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Aus der Geschichte des Zahlenbegriffes.

Von Dr L. Gustav Du Pasquier,
Privatdozent am eidgenössischen Polytechnikum in Zürich.*)

Die Überzeugung, dass die ganze Natur eine fortlaufende und stetige
Entwicklung durchmacht, hat sich in neuerer Zeit immer mehr ausgebreitet.
Die Naturwissenschaften haben ihr kräftige Stützpunkte verliehen; auf
dem Gebiete der Sprachforschung behauptet sie seit/ langem das Feld,
und man könnte sich darüber wundern, dass die moderne Evolutionstheorie

nicht schon längst von Sprachforschern aufgestellt wurde; denn

jede neue Errungenschaft der Linguistik bestätigt sie.

Diesem Naturgesetze stetiger Umwandlung sind auch unsere abstrakten

Begriffe unterworfen, nicht nur ihre lautlichen Ausdrücke : die Wörter.
Manchmal ändert sich bloss die äussere Gestalt des Wortes, während
seine Bedeutung erhalten bleibt; als Beispiel hierfür sei das Wort „drei"
erwähnt; es hat in den indogermanischen Sprachen die verschiedensten

Wandlungen durchgemacht, aber der Sinn des Wortes ist dabei immer
derselbe geblieben. Indessen unterliegt gewöhnlich auch die Bedeutung
eines Wortes fortlaufender Veränderung. Ein bekanntes Beispiel liefert
das jetzt internationale Wort „Bureau". Ursprünglich bedeutete ja dieses

*) Antrittsvorlesung, gehalten am 30. Januar 1909. Als Quellen sind
hauptsächlich folgende Werke zu nennen:

Pott, „Die quinäre und vigesimale Zählmethode bei Völkern aller Weltteile".
Halle, 1847.

Pott, „Die Sprachverschiedenheit in Europa an den Zahlwörtern
nachgewiesen". Halle, 1868.

Moritz Cantor, „Vorlesungen über Geschichte der Mathematik". 4 Bände.
Leipzig, 1894—1908.

Alexander von Humboldt, in Crelle's „Journal für reine und angewandte
Mathematik". Bd. IV, 1829, S.205: „Über die bei verschiedenen Völkern üblicben
Systeme von Zahlzeichen und über den Ursprung des Stellenwertes in den
indischen Zahlen".

Schweiz. Pädagog. Zeitschrift. 1909. 22
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Wort eine Sorte groben Tuches, eine besondere Art starker Leinwand.
Später, als die Geldwechsler die Gewohnheit nahmen, ihren Tisch mit
einem Teppich aus Bureau zu überziehen, verstand man unter diesem
Worte den Tisch selbst, auf welchem Geld gewechselt und gerechnet
wurde; noch später das Zimmer, in welchem sich ein solcher Schreibtisch
befand; schliesslich sogar die Personen, die sich im betreffenden Lokale
regelmässig versammeln oder miteinander zu [verhandeln haben. Das

„Bureau einer Versammlung", das „Bureau einer Gesellschaft" ist der
Inbegriff der Personen, welche mit der Leitung der Geschäfte speziell
betraut sind.

Ganz ähnlich ist es mit dem Begriffe „Zahl" gegangen; im Laufe
der Zeit hat man auch unter dem Worte „Zahl" Dinge verstanden, die
auf den ersten Blick recht wenig miteinander zu tun haben.

Der ursprüngliche Sinn des Wortes Zahl ist „Anzahl" ; anfänglich
nannte man „Zahl" nur das Resultat des Zählens. Es ist das erste Stadium
in der Geschichte des Zahlenbegriffes.

Die Operation des Zählens lässt sich vom psychologischen Standpunkt
aus in mehrere Teile zergliedern; als wesentlich müssen zwei
Eigenschaften bezeichnet werden, nämlich die Genauigkeit und die Abstraktion.
Das Wichtigste und Schwierigste beim Zählen ist das Abstrahieren, das
Absehen von allen individuellen Eigentümlichkeiten der zu zählenden
Objekte; ein Beispiel möge dies beweisen; es ist dem Bericht eines

Forschungsreisenden namens Lichtenstein entnommen; er erzählt unter
anderem vom Negerstamme der Koossas in Südafrika folgende Tatsache :

ein reicher Koossaneger besass ungefähr vierhundert Stück Hornvieh. Wenn
nun die Herde abends von der Weide zurückkehrte, liess er sie im
Gänsemarsch an sich vorüberziehen; er wusste dann ganz genau, ob alle
vierhundert Tiere da waren oder nicht; ja noch mehr: wenn eines der Tiere
fehlte, so konnte er ganz genau sagen, welches er vermisste. Dieser

sorgsame Landwirt hatte in seinem Gedächtnis das Bild jedes einzelnen
Tieres aufbewahrt, mit allen individuellen Eigentümlichkeiten, die ihm
anhafteten. Wir werden hier nicht mit Recht sagen dürfen, der Eigentümer

habe seine Tiere „gezählt", denn die geistige Arbeit des Abstra-
hierens hat er dabei nicht geleistet; in gewissem Sinne hat er sogar
gerade das Gegenteil dessen getan, was beim Zählen geschieht. Die
Aufmerksamkeit ist beim Zählen eben gar nicht auf die individuellen
Eigentümlichkeiten der zu zählenden Objekte gerichtet; von ihnen muss man
vielmehr gänzlich absehen. Dieses Abstrahieren bedeutet eine grosse
geistige Anstrengung; uns Erwachsenen kommt sie zwar nicht mehr klar
zum Bewusstsein, weil wir so sehr daran gewohnt sind; aber an kleinen
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Kindern bekommt man sie noch deutlich zu spüren, wenn man ihnen
-das Zählen beibringen will ; ebenso bei unkultivierten Völkern : so erzählt
Mungo Park von einem gewissen Stamme Wilder, dass die betreffenden

Eingeborenen immer nur bis zwei zählten, und wenn man sie zwingen
wollte, grössere Zahlen mit Genauigkeit anzugeben, so brachen sie in
Tränen aus, wegen der geistigen Überanstrengung.

Man kann demnach das Zählen folgendermassen definieren: Dinge
zählen heisst: diese Dinge als gleichartig ansehen und ihnen einzeln andere

gleichartige Dinge zuordnen. Diese Definition möge durch folgendes Beispiel
verdeutlicht werden: man denke sich vor einem Klassenzimmer Haken
angebracht, an welchen die Schüler ihre Mützen aufzuhängen haben, und
.zwar sei genau für jeden Schüler ein Haken vorhanden. Wenn nun ein
Lehrer dieses weiss und vor Eintritt in die Klasse mit einem Blicke
übersieht, dass an jedem Haken eine Mütze hängt, so hat er, nach der

vorigen Definition, „die Schüler gezählt" ; denn er hat im Geiste die
Schüler als gleichartig angesehen und sie einzeln den Haken zugeordnet.
Auch wenn er die Anzahl der Schüler nicht durch ein Zahlwort zu
bezeichnen vermag, so wird man doch, vom psychologischen Standpunkt
aus, sein Urteilen ein „Zählen" nennen können. Freilich ist ein solches

Zählen, ohne Zahlwörter und ohne Zahlzeichen, ein sehr unzivilisiertes
und höchst primitives; aber es ist das Kindheitsstadium des Zählens.

Am nächsten liegt es dem Menschen, den zu zählenden Dingen seine

.zehn Finger zuzuordnen, und falls die betreffenden Menschen keine Stiefel

tragen, also barfuss gehen oder doch nur Sandalen benutzen, auch noch
die zehn Zehen. Bei vielen Völkern sind noch heute die Finger ein ganz
unentbehrliches Hülfsmittel zum Zählen. Mehrere Forschungsreisende
bestätigen z. B. die Tatsache, dass die Zulukaffern noch jetzt nur mit
Hülfe der Finger zählen; für jeden Gegenstand, der gezählt werden soll,
heben sie einen Finger in die Höhe und beobachten dabei eine feste

Reihenfolge. Jedesmal, wenn zehn durchgezählt sind, klatschen sie einmal
laut in die Hände. — Ein Mossutoneger kann auch niemals anders als
mit Hülfe der Finger zählen.*) Will er aber eine grössere Zahl
ausdrücken, so klatscht er nicht in die Hände, wie ein Zulukaffer es tut,
sondern holt sich einen Hülfsmann, welcher durch Aufheben der Finger,
die Zehner anzudeuten hat. So oft zehn durchgezählt sind, streckt dieser
Kamerad einen Finger in die Höhe, und der erste fängt von neuem an.
Bei Zählen über hundert wird sogar noch ein dritter Mann zum Andeuten
der Hunderter angestellt.

*) v. Schrumpf, „Zeitschrift der deutschen morgenländischen Gesellschaft"
XVI, S. 463.
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Zu solchem Zählen sind weder Zahlwörter noch Zahlzeichen
notwendig; es bildet die allererste Phase der Entwicklung.

Auf diesem Kulturzustande ist jedoch die Menschheit glücklicherweise

nicht überall stehen geblieben. Als der menschliche Geist seinen

Ausdruck in der Sprache fand, wurden auch die Zahlennamen
geschaffen. Hier beginnt eine zweite Phase in der Geschichte des

Zahlenbegriffes : die Bildung der Namen für ganze Zahlen und die Darstellung-
der Zahlen durch die Schrift.

Es lag zuerst nahe, die Zahlen gerade so zu benennen wie gewisse
konkrete Dinge, welche jedem geläufig waren und überdies die Vorstellungeiner

bestimmten Anzahl erweckten, wie etwa „Flügel" und „zwei". In
vielen Sprachen finden sich solche bildlichen Bezeichnungen. Der Gelehrte

Alexander von Humboldt, der Linguist Pott, u. a., führen Sprachen an,
in welchen „Hand" oder „Faust" durch dasselbe Wort wie „fünf"
ausgedrückt wird. Von zahlreichen weiteren Beispielen sei eines aus dem

„dunkeln Weltteile" zitiert: in einer afrikanischen Mundart heisst die Zahl

zwanzig „mobande". Die wörtliche Übersetzung ergibt : „mo" Mensch;

„bande" ist Participium des Zeitwortes „ban" beendigen, also:
„mobande" „ein Mensch beendigt"; wenn man nämlich alle zehn Finger
und alle zehn Zehen durchgezählt hatte, war man zur Anzahl zwanziggelangt

und hatte zugleich „einen Menschen beendigt", d. h.

„fertiggezählt".

Auch dieses Bild wird in vielen Sprachen angewandt. Die alten

Inder, wenigstens ihre bekannten mathematischen Schriftsteller, haben

dieses Prinzip der Zahlwortbildung sogar systematisch durchgeführt, so

z.B. Bhâskara Âcârya, d. h. „Bhâskara der Gelehrte", geb. 1114 n. Chr.,
in einem Werke, das er LÏlâcati, d. i. „die Reizende", betitelt hat. Als
Beleg sei folgendes angegeben :

sûrya bedeutet zugleich „Sonne" und „zwölf", weil in der indischen

Mythologie der Sonne zwölf Wohnungen zugeschrieben wurden,
entsprechend den zwölf Bildern des Tierkreises; abdhi hat gleichzeitig- die

Bedeutungen „Ozean" und „vier", da es in der indischen Mythologie vier
Ozeane gab. Das Wort abdhisûrya bedeutet demnach 124, nämlich vier
Einer und zwölf Zehner, während die Wortverbindung sûryabdhi die

Zahl 412 vorstellt, nämlich zwölf Einer und vier Hunderter. Die Beispiele
liessen sich beliebig vermehren. Für jede der kleineren Zahlen stand eine

grosse Anzahl von Namen zur Verfügung, und so konnte ein und
dieselbe Zahl auf die mannigfaltigste Art bezeichnet werden, was den

Versdichtern eine grosse Erleichterung verschaffte. Bekanntlich liebten es die

alten Inder sehr, mathematische Regeln und Aufgaben in Verse zu kleiden.



333

Dieser erste Stand der Zahlwortbildung musste bei fortschreitender
Kultur bald überwunden werden. Wollten nämlich die Menschen für
jede neue Zahl auch einen neuen Namen haben, so waren sie gezwungen,
so viele Namen zu erfinden, als sie Zahlen gebrauchten. Dies hätte allzu

grosse Anforderungen an das menschliche Gedächtnis gestellt. Einer
solchen Gedächtnisüberbürdung konnte am einfachsten dadurch begegnet
werden, dass man bei einer gewissen Zahl einen Ruhepunkt machte und
die folgenden Zahlennamen durch Zusammensetzung bildete.

Die gewohnte Art der Abzahlung an den Fingern wies den Weg,
den man zu gehen hatte. Zunächst war jede Zahl mit einem besonderen

Namen zu bezeichnen bis hinauf zu jener ersten Ruhepunktszahl; wir
wollen diese mit b bezeichnen, um an das Wort Basis zu erinnern. Die
hierauf folgenden Zahlen bekamen Namen, welche nach folgendem Schema

gebildet wurden:

6+1, 6 + 2, 6 + 3,....
Es war also nicht nötig, neue Zahlennamen aufzustellen, sondern

man wandte die für die Einer geschaffenen Namen von neuem an. —
Einen zweiten Ruhepunkt machte man bei 62, einen dritten bei 63, einen

vierten bei b*, u. s. w.
So kam man dazu, die Namen der Zahlen nach folgendem Schema

zusammenzusetzen :

a0-\-a1. 6+ a2.62 + a3.63 + .+Ok.ôk +.
mit der Bedingung : o < a k < 6 für jeden Index k.

Man brauchte also nur für folgende Zahlen selbständige und primi-
iive Namen aufzustellen:

1. für die Einer: 0, 1, 2, 3, 6—1;
2. für die Stufenzahlen: b, 62, 6», 6*,

Die Grenze, bis zu welcher man Namen für die Stufenzablen bildete,
richtete sich nach den Bedürfnissen des praktischen Lebens; bis ins

Mittelalter kannte man in Europa keinen höheren Stufenzahlennamen als

„tausend", abgesehen vom griechischen pvçtoi 10000. Die Wörter
„Million", „Milliarde", „Billion", „Trillion", u. s. w., sind erst im 16.

Jahrhundert oder noch später entstanden.

Ein einziges Volk der ganzen Erde hat hiervon eine Ausnahme
gemacht und schon in den ältesten Zeiten eine sehr lange Reihe von
Stufenzahlennamen ausgebildet : die alten Inder, welche bekanntlich, was Zählen
und Rechnen anbetrifft, die Lehrmeister der zivilisierten Menschheit
geworden sind. Die alten Buddhisten haben sogar ganze Bücher darüber
geschrieben, wie man, durch Kombination verschiedener Silben, Namen
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für Stufenzahlen von immer höherer OrdnuDg bilden kann. Sie trieben
17 ¦ 2128

diese Namengebung bis zu einer Zahl, die wir als 10 definieren
würden. *) Wollte man diese Zahl drucken, so würden ihre aneinander
gereihten Nullen eine solche Länge erfordern, dass die Entfernung der
Erde von der Sonne hierzu bei weitem nicht ausreichte, selbst unter
Anwendung der kleinsten Druckschrift, die es gibt; man müsste vielmehr
über eine Strecke verfügen, welche der Entfernung der Erde bis zu einem
Sterne gleichkommt, dessen Licht 1000 Billionen Jahre braucht, um zu
uns zu gelangen; dabei ist in Rechnung gezogen, dass das Licht in jeder
Sekunde 300 000 Kilometer zurücklegt, und diese ganz ungeheure Strecke
wäre erst ein Millionstel von der wirklichen Länge obiger Zahl.!

Die verbreitetste aller Basiszahlen ist 10, und für diese Tatsache,
dass gerade die Zahl 10 als erste Ruhepunktszahl auftritt, gibt es gar
keinen anderen Grund als den, dass wir Menschen zehn Finger haben.

— In vielen Sprachen ist fünf die Basiszahl, in einigen anderen ist es

zwanzig. So befolgten die altkultivierten Azteken, die Ureinwohner von
Mexiko, ein vigesimales Zahlensystem. Ebenso herrschte in der keltischen
Sprache die Grundzahl zwanzig, und ein Überbleibsel davon ist die noch

heutzutage übliche vigesimale Zählung im Französischen zwischen 60 und
100, ferner im Dänischen zwischen 40 und 100.

Wären die Zahlwörter nicht|von Menschen im Kindesalter der Kultur,
sondern von Gelehrten am Schreibtisch erfunden und gebildet worden,
so hätten diese gewiss nicht die Zahl zehn, sondern vier oder sechs als
Basis gewählt.

Was nun den schriftlichen Ausdruck der Zahlen anbelangt,,
dessen Entwicklung wir jetzt in aller Kürze andeuten wollen, so lassen

sich dabei mehrere Prinzipien unterscheiden. Auf unsystematische
Bezeichnungen, wozu auch die Darstellung der Zahlen durch die
Buchstaben des Alphabetes zu rechnen ist, soll hier gar nicht weiter
eingegangen werden.

Das erste, eine strenge Gesetzmässigkeit ausdrückende Prinzip ist das

sogenannte additive Prinzip
Die römischen Ziffern sind ein Beispiel seiner Anwendung. Es liegt

auf der Hand, jeden der zu zählenden Gegenstände durch einen
einfachen Strich zu ersetzen. So sind die natürlichen Zahlzeichen entstanden:

I, II, III, IMI,

nicht nur bei den Römern, sondern noch bei sehr vielen anderen Völkern.

*) v. Schiefner, Bulletin de l'Académie des Sciences de St-Petersbourg„
t. V, p. 299.
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Solche „natürliche Zahlzeichen" wurden auch von den Azteken angewandt;
doch wird bei ihnen jedem Gegenstand ein Kreis zugeordnet, wenigstens

von 1 bis 20. Die Zahl 16 z.B. wird durch 16 nebeneinander gezeichnete
Kreise dargestellt. In den mexikanischen Hieroglyphen sind diese farbig
ausgeführt und wahrscheinlich Bilder der grossen runden Körner, mit
welchen jenes Volk zählte und rechnete. Zur konsequenten Anwendung
des additiven Prinzips müssen noch Zeichen für die Stufenzahlen
vorhanden sein. So wird, bei der vigesimalen Zählmethode der Azteken, 20

durch eine kleine Fahne dargestellt, ferner 202 400 durch eine Feder,
20 3= 8000 durch einen vollen Beutel. Als Beispiel diene die Zahl 9876:

1 Beutel zur Bezeichnung von 8000

4 Federn „ „ „ 4.400=1600
13 Fähnlein „ „ „13.20 260

16 Kreise „ „ „ 16

34 Zeichen „ „ „ 9876

Man ersieht auch hieraus, dass das additive Prinzip schon bei nicht
sehr hohen Zahlen auf lange und deswegen unbequeme Ausdrücke führt,
und es nimmt Zeit, bis man sich gleichsam durch die Zahl hindurchaddiert

hat.
Dem additiven Prinzipe gegenüber steht das sogenannte multiplikatke

Prinzip. Dieses ist unter anderem von den Chinesen in ihrer
Zifferschrift konsequent durchgeführt. Will man die Zahlen nach dem multi-
plikativen Prinzip darstellen, so braucht man ein besonderes Zeichen für
jeden Einer

1, 2, 3, 6-1
und ein besonderes Zeichen für jede Stufenzahl

6, 62, 63, 6*,

Um dieses Prinzip durch ein Beispiel zu illustrieren und dabei doch
nicht die komplizierten chinesischen Zeichen anzuwenden, will ich die

uns geläufigen römischen Zeichen für die Stufenzahlen benutzen:
10 X, 100 C, 1000 M, 10000= C<D), u.s.w.

Unter dieser Annahme erhält man
für 1889 den Ausdruck 1 M 8 C 8 X 9

„ 1080 „ „ 1 M 8 X
„ 10008 „ „ Hd>)8

180 „ „ 1C8X
Die chinesische Schrift weist 14 Zeichen für die 14 ersten aufeinanderfolgenden

Stufenzahlen auf.
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Erst in dieser Methode war im schriftlichen Systeme derselbe

Grad der Vollkommenheit erreicht, auf dem man sich im gesprochenen
Zahlensysteme schon längst befand.

Eine dritte Methode zur Darstellung der Zahlen liefert das Markenprinzip,

von H. Hankel auch elevatorisches Prinzip genannt. Hiernach
braucht man nur Zeichen für die Einer; die Stufenzahlen werden durch
Marken, etwa durch Punkte oder Kreise, angedeutet:

•'¦ •• • 0°0 00 0

1889 wird ausgedrückt durch 18 8 9 oder 18 8 9

1008 „ „ „ Ï 8 „ 1 8

••• • 0°0 0

1080 „ „ „18 „18
« • 00 0

180 „ „ „18 „18
Eine vierte Darstellungsweise, welche im früheren Mittelalter in ganz

Europa angewandt wurde, könnte als Kolonnenprinzip bezeichnet werden.
Bei Anwendung dieses Prinzipes können die Zahlen nicht frei geschrieben
werden, sondern nur auf eine Tafel, die eine Reihe von Kolonnen
enthält, welche nach ihrer Folge die Stufenzahlen I, X, C, M, C I als
Überschrift tragen :

Cd>) M c X I
9 8 7 6

1 8

i
1 8

8

Es ist ein weiterer Schritt in der Verbesserung, in der Kürzung der

multiplikativen Zifferschrift : man lässt nämlich auch alle Marken,
überhaupt alle Zeichen für die Stufenzahlen, weg; freilich ergibt sich dadurch
ein grosser Nachteil: es sind besonders eingerichtete Rechenbretter
notwendig. Schon die Griechen und Römer haben solche gebraucht und
ihnen den Namen äßaC, bezw. abacus, gegeben.

Das letzte Prinzip, das ich hier erwähne, ist das Positionsprinzip
oder Prinzip des Stellenwertes, nach welchem heute alle zivilisierten
Nationen ihre Zahlen schreiben.

Wie ist man wohl zu diesem Prinzipe gekommen? Für jemanden,
der das „Markenprinzip" und das „Kolonnenprinzip" kennt, scheint die

Antwort äusserst einfach. Man braucht ja nur ein Füllzeichen, ein Zeichen

für Nichts! Dann kann man, auch bei Fortlassung aller Stufenzahlen-
zeichen und aller Marken, Zahlen wie 1008, 180, 18, ohne weiteres
voneinander unterscheiden. — Aber die grössten Denker und Rechner des
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Altertums haben diesen Gedanken nicht gehabt ; er muss also doch nicht
so natürlich und naheliegend sein, wie er uns heutzutage erscheint. Es

kommt uns recht merkwürdig vor, dass ein Genie wie Archimedes, der

grösste Mathematiker des ganzen Altertums, der die kompliziertesten
Berechnungen mit einem kolossalen Aufwand an Mühe und Zeit
durchführte, der die Schwerfälligkeit seiner Zifferschrift sicherlich gefühlt hat,
nicht eine vollkommenere schuf. Wie sollte aber auch ein Römer oder ein
Grieche, der immer nur die Wirklichkeit der Welt ins Auge fasste, auf
den Gedanken verfallen, dass man für etwas, das gar nicht da ist, ein

Zeichen, also etwas Wirkliches setzen könne? Kein anderes Volk als das

der Inder war dazu prädestiniert, die Null zu erfinden; sie liebten es

ungemein, sich mit phantastisch grossen Zahlen zu beschäftigen ; sind es

doch auch die alten Inder, welche das Nirvana, d. h. das Leere, das

Zerfliessen in Nichts, als höchstes und letztes Ziel des Daseins hinstellten.
„Die Inder", so drückt sich ein Schriftsteller geistreich aus, „haben in
dem Nichts ein brauchbares Etwas gesehen und durch das Nichts die

Vollendung des Etwas bewirkt". Dieses Nichts, die Null, nannten die

Araber sifar, d. h. wörtlich „das Leere" ; aus dieser Wurzel stammt
unser Wort „Ziffer" ; es bedeutete also ursprünglich nur die Null, wie
noch heute im Englischen.

Durch welche Zwischenstufen hindurch sich nun aus den älteren

Ziffersystemen, in denen manchmal mehrere Prinzipien in ganz inkonsequenter

Weise gleichzeitig angewandt wurden, das Positionsprinzip in
seiner jetzigen Klarheit entwickelt hat, ist noch nicht ganz sichergestellt.
Dass aber die Erfindung der Null und des Ziffersystems mit Stellenwert
den Indern zufällt, steht ausser allem Zweifel. Nur sind es die Araber

gewesen, welche diesen Schatz aus dem sagenhaften Indien geholt und
ihn dem Abendland übermittelt haben. Dadurch wird die noch oft
gebrauchte Bezeichnung „arabisches System" erklärt — und in gewissem
Sinn auch gerechtfertigt. Die Erfindung des Positionssystems bildet einen

Abschluss in der theoretischen Vervollkommnung der Zifferschrift; denn

es ist das Ideal erreicht: mit Hülfe von zehn einfachen Zeichen jede noch

so grosse Zahl in kürzester und klarster Weise zu bezeichnen. Hierzu
genügen sogar zwei Zeichen, die Null und die Eins, wenn man die Basis 6

gleich 2 wählt (binäres oder dyadisches Zahlensystem).
Die Bedeutung des Begriffes „Zahl" erfuhr schon im grauen Altertum

eine wesentliche Erweiterung. Unter „Zahl" verstand man nicht
mehr allein das Resultat einer Zählung, sondern auch jedes Resultat des

Messens. Dies eröffnet eine dritte Phase in der Entwicklung des

Zahlenbegriffes. Bei der Operation des Messens findet nämlich das Abzählen
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eine sehr häufige und wichtige Anwendung, gilt es doch, zu bestimmen,
wie oft eine gewählte Einheit in der zu messenden Grösse enthalten sei.

Die Bedürfnisse einer sich immer mehr ausbreitenden Kultur veranlassten

nun zum Messen, zwangen auch zum Teilen. Dabei kamen nicht immer

ganze Zahlen heraus ; so fassten denn die Menschen allmälig den Begriff
der „gebrochenen Zahl" und führten die Zahlenbrüche ein.

Bekanntlich hat Pythagoras die Zahl zum Prinzipe der Dinge gemacht,
indem er sagte: „Die Dinge sind Zahlen". Es ist schwierig, eine zu der

Mathematik der Pythagoräer passende Bedeutung in den Wortlaut dieses

Ausdruckes hineinzulegen. Diese Worte können kaum etwas anderes

bedeuten als dass alle Dinge sich durch Zahlen bestimmen lassen. Da hierbei

nicht wohl von etwas anderem die Rede sein kann als von der Grösse

der Dinge, so wird gesagt, dass es möglich sei, die Grösse der Dinge
durch Zahlen auszudrücken und zwar durch ganze oder durch gebrochene

Zahlen, weil keine anderen bekannt waren. — Nun entdeckte man aber
schon im Altertum, dass dem nicht so ist. Man fand z. B. heraus, dass

die Länge der Diagonale eines Quadrates, dessen Seiten sämtlich gleich
der Längeneinheit sind, durch keine derartige Zahl ausgedrückt werden

kann, weder durch eine ganze, noch durch eine gebrochene.
Dies führte im Laufe der Zeit dazu, die Bedeutung des Wortes „Zahl"

abermals zu erweitern : man schuf die sogenannten irrationalen Zahlen.

Die spätere Entwicklung hat gezeigt, dass dieselben in zwei grosse

Kategorien zerfallen : einerseits die algebraischen Irrationalitäten, andererseits

die transzendenten Zahlen.
Dem französischen Mathematiker Joseph Liouville (24. März 1809 bis

8. September 1882) gebührt das Verdienst, die Existenz dieses sehr tief
liegenden und prinzipiell wichtigen Unterschiedes zum erstenmal bewiesen

zu haben. Einen Anstoss hierzu gab wohl die Frage nach der „Quadratur
des Zirkels", die Zahl n 3,1415926 welche angibt, wie oft ein

Kreisdurchmesser in der zugehörigen Kreisperipherie enthalten ist (vgl. F. Rudio :

„Das Problem von der Quadratur des Zirkels"). Die Überzeugung, es sei

diese Zahl .t überhaupt nicht Wurzel einer algebraischen Gleichung mit
rationalen Koeffizienten, hatte sich bei den Mathematikern allmälig
gebildet. Schon Leonhard Euler (1707 bis 1783) und Legendre (1752

bis 1833) hatten diese Vermutung ausgesprochen; Lambert (geboren 1728

zu Mülhausen, gestorben 1777 als Oberbaurat in Berlin) hatte sie g-eradezu

zu einem Satze formuliert und zum Beweise desselben aufgefordert. Aber

man hatte doch bis 1844 gar keinen positiven Anhaltspunkt dafür, dass

es überhaupt Zahlen gebe, welche nicht Wurzeln irgendeiner algebraischen

Gleichung mit rationalen Koeffizienten sein können. Liouville war der
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erste, der hierfür einen strengen Beweis lieferte*), indem er Zahlen von
einfachem Bildungsgesetze herstellte, von denen sich nachweisen liess,
dass sie keiner algebraischen Gleichung mit rationalen Koeffizienten
genügen. Als solches Beispiel führt er unter anderem an :

_1 _1_ 1
_,

1x~ l "**'//, T Uxh ' ' ' " ' lllls,...lm-i "*"•¦••
Bedeuten hierin l, lv l2 ganze Zahlen, und wächst lm hinreichend

rasch mit dem Index m, so lässt sich zeigen, dass x nicht Wrurzel irgend
einer algebraischen Gleichung mit rationalen Koeffizienten sein kann. —
Seit dieser wichtigen Liouvilleschen Entdeckung ist man berechtigt, alle
Zahlen in algebraische und transzendente einzuteilen, während

man früher nur von rationalen und irrationalen Zahlen sprechen konnte.
Unter einer algebraischen Zahl versteht man jetzt jede Zahl x, welche
Wurzel einer algebraischen Gleichung ist, d. h. einer Gleichung von der
Form :

Xn + C1Xa~1 + C2Xn~2 + ....+ Cn 0,

in welcher die Koeffizienten cu c2,. rn sämtlich rationale Zahlen

sind, während der höchste Koeffizient immer gleich 1 vorausgesetzt wird.
Sind überdies diese Koeffizienten sämtlich [g a n z e Zahlen, so heisst x
eine ganze algebraische Zahl. Unter einer transzendenten Zahl
versteht man jede nicht algebraische Zahl.

Es würde hier zu weit führen, diese Entwicklungsrichtung näher zu
verfolgen; denn sie leitet zu Betrachtungen über den Unendlichkeitsbegriff

und dadurch auf das Gebiet der Philosophie hinüber.
Alle bisher angegebenen Bedeutungen des W'ortes „Zahl" werden

unter dem gemeinschaftlichen Namen reelle Zahlen zusammengefasst. Man

gelangte also zuj diesem allgemeinen Begriffe dadurch, dass man unter
einer Zahl nicht allein das Resultat des Abzählens, sondern überhaupt
das Ergebnis einer Messung verstand.

Eine vierte Erweiterung hat der Zahlenbegriff durch die moderne
Mathematik erfahren; man kann sie durch folgende Definition charakterisieren

: Unter einer Zahl ist jedes Objekt menschlichen Denkens zu verstehen,

mit welchem man rechnen kann. Durch die Theorie der Gleichungen wurden
die Mathematiker zu dieser Erweiterung veranlasst. Diese Auffassung hat
zu den negativen und zu den allgemeinen komplexen Zahlen geführt. Sie

hat ferner Ernst Eduard Kummer (geboren 29. Januar 1810 in Sorau,

gestorben 14. Mai 1893 in Berlin) die Idee zur Schöpfung der idealen

Zahlen eingeflösst; sie hat schliesslich Hrn. Georg Cantor den

Gedanken zur Bildung der transfiniten oder überendlichen Zahlen gegeben.

*) Liouvilles Journal, Bd. XVI (1851).
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An einem Beispiele möchte ich zeigen, welcher Weg dabei eingeschlagen
werden kann.

Wir betrachten zwei beliebige reelle Zahlen o und 6 und denken

uns dieselben in irgend einer Weise miteinander verbunden, ich möchte
fast sagen: zusammengeheftet oder zusammengeschmiedet, so dass sie nur
noch ein Ganzes bilden. Dieses neue Gedankending heisst ein Zahlenpaar,
die Zahlen a und 6 Komponenten des Zahlenpaares; sie können einander

gleich oder voneinander verschieden sein. Es ist offensichtlich möglich,
unendlich viele solcher Zahlenpaare zu bilden. Diese betrachten wir nun
als Objekte unseres mathematischen Denkens. Wenn wir uns dann die

Aufgabe stellen, mit solchen Zahlenpaaren zu rechnen, so behandeln wir
diese Gedankendinge gerade so, als ob es Zahlen wären, obgleich sie in
Wirklichkeit etwas viel komplizierteres sind. Folgendes Bild ist geeignet,
den Unterschied zu veranschaulichen: man betrachte zwei metallische
Stäbchen als Darstellung der zwei Komponenten und denke sich dieselben

an dem einen ihrer Endpunkte gelenkartig miteinander verbunden; es

entsteht dadurch ein Ding, das einem kleinen Zirkel ähnlich sieht, und
dieser ist dann eine Versinnlichung des Zahlenpaares. Gerade so wie nun
ein Wesensunterschied besteht zwischen dem Zirkel als Ganzem und den

beiden metallischen Stäbchen, bevor sie in dieser eigentümlichen Weise

miteinander verbunden waren, so herrscht auch ein prinzipieller Unterschied

zwischen dem Zahlenpaar einerseits, den beiden getrennt gedachten
Komponenten andererseits. Es tritt eben noch die charakteristische
Verknüpfung zu einem Ganzen hinzu; diese soll im Folgenden stets durch
Einklammerung der Komponenten angedeutet werden: (a, b) wird
gesprochen : „Zahlenpaar a, 6".

Rechnen heisst bekanntlich, aus zwei gegebenen Grössen nach
bestimmten Gesetzen eine dritte ableiten. Wir stellen uns also jetzt die

Aufgabe, aus zwei Zahlenpaaren (a, 6) und (c, d), nach festgesetzten oder
noch festzusetzenden Regeln, ein drittes Zahlenpaar abzuleiten. Zu diesem

Behufe müssen wir angeben, was unter der „Gleichheit zweier Zahlenpaare",

was unter ihrer „Summe", was unter ihrem „Produkt" verstanden
werden soll; zunächst die Definition ihrer „Gleichheit":

Zwei Zahlenpaare mögen stets und nur dann einander gleich heissen,

wenn ihre entsprechenden Komponenten übereinstimmen.
In Zeichen : (a, 6) (r, d), wenn gleichzeitig a c, 6 d.

Eine Gleichung zwischen solchen Zahlenpaaren zieht demnach zwei
Gleichungen zwischen reellen Zahlen nach sich.

Wir lassen die Erklärung der Summe zweier Zahlenpaare folgen ; diese

muss wieder ein Zahlenpaar sein. Es gelte die ganz willkürliche Festsetzung :
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„Zahlenpaare werden addiert, indem man die entsprechenden Komponenten

addiert"; in Zeichen:

(a, 6) + (c, d) (a + c, b + d).

Dadurch ist die Addition im Bereiche dieser Zahlenpaare definiert.
Wirft man nun die Frage nach der inversen Operation auf, so ergibt
sich, dass „die Differenz zweier Zahlenpaare" immer existiert und nach

folgender Regel gebildet wird:

(a, 6) — (c, d) (o — c, b — d).

Gehen wir nun zur Definition der Multiplikation über; wir setzen,
abermals ganz willkürlich, folgendes fest:

„Das Produkt aus zwei solchen Zahlenpaaren (a, 6) und (c, d) ist
wieder ein Zahlenpaar, für dessen Komponenten das Bildungsgesetz gilt,
welches in der Gleichung

(a, b) (c, d) (ac — bd, ad + 6c) enthalten ist".

