Zeitschrift: Mitteilungen des Statistischen Bureaus des Kantons Bern

Herausgeber: Statistisches Bureau des Kantons Bern

Band: - (1968)

Heft: 54

Artikel: Kostenabhängigkeit in den bernischen Bezirksspitälern = Facteurs

influants sur les frais dans les hôpitaux des districts bernois

Autor: [s.n.]

Kapitel: 3: Synopsis grundlegender Ansätze

DOI: https://doi.org/10.5169/seals-850384

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3 Synopsis grundlegender Ansätze

Ansatz	Nr.
Einfache lineare Regression und Korrelation	
1) Das Modell	
$y = \alpha + \beta x + \varepsilon$, bzw.	(2)
$y_i = \alpha + \beta x_i + \varepsilon_i$.	(3)
2) Schätzverfahren	
Niveaukonstante a:	
$a = \overline{y} - b_{yx}\overline{x}$	(7)
Regressionskoeffizient b:	
$b_{yx} = \frac{S(x_i - \bar{x})(y_i - \bar{y})}{S(x_i - \bar{x})^2} = \frac{Sx_i y_i - \frac{1}{N}(Sx_i)(Sy_i)}{Sx_i^2 - \frac{1}{N}(Sx_i)^2} = \frac{S_{xy}}{S_{xx}}$	(8), (10)
Regressionsgleichung:	
$Y_i = \overline{y} + b_{yx}(x_i - \overline{x}), bzw.$	(11)
$Y_i = a + b_{yx}x_i$	
Streuung der Einzelwerte:	
$s_{yx}^{2} = \frac{1}{N-2} \left\{ S_{yy} - \frac{S_{yx}^{2}}{S_{xx}} \right\} = \frac{1}{N-2} \left\{ S_{yy} - b_{yx} S_{yx} \right\}$	(16)
Bestimmtheitsmass; Korrelationskoeffizient:	
$B = \frac{S_{xy}^2}{S_{xx}S_{yy}} = b_{yx}b_{xy}$	(17) (18)
$r = \sqrt{B}$	

	Ansatz				Nr.
3) Prüfen von Hypot	hesen				H 0
Varianzanalyse:					
Streuung	SQ	FĢ	DQ		
Auf Regression Um Regression	$b_{yx}S_{xy}\\S_{yy}-b_{yx}S_{xy}$	1 N — 2	$s_1^2 = b_{yx} S_{xy}$ $s_2^2 = s_{yx}^2$		(21)
Insgesamt	S _{yy}	N — 1			
Niveaukonstante a:		·		_	
t =	$t = \frac{a - \alpha}{s_{vx}} \sqrt{N}$, bzw. $t = \frac{a}{s_{vx}} \sqrt{N}$				
	,	,,,			
Regressionskoeffizio	ent b:				
		w. $t = \frac{b_{yx}}{c}$	- √S _{xx}		
	ent b: $\frac{b_{yx} - \beta}{s_{yx}} / \overline{S_{xx}}, bz$	$w. t = \frac{b_{yx}}{s_{yx}}$	$-\sqrt{S_{xx}}$		
	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$	$w. t = \frac{b_{yx}}{s_{yx}}$	$-\sqrt{S_{xx}}$		
t= Bestimmtheitsmass	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$	- 7,			(26)
t =	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ \vdots $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = 0$	- 7,			(25) (26) (27)
t= Bestimmtheitsmass	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ \vdots $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = 0$	- 7,			(26)
t =	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ \vdots $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = 0$	- 7,			(26)
t =	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ \vdots $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} =$ $n_2^* = (N - 2) FG$	- 7,			(26)
$t = \\$ Bestimmtheitsmass $mit: n_1^* = 1 und$	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = n_2^* = (N - 2) FG$ and der Schätzung	- 7,			(26)
$t = \\$ Bestimmtheitsmass $mit: n_1^* = 1 und \\$ (4) Vertrauensgrenzer	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = n_2^* = (N - 2) FG$ and der Schätzung	$= \frac{B(N-2)}{(1-B)}$			(26)
$t = \\$ Bestimmtheitsmass $mit: n_1^* = 1 und \\$ (4) Vertrauensgrenzer	$\frac{b_{yx} - \beta}{s_{yx}} \sqrt{S_{xx}}, bz$ \vdots $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} =$ $n_2^* = (N - 2) FG$ And der Schätzung ter:	$= \frac{B(N-2)}{(1-B)}$			(26)
$t = \\$ Bestimmtheitsmass $mit: n_1^* = 1 und \\$ (4) Vertrauensgrenzer	$\frac{b_{yx} - \beta}{s_{yx}} / \overline{S_{xx}}, bz'$: $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = \frac{b_{yy} (N - 2)}{N_{yy} (N - 2)} = \frac{b_{yy} (N -$	$= \frac{B(N-2)}{(1-B)}$			(26)
t = Bestimmtheitsmass mit: n ₁ * = 1 und (4) Vertrauensgrenzer Regressionsparame	$\frac{b_{yx} - \beta}{s_{yx}} / \overline{S_{xx}}, bz'$: $F = \frac{B S_{yy} (N - 2)}{S_{yy} (1 - B)} = \frac{b_{yy} (N - 2)}{N_{yy} (N - 2)} = \frac{b_{yy} (N -$	$= \frac{B(N-2)}{(1-B)}$ $\sqrt{\frac{N}{S_{xx}}}$			(26)

