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Aus der Geschichie des Zahlenbegriffes.

Von Dr L. Gustav Du Pasquier,
Privatdozent am eidgendssischen Polytechnikum in Zarich.*)

Die Uberzeugung, dass die ganze Natur eine fortlaufende und stetige
Entwicklung durchmacht, hat sich in neuerer Zeit immer mehr ausgebreitet.
Die Naturwissenschaften haben ihr kriftige Stiitzpunkte verliehen; auf
dem Gebiete der Sprachforschung behauptet sie seit] langem das Feld,
und man koénnte sich dariiber wundern, dass die moderne Evolutions-
theorie nicht schon lingst von Sprachforschern aufgestellf wurde; denn
jede neue Errungenschaft der Linguistik bestiitigt sie.

Diesem Naturgesetze stetiger Umwandlung sind auch unsere abstrakten
Begriffe unterworfen, nicht nur ihre lautlichen Ausdriicke: die Worter.
Manchmal &ndert sich bloss die &dussere Gestalt des Wortes, wihrend
seine Bedeutung erhalten bleibt; als Beispiel hierfiir sei das Wort ,drei“
erwahnt; es hat in den indogermanischen Sprachen die verschiedensten
‘Wandlungen durchgemacht, aber der Sinn des Wortes ist dabei immer
derselbe geblieben. Indessen unterliegt gewohnlich auch die Bedeutung
eines Wortes fortlaufender Veridnderung. Ein bekanntes Beispiel liefert
das jetzt internationale Wort ,Bureau“. Urspriinglich bedeutete ja dieses

*) Antrittsvorlesung, gehalten am 30. Januar 1909. Als Quellen sind haupt-
siichlich folgende Werke zu nennen:

Pott, ,Die quinédre und vigesimale Zihlmethode bei Vilkern aller Weltteile“.
Halle, 1847.

Pott, ,Die Sprachverschiedenheit in Europa an den Zahlwortern nachge-
wiesen“, Halle, 1868.

Moritz Cantor, ,Vorlesungen iiber Geschichte der Mathematik®. 4 Binde.
Leipzig, 1894—1908.

Alexander von Humboldt, in Crelle’s ,Journal fir reine und angewandte
Mathematik“. Bd.IV, 1829, S.205: ,Uber die bei verschiedenen Vilkern iiblichen
Systeme von Zahlzeichen und iber den Ursprung des Stellenwertes in den
indischen Zahlen“.

Schweiz. Pidagog. Zeitschrift. 1909. 22
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Wort eine Sorte groben Tuches, eine besondere Art starker Leinwand.
Spiiter, als die Geldwechsler die Gewohnheit nahmen, ihren Tisch mit
einem Teppich aus Bureau zu iberziehen, verstand man unter diesem
Worte den Tisch selbst, auf welchem Geld gewechselt und gerechnet
wurde; noch spiiter das Zimmer, in welchem sich ein solcher Schreibtisch
befand; schliesslich sogar die Personen, die sich im betreffenden Lokale
regelmissic versammeln oder miteinander zu ,verhandeln haben. Das
,Bureau einer Versammlung®, das ,Bureau einer Gesellschaft® ist der
Inbegriff der Personen, welche mit der Leitung der Geschifte speziell
betraut sind.

Ganz &dhnlich ist es mit dem Begriffe ,Zahl“ gegangen; im Laufe
der Zeit hat man auch unter dem Worte ,Zahl“ Dinge verstanden, die
auf den ersten Blick recht wenig miteinander zu tun haben.

Der urspriingliche Sinn des Wortes Zahl ist ,Anzahl“; anfiinglich
nannte man ,Zahl“ nur das Resultat des Zahlens. Es ist das erste Stadium
in der Geschichte des Zahlenbegriffes.