Durch diese Formel wird eine „Multiplikation" im Bereich unserer
Zahlenpaare in eindeutiger Weise festgelegt ; stellt man wieder die Frage
nach der inversen Operation, so muss sie in bejahendem Sinne
beantwortet werden. Es existiert nämlich im allgemeinen ein Zahlenpaar (x, y)
von der Beschaffenheit, dass

(c, d) (x, y) (a, 6),

wenn (a, b) und (c, d) beliebig vorgeschrieben werden:
Aus der Beziehung

(ex — d y. c y + d x) (a, b)

und der Definition der „Gleichheit von Zahlenpaaren" entspringen die

Gleichungen :

ex — d y a

d x + c y 6,

deren Auflösung lautet: x — "J +
rf2 y ~ £ _3p—

Hieraus ersieht man, dass der „Quotient des Zahlenpaares (o, 6) durch
das Zahlenpaar (c, d)" im allgemeinen eindeutig bestimmt ist und nach

folgender Regel gebildet wird:
r K\ / j\ fac + bd — a d-\-bc\(d, 6) : (c, d) { c2 + d2 c2 + d—)

Ich wiederhole, dass diese Definitionen a priori ganz willkürlich sind,

dass man mit gleichem Rechte die Operationen und die Gleichheit anders

definieren könnte.
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Nimmt man aber obige Definitionen an, so sieht man erstens ein

dass ein Zahlenpaar existiert, welches genau dieselbe Rolle spielt, wie

die Null im Gebiete der reellen Zahlen; es ist das Zahlenpaar (0, 0). In
der Tat:

(a, 6) + (0, 0) (a, b),

d. h. durch Addition oder Subtraktion von (0, 0) wird kein Zahlenpaar
geändert ; ferner :

(a, 6) (0, 0) (0, 0),

d. h. multipliziert man irgend ein Zahlenpaar mit (0, 0), so kommt immer
(0, 0) heraus.

Durch diese Eigenschaften wird aber „die Null" im Bereiche der

gewöhnlichen Zahlen charakterisiert. Wir werden uns also nicht mehr
die Mühe geben, jedesmal das ganze Zahlenpaar (0, 0) zu schreiben; zur
Abkürzung werden wir vielmehr schreiben und sprechen: 0 statt (0, 0).

Wir müssen uns aber dabei immer bewusst bleiben, dass dieses Zeichen
0 etwas ganz anderes vorstellt als die Null, welche vor vielen
Jahrhunderten die alten Inder erfunden haben; hier bedeutet es gleichsam
eine stenographische Abkürzung für das Zahlenpaar (0, 0).

Nimmt man die vorigen Definitionen an, so sieht man zweitens
ein, dass ein Zahlenpaar existiert, welches genau dieselbe Rolle spielt
wie „die Eins" im Gebiete der gewöhnlichen Zahlen; es ist das Zahlenpaar

(1, 0). In der Tat ergibt sich:

(ß, 6) (1, 0) (a, 6),

(fl, 6) : (1, 0) (f,'f) («, 6),

und diese zwei Eigenschaften: beim Multiplizieren und beim Dividieren
jede Grösse ungeändert zu lassen, sin I charakteristisch für die Zahl 1,

Wir werden demnach auch in diesem Fall eine bequeme Abkürzung
anwenden und statt „Zahlenpaar (1, 0)" schreiben und sprechen: 1.

Dritte Überlegung: man erkennt, dass diejenigen Zahlenpaare, deren

zweite Komponente Null ist, eine Untergruppe für sich innerhalb
des Bereiches aller dieser Zahlenpaare bilden.

Eine verschwindende zweite Komponente reproduziert sich nämlich
bei den vier rationalen Operationen: zunächst bei Addition und
Subtraktion :

(«, 0) ± (c, 0) (o + c, 0),

ferner bei Multiplikation und Division, wie aus den Formeln

(«, 0) (c, 0) (fl c. 0)
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(a, 0) : (e, 0) (~, o) g, o) hervorgeht.

Wir werden also auch in diesem Falle nicht jedesmal das ganze
Zahlenpaar schreiben, sondern die zweite Komponente, wenn sie Null ist,
ganz unterdrücken und zur Abkürzung schreiben und sprechen: a, statt
„Zahlenpaar (a, 0)".

Daraus schliessen wir nun umgekehrt, dass jede reelle Zahl 6 als

Zahlenpaar aufgefasst werden kann, nämlich als ein solches, dessen

zweite Komponente Null ist:
6 (6, 0).

Diese Erkenntnis gestattet folgende Zerlegung:

(a, 6) a + 6. (0, 1).

Es ist in der Tat nach den früher aufgestellten Definitionen von
Multiplikation und Addition zunächst:

6 (0, 1) (6, 0) (0, 1) (0, 6),

dann":
a + 6 (0, 1) (a, 0) + (0, 6) (a, 6).

Diese Zerlegung weist dem Zahlenpaare (0, 1) eine besonders
interessante Rolle zu. Nun findet man durch Anwendung der Multiplikationsregel

:

(0, 1). (0, 1) (- 1, 0).

Das ist aber ein Zahlenpaar von der besonderen Beschaffenheit, dass

seine zweite Komponente verschwindet; wir können es also nach dem
oben Ausgeführten abkürzend mit (— 1) bezeichnen. Die zuletzt erhaltene

Gleichung geht dann in folgende über:

(0, I)2 - 1,

woraus : Zahlenpaar (0, 1) y— 1.

Es schlug aber schon Gauss für \/—l eine Abkürzung vor, die sich
überall eingebürgert hat, nämlich den Anfangsbuchstaben des Wortes

„imaginär" :

Y—T i.

Somit hat sich ergeben: Zahlenpaar (0, 1) i.
Das Endresultat dieser Überlegungen ist folgender Lehrsatz:
Jedes der hier betrachteten Zahlenpaare (a, b) lässt sich in der Form

(a, b) a + 6 »

darstellen, wobei das Symbol i durch die Gleichung:

i* - 1

definiert ist.
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Mit anderen Worten: die Zahlenpaare, die wir hier untersucht haben,
sind mit den gewöhnlichen komplexen Zahlen, den sogenannten imaginären
Zahlen, identisch. Diese „imaginären Zahlen" sind demnach Gedankendinge,

die nur deswegen den Titel „Zahlen" verdienen, weil mit ihnen nach
den gewöhnlichen Regeln der Algebra gerechnet werden kann ; sie sind aber
weder das Ergebnis des Abzählens, noch das Resultat irgend einer Messung.

Das Gleiche lässt sich von den negativen Zahlen aussagen.
Es ist auch nicht schwierig, die Definitionen von „Gleichheit", von

„Addition" und von „Multiplikation" zweier Zahlenpaare so zu gestalten,
dass durch diese Festsetzungen ein Bereich umgrenzt wird, dessen

Elemente, ihren Eigenschaften nach, sich mit den negativen Zahlen als
identisch erweisen. Man könnte demnach mit gleichem Recht auf die

negativen Zahlen das Eigenschaftswort „imaginär" anwenden, wie auf die
Gauss'schen komplexen Zahlen.

Es ist nun leicht, die Richtung zu übersehen, nach welcher dieser

neue Zahlenbegriff sich entwickelte: es wurde die Anzahl der Komponenten

vermehrt. So schuf man Zahlentripel, indem man drei reelle
Zahlen a, b, c derart miteinander verbunden und verknüpft dachte, dass

sie ein einziges Gedankending bildeten : (a, b, c), und man ging dazu über,
für diese Zahlentripel die Gleichheit, die Addition und die Multiplikation
zu definieren.

Andere Mathematiker nahmen vier Komponenten an und bildeten

Zahlenquadrupel \jA> für welche sie dann die Rechnungsoperationen
definierten. Das bekannteste und wichtigste Beispiel von Zahlenquadrupeln
sind die Quaternionen, welche vom englischen Mathematiker William Rouan

Hamilton (4. August 1805 bis 2. September 1865) entdeckt, zum erstenmal
studiert und auf zahlreiche Probleme der Geometrie, der Physik, der
Mechanik, u. s. w. angewandt wurden. Auf diese Weise schuf der menschliche

Geist die allgemeinen komplexen Zahlen, wohl auch hyperkomplexe Zahlen

genannt, mit beliebig vielen Komponenten. A priori können die

Rechnungsoperationen in diesen Bereichen von hyperkomplexen Zahlen nach

ganz willkürlich festgesetzten Regeln ausgeführt werden. Es stellt sich

aber heraus, dass dann die gewöhnlichen Eigenschaften der arithmetischen

Operationen nicht immer erhalten bleiben.
Bedeuten z. B. a und ß zwei Quaternionen, so ist im allgemeinen

das Produkt a ß vom Produkt ß a verschieden, die Multiplikation also

„nicht kommutativ" ; in anderen Bereichen von hyperkomplexen Zahlen
existieren „Nullteiler", d. h. es kann ein Produkt Null sein, ohne dass

ein einziger Faktor verschwindet; oder es hat „das distributive Gesetz",
welches durch die Formel
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a(6+c) a6 + oc
ausgedrückt wird, keine Gültigkeit ; kurz, bei vielen Systemen von
hyperkomplexen Zahlen wird das Prinzip von der Permanenz der formalen
Gesetze durchbrochen. Es würde aber viel zu weit führen, auf diese

teilweise noch ungelösten Fragen einzugehen; deswegen soll hier nur ihre
Existenz angedeutet werden.

Das letzte Stadium der Entwicklung besteht darin, unendlich viele

Komponenten anzunehmen; dadurch gelangt man zu den transfiniten
oder überendlichen Zahlen.

Man betrachte die sämtlichen überhaupt existierenden ganzen Zahlen

in ihrer natürlichen Reihenfolge: 1, 2, 3, 4, in infinitum, und denke

sich dieselben derart miteinander verbunden und verknüpft, dass sie nur
noch ein grosses Gedankending bilden, was wieder durch Einklammerung
angedeutet werden mag:

(1, 2, 3, 4, in infinitum

Dieses aus unendlich vielen Elementen bestehende ungeheure Objekt
mathematischen Denkens heisst, nach Hrn. G. Cantor, die erste transfinite
Zahl und wird mit a> bezeichnet.

Man bekommt ein Beispiel von der Begrenztheit menschlicher

Einbildungskraft, wenn man es versucht, sich diese transfinite Zahl <a

vorzustellen, etwa mit gewöhnlichen Ziffern gedruckt: das ganze Weltall
bis über die weitesten Fernen hinaus müsste von aneinander- und überein

andergereihten Ziffern erfüllt sein, und wenn jemand, um alle Komponenten

zu überblicken, sie an seinem geistigen Auge vorbeiziehen lassen

wollte, wenn auch mit denkbar grösster Geschwindigkeit, so würde er

dazu unendlich lange Zeit brauchen. — Es ist Hrn. Cantor gelungen,
unendlich viele solcher transfiniten Zahlen zu definieren und aus diesem

eigentümlichen Zahlenmaterial eine vollständige Arithmetik aufzubauen,
die allerdings ganz wesentlich von der gewöhnlichen abweicht.

Es leuchtet ein, dass auch diese Entwicklungsrichtung auf den

Begriff des Unendlichen und damit auf das Gebiet der Philosophie hinüberführt.

Überhaupt nimmt die Mathematik in gewissem Sinn eine zentrale

Stellung ein; denn sie grenzt einerseits an Philosophie und Logik, ci. li.
an die abstraktesten spekulativen Wissenschaften, während sie andererseits

durch ihre zahllosen Anwendungen aufs engste mit der Praxis
zusammenhängt. Ohne das Hülfsmittel einer gut ausgebildeten und in die

Tiefe dringenden theoretischen Mathematik hätte es die Technik wohl
nicht zu den grossen Errungenschaften gebracht, die wir heute mit Recht
bewundern.

Schweiz. Pädagog. Zeitschrift. 1909. 23
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