Ansatz	Nr.
Einfache nichtlineare Regression	
) Transformation auf den linearen Fall	
$Y = ab^x$, bzw. $log Y = log a + x (log b)$	(39)
$Y = ax^b$, bzw. $log Y = log a + b (log x)$	(40)
2) Mehrfache lineare Regression	
$Y = a + b_1 x_1 + b_2 x_2$, mit: $x_1 = x$; $x_2 = x^2$	
3) Orthogonale Polynome	2
$Y = a_0 + a_1 x + a_2 x^2 + + a_p x^p$, bzw.	(41)
$Y = A_0 + A_1 \varphi_1 + \ldots + a_p \varphi_p$	(42)
Mehrfache lineare Regression	50
i) Das Modell	
$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$	(45)
2) Schätzverfahren	
Niveaukonstante a (3 Variable):	
$a = \frac{Sy_{i} - b_{1}Sx_{1i} - b_{2}Sx_{2i}}{N}$	(50)
Regressionskoeffizienten:	
$b_1 = \frac{1}{\triangle} \begin{vmatrix} S_{x_1 y} \ S_{x_2 x} \\ S_{x_2 y} \ S_{x_2 x_2} \end{vmatrix} \; ; \text{bzw.} b_2 = \frac{1}{\triangle} \begin{vmatrix} S_{x_1 x_1} \ S_{x_1 y} \\ S_{x_1 x_2} \ S_{x_2 y} \end{vmatrix}$	(51)
mit: $\triangle = \begin{vmatrix} S_{x_1x_1} & S_{x_1x_2} \\ S_{x_1x_2} & S_{x_2x_2} \end{vmatrix}$	

Ansatz	Nr.
Bestimmtheitsmass (totales):	
$B_{T} = \frac{1}{S_{yy}} \left\{ b_{1} S_{x_{1}y} + b_{2} S_{x_{2}y} \right\}$	(54)
(3) Prüfen von Hypothesen	
Varianzanalyse:	
$F = \frac{DQ \text{ (auf Regression)}}{DQ \text{ (um Regression)}} = \frac{s_1^2}{s_2^2}$	(57)
Partielle Regressionskoeffizienten:	
$t = \frac{b_i - \beta_i}{s \sqrt[]{c_{jj}}} = \frac{b_i - \beta_i}{s_{b_j}}$ $n^* = (N - p - 1) FG$	
Totale Bestimmtheit: $F = \frac{B(N-p-1)}{(1-B)p}$	(58)
mit: $n_1^* = p$ und $n_2^* = (N - p - 1) FG$	
Partielle Bestimmtheit:	
$F = \frac{B(N-2p)}{(1-B)p}$	(59)
mit: $n_1^* = p$ und $n_2^* = (N-2p) FG$	u e
(4) Vertrauensgrenzen der Schätzung	
Partielle Regressionskoeffizienten:	
$b_{j} \pm t_{P} s \sqrt{c_{jj}}$, bzw. $b_{j} \pm t_{P} s_{b}$	(75)
Regressionswerte: $\label{eq:Y power} \textbf{Y} \pm t_{\textbf{P}} \textbf{s}_{\textbf{Y}} \text{;} \textbf{s}_{\textbf{Y}}^{\textbf{2}} \text{ nach (60) .}$	