Die Operation des Zihlens lisst sich vom psychologischen Standpunkt
aus in mehrere Teile zergliedern; als wesentlich miissen zwei Eigen-
schaften bezeichnet werden, nidmlich die Genauigkeit und die Abstraktion.
Das Wichtigste und Schwierigste beim Zihlen ist das Abstrahieren, das
Absehen von allen individuellen Eigentiimlichkeiten der zu zihlenden
Objekte; ein Beispiel moége dies beweisen; es ist dem Bericht eines
Forschungsreisenden namens Lichtenstein entnommen; er erzahlt unter
anderem vom Negerstamme der Koossas in Sudafrika folgende Tatsache:
ein reicher Koossaneger besass ungefihr vierhundert Stiick Hornvieh. Wenn
nun die Herde abends von der Weide zuriickkehrte, liess er sie im Génse-
marsch an sich voriiberziehen; er wusste dann ganz genau, ob alle vier-
hundert Tiere da waren oder nicht; ja noch mehr: wenn eines der Tiere
fehlte, so konnte er ganz genau sagen, welches er vermisste. Dieser
sorgsame Landwirt hatte in seinem Gedichtnis das Bild jedes einzelnen
Tieres aufbewahrt, mit allen individuellen Eigentiamlichkeiten, die ihm
anhafteten. Wir werden hier nicht mit Recht sagen dirfen, der Eigen-
tumer habe seine Tiere ,gezidhlt“, denn die geistige Arbeit des Abstra-
hierens hat er dabei nicht geleistet; in gewissem Sinne hat er sogar ge-
rade das Gegenteil dessen getan, was beim Zihlen geschieht. Die Auf-
merksamkeit ist beim Zihlen eben gar nicht auf die individuellen Eigen-
tumlichkeiten der zu zdhlenden Objekte gerichtet; von ihnen muss man
vielmehr giénzlich absehen. Dieses Abstrahieren bedeutet eine grosse
geistige Anstrengung; uns Erwachsenen kommt sie zwar nicht mehr klar
zum Bewusstsein, weil wir so sehr daran gewohnt sind; aber an kleinen
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Kindern bekommt man sie noch deutlich zu spiren, wenn man ihnen
das Zihlen beibringen will; ebenso bei unkultivierten Volkern: so erziihlt
Mungo Park von einem gewissen Stamme Wilder, dass die betreffenden
Eingeborenen immer nur bis zwei zdhlten, und wenn man sie zwingen
wollte, grissere Zahlen mit Genauigkeit anzugeben, so brachen sie in
Triinen aus, wegen der geistigen Uberanstrengung.

Man kann demnach das Zihlen folgendermassen definieren: Dinge
zihlen heisst: diese Dinge als gleichartig ansehen wund ihnen einzeln andere
gleichartige Dinge zuordnen. Diese Definition moge durch folgendes Beispiel
verdeutlicht werden: man denke sich vor einem Klassenzimmer Haken
angebracht, an welchen die Schiiler ihre Miitzen aufzuhingen haben, und
zwar sei genau fir jeden Schiller ein Haken vorhanden. Wenn nun ein
Lehrer dieses weiss und vor Eintritt in die Klasse mit einem Blicke
iibersieht, dass an jedem Haken eine Miitze hingt, so hat er, nach der
vorigen Definition, ,die Schiiller gezidhlt“; denn er hat im Geiste die
Schiiler als gleichartig angesehen und sie einzeln den Haken zugeordnet.
Auch wenn er die Anzahl der Schuler nicht durch ein Zahlwort zu be-
zeichnen vermag, so wird man doch, vom psychologischen Standpunkt
aus, sein Urteilen ein ,Zdhlen“ nennen kdonnen. Freilich ist ein solches
Zihlen, ohne Zahlworter und ohne Zahlzeichen, ein sehr unzivilisiertes
und hochst primitives; aber es ist das Kindheitsstadium des Zéhlens.

Am néchsten liegt es dem Menschen, den zu zéhlenden Dingen seine
zehn Finger zuzuordnen, und falls die betreffenden Menschen keine Stiefel
tragen, also barfuss gehen oder doch nur Sandalen benutzen, auch noch
die zehn Zehen. Bei vielen Volkern sind noch heute die Finger ein ganz
unentbehrliches Hilfsmittel zam Zihlