasierten Stimulanzien oft auf PN zurückzuführen zu sein²⁵ und in Kombination mit der Diagnose ADHS ein Risiko für den Einsatz (illegaler) Amphetaminprodukte darzustellen.26

Illegale Stimulanzien

Zwar ist die chemische Struktur von medizinisch indizierten Amphetaminen und illegal konsumierten Amphetaminen die gleiche, dennoch sind die beiden Substanzen unter völlig anderen «Vorzeichen» zu sehen und werden auch rechtlich entsprechend unterschiedlich behandelt.

Amphetamin («Speed»), 3,4-Methylendioxy-N-methylamphetamin («Ecstasy») und Methamphetamin («Crystal Meth») bilden zusammen die Gruppe der «Amphetamine-Type Stimulants» (ATS, amphetaminartige Stimulanzien), die für das PN hoch relevant sind. Konsumierenden-Typen sind «recreational users» (Freizeitkonsumierende, Mischkonsum in der Partyszene), «prudent users» («vorsichtig Konsumierende» mit Leistungssteigerungsmotiv) und «self-medicators» (Selbstmedikation bei psychischen/somatischen Störungen).27

Seit einigen Jahren fällt in Deutschland die Substanz Methamphetamin (MethA) auf, wobei das vorwiegend aus tschechischen Produktionsstätten stammende «Crystal Meth» sich verstärkt in den grenznahen deutschen Bundesländern verbreitet. So liegt bspw. in Sachsen die Lebenszeitprävalenz mit 2% weit über dem Bundesschnitt von 0,6%.28

MethA steigert mehr als andere ATS die Vigilanz und Konzentration,

die Verbesserung kognitiver Leistungsfähigkeit entspricht jedoch insgesamt eher einer subjektiven Wahrnehmung der Konsumierenden.²⁹ Bei längerem Konsum treten Störungen und Beeinträchtigungen kognitiver Funktionen auf, z.B. im visuell-räumlichen Arbeitsgedächtnis, in Reaktionszeit, Aufmerksamkeit, Handlungsplanung und Entscheidungsfindung.30 Es ist zwar zu vermuten, dass eine dauerhafte Abstinenz den kognitiven Ausgangszustand des Individuums vor dem Konsum insgesamt wiederherstellt und damit wieder verbessern könnte,31 entsprechende Belege fehlen aber bisher und werden aktuell in einer deutschen Studie gesammelt.32

Prävalenz des Neuro-Enhancements mit Stimulanzien

Im deutschsprachigen Raum liegen erste Prävalenzdaten vor. So weist eine Studie mit Studierenden einer deutschen Universität eine 12-Monats-Prävalenz von 20% für die Einnahme von illegalen Drogen, verschreibungspflichtigen Medikamenten und Koffeintabletten aus.33 Lebenszeitprävalenzen im Bezug zum PN betrugen für Kaffee 53%, Energydrinks 39%, Koffeintabletten 11%, verschreibungspflichtige Stimulanzien 1% und illegale Stimulanzien 3%.34 Andere Studien halten das Phänomen dagegen für deutlich seltener, wobei es eine grosse Abhängigkeit von befragten Zielgruppen, benutzten Fragetechniken etc. gibt.35

Eine Studie unter Studierenden in der Schweiz ergab z.B. eine Lebenszeitprävalenz von 5% für Ritalin®, Adderall® und Modafinil.36 Eine Lebenszeitprävalenz wird in der Schweiz von 8% für verschreibungspflichtige Medikamente und von 33% für den täglichen Gebrauch von «Soft-Enhancern» (z.B. Energy Drinks, homöopathische Substanzen, Präparate wie bspw. VitaSprint®) angegeben.37

Bei Nicht-Studierenden gibt eine Schweizer Studie mit jungen Männern zum Gebrauch von «Neuro-Enhancement drugs» (z.B. verschreibungspflichtige Medikamente indiziert zur Behandlung der Alzheimer-Demenz, Depressionen, ADHS etc.) eine 12-Monats-Prävalenz von 3% an.38 Chirurgen in Deutschland wiesen dagegen im Vergleich zu den Schweizer Studierenden eine dreimal höhere Lebenszeitprävalenz von 9% bei verschreibungspflichtigen Medikamenten und illegalen Drogen auf. Bei Energydrinks betrug die Rate 24% und bei Koffeintabletten 13%.39

Insgesamt scheinen somit klare Prävalenzangaben bislang nicht möglich zu sein bzw. weisen eine breite Spanne auf.

Fazit

Beim pharmakologischen Neuro-Enhancement (PN) mit Psychostimulanzien sind die Risiken für die gesundheitlichen Folgen in Form von Suchterkrankungen massgeblich durch die jeweiligen Substanzen determiniert. Missbrauchs- und Abhängigkeitspotentiale sind darüber hinaus eng mit den Zugangsschwellen zu den verschiedenen Substanzen verknüpft.

Frei verkäufliche Stimulanzien könnten ein «erlaubtes Hirndoping» suggerieren und ihr Einsatz zum PN mitunter verharmlosen. Die Beschaffung und missbräuchliche Verwendung von medizinisch nicht indizierten Präparaten oder illegalen Psychostimulanzien dagegen ist wegen der strafrechtlichen Konsequenzen weitaus kritischer zu beurteilen.

Die Frage in welchen Situationen und wie oft sich Menschen mit welchen Psychostimulanzien bewusst den Wunsch nach kognitiver Leistungssteigerung zu erfüllen versuchen, ist momentan nicht eindeutig zu beantworten. Gründe dafür liegen zum einen in den bisher verwendeten Studiendesigns mit z.B. unterschiedlichen Zielgruppen, Substanzen oder Fragetechniken; zum anderen bestehen sehr heterogene Ausgangslagen bei den potentiellen Konsumierenden z.B. Einstellung zum PN, Risikoverhalten oder Gesundheitszustand. Es bedarf daher insbesondere aus der Suchtmedizin weiterer Forschungsergebnisse u.a. zu Substanzwahl, Konsummotiven und Charakteristika der Konsumierenden. Darüber hinaus sind für die Aufklärung über Nutzen und Risiko des PN weitreichende gesellschaftliche und ethische Diskussionen dringend notwendig.•

1 iteratur

- Arria, A.M./Caldeira, K.M./Bugbee, B.A./Vincent, K.B./O'Grady, K.E. (2017): Trajectories of energy drink consumption and subsequent drug use during young adulthood. Drug and alcohol dependence 179: 424-432.
- Clemow, D.B./Walker, D.J. (2014): The potential for misuse and abuse of medications in ADHD: a review. Postgraduate Medical Journal 126(5): 64-81.
- Cobb Scott, J. /Woods, S.P. /Matt, G.E. /Meyer, R.A. /Heaton, R.K. /Atkinson, J.H. et al. (2007): Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychology review 17(3): 275-297.
- de Jongh, R./Bolt, I./Schermer, M./Olivier, B. (2008): Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience and Biobehavioral Review 32(4): 760-776.
- Deline, S./Baggio, S./Studer, J./N'Goran, A.A./Dupuis, M./Henchoz, Y. et al. (2014): Use of Neuro-Enhancement drugs: prevalence, frequency and use expectations in Switzerland. International Journal of Environmental Research and Public Health 11(3): 3032-3045.
- Dietz, P./Striegel, H./Franke, A.G./Lieb, K./Simon, P./Ulrich, R. (2013): Randomized response estimates for the 12-month prevalence of cognitive-enhancing drug use in university students. Pharmacotherapy 33(1): 44-50.
- Forstl, H. (2009): Neuro-enhancement. Brain doping. Nervenarzt 80(7): 840-846.
- Franke, A.G./Bagusat, C./Dietz, P./Hoffmann, I./Simon, P./Ulrich, R. et al. (2013): Use of illicit and prescription drugs for cognitive or mood enhancement among surgeons. BMC Medicine 11: 102.
- Franke, A.G./Bagusat, C./McFarlane, C./Tassone-Steiger, T./Kneist, W./Lieb, K. (2014): The Use of caffeinated substances by surgeons for cognitive enhancement. Annals of Surgery 261(6):1091-1095.
- Franke, A.G./Bonertz, C./Christmann, M./Huss, M./Fellgiebel, A./Hildt, E. et al. (2011a): Non-medical use of prescription stimulants and illicit use of stimulants for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry 44(2): 60-66.
- Franke, A.G./Christmann, M./Bonertz, C./Fellgiebel, A./Huss, M./Lieb, K. (2011b): Use of coffee, caffeinated drinks and caffeine tablets for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry 44(7): 331-338.
- Franke, A.G. / Lieb, K. (2009): Missbrauch von Psychopharmaka zum «Cognitive Enhancement». InFo Neurologie und Psychiatrie 11(7-8):
- Franke, A.G./Lieb, K. (2010): Pharmacological Neuro-Enhancement and brain doping: Chances and risks. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53(8): 853-859.
- Franke, A.G./Soyka, M. (2015): Pharmacological cognitive enhancement from a perspective of misuse and addiction. Fortschritte der Neurologie Psychiatrie 83(2): 83-90.
- Gahr, M./Freudenmann, R. W./Hiemke, C./Kolle, M.A./Schonfeldt-Lecuona, C. (2014): Abuse of methylphenidate in Germany: data from spontaneous reports of adverse drug reactions. Psychiatry Research 215(1): 252-254.
- Giles, G.E./Mahoney, C.R./Brunye, T.T./Gardony, A.L./Taylor, H.A./Kanarek, R.B. (2012): Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose. Pharmacology Biochemistry and Behavior 102(4): 569-577.
- Hughes, J.R./Oliveto, A.H./Helzer, J.E./Higgins, S.T./Bickel, W.K. (1992): Should caffeine abuse, dependence, or withdrawal be added to DSM-IV and ICD-10? The American Journal of Psychiatry 149(1): 33-40.
- Iversen, L. (2009): Speed, Ecstasy, Ritalin: Amphetamine Theorie und Praxis. Bern: Hans Huber Hogrefe.
- Jaffe, C./Bush, K.R./Straits-Troster, K./Meredith, C./Romwall, L./Rosenbaum, G. et al. (2005): A comparison of methamphetamine-dependent inpatients with and without childhood attention deficit hyperactivity disorder symptomatology. Journal of Addictive Diseases 24(3): 133-152.
- Kaminer, Y. (2010): Problematic use of energy drinks by adolescents. Child and Adolescent Psychiatric Clinic of North America 19(3): 643-650.
- Ker, K./Edwards, P.J./Felix, L.M./Blackhall, K./Roberts, I. (2010): Caffeine for the prevention of injuries and errors in shift workers. Cochrane Database of systematic Reviews (5): CDoo8508.
- Klee, H. (1997): A typology of amphetamine users in the United Kingdom. S. 35-68 in: H. Klee (Hrsg.), Amphetamine misuse: international perspectives on current trends Amsterdam: Harwood Academic
- Linssen, A.M./Sambeth, A./Vuurman, E.F./Riedel, W.J. (2014): Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. International Journal of Neuropsychopharmacology 17(6):
- Maher, B. (2008): Poll results: look who's doping. Nature 452(7188): 674-675. Maier, L.J./Liechti, M.E./Herzig, F./Schaub, M.P. (2013): To dope or not to dope: Neuro-Enhancement with prescription drugs and drugs of abuse among Swiss university students. PLoS One 8(11): e77967.

- McLellan, T.M./Lieberman, H.R. (2012): Do energy drinks contain active components other than caffeine? Nutrition Reviews 70(12): 730-744.
- Middendorf, E./Poskowsky, J./Isserstedt, W. (2012): Formen der Stresskompensation und Leistungssteigerung bei Studierenden. HISBUS-Befragung zur Verbreitung und zu Mustern von Hirndoping und Medikamentenmissbrauch. Hannover: HIS Hochschul-Informations-System GmbH.
- Minzenberg, M.J./Carter, C.S. (2008): Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33(7):
- Neumann, S./Franke, A.G./Koller, G./Proebstl, L./Kamp, F./Soyka, M. (2017): Kognitive Fähigkeiten bei methamphetaminabhängigen Frauen und Männern nach einem strukturierten Entwöhnungsprogramm (Abstract). Suchtmedizin – Addiction Medicine 19(3): 172-173.
- Ott, R./Biller-Andorno, N. (2014): Neuro-Enhancement among Swiss students - a comparison of users and non-users. Pharmacopsychiatry 47(1): 22-28.
- Piontek, D./de Matos, E.G./Atzendorf, J./Kraus, L. (2017): Substanzkonsum und Hinweise auf klinisch relevanten Konsum in Bayern, Hamburg, Hessen, Nordrhein-Westfalen, Sachsen und Thüringen. Ergebnisse des Epidemiologischen Suchtsurvey 2015. München: Institut für Therapieforschung München.
- Repantis, D./Schlattmann, P./Laisney, O./Heuser, I. (2010): Modafinil and methylphenidate for Neuro-Enhancement in healthy individuals: A systematic review. Pharmacological Research 62(3): 187-206.
- Satel, S. (2006): Is caffeine addictive? A review of the literature. The American Journal of Drug and Alcohol Abuse 32(4): 493-502.
- Simon, S.L./Dacey, J./Glynn, S./Rawson, R./Ling, W. (2004): The effect of relapse on cognition in abstinent methamphetamine abusers. Journal of substance abuse treatment 27(1): 59-66.
- Spencer, R.C./Klein, R.M./Berridge, C.W. (2012): Psychostimulants act within the prefrontal cortex to improve cognitive function. Biological Psychiatry 72(3): 221-227.
- Wilens, T.E./Adler, L.A./Adams, J./Sgambati, S./Rotrosen, J./Sawtelle, R. et al. (2008): Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. Journal of the American Academy of Child Adolescent Psychiatry 47(1): 21-31.

Endnoten

- Vgl. Forstl 2009; Franke/Lieb 2010.
- Vgl. de Jongh/Bolt et al. 2008.
- Vgl. Franke/Soyka 2015. 3
- Vgl. Middendorf/Poskowsky et al. 2012. 4
- Vgl. Maher 2008.
- Vgl. Iversen 2009. 6
- Vgl. Wilens/Adler et al. 2008. 7
- 8 Vgl. Dietz/Striegel 2013.
- Vgl. Franke/Lieb 2009
- Vgl. Ker/Edwards et al. 2010.
- Vgl. Franke/Lieb 2010. 11
- Vgl. Giles/Mahoney et al. 2012; McLellan/Lieberman 2012. 12
- Vgl. Kaminer 2010, Franke/Soyka 2015. 13
- Vgl. Hughes/Oliveto et al. 1992; Satel 2006. 14
- Vgl. Arria/Caldeira et al. 2017. 15
- Vgl. Franke/Bonertz et al. 2011a. 16
- Vgl. Repantis/Schlattmann et al. 2010. 17
- 18 Vgl. Minzenberg/Carter 2008.
- Vgl. Franke/Bonertz et al. 2011a. 19
- 20 Vgl. Iversen 2009.
- Vgl. Spencer/Klein et al. 2012. 21
- Vgl. Linssen/Sambeth et al. 2014. 22
- Vgl. Franke/Bagusat et al. 2014. 23
- Vgl. Clemow/Walker 2014. 24
- Vgl. Gahr/Freudenmann et al. 2014. 25
- Vgl. Jaffe/Bush et al. 2005. 26
- 27 Vgl. Klee 1997.
- Vgl. Piontek/de Matos et al. 2017.
- Vgl. Franke/Bagusat et al. 2014. 29
- Vgl. Cobb/Scott et al. 2007; Nordahl/Salo et al. 2003. 30
- Vgl. Simon/Dacey et al. 2004. 31
- Vgl. Neumann/Franke et al. 2017. 32
- Vgl. Dietz/Striegel et al. 2013. 33
- Vgl. Franke/Bonertz et al. 2011a; Franke/Christmann et al. 2011b. 34
- Vgl. Franke/Bagusat et al. 2013.
- Vgl. Ott/Biller-Andorno 2014.
- 37 Vgl. Maier/Liechti et al. 2013.
- Vgl. Deline/Baggio et al. 2014. Vgl. Franke/Bagusat et al. 2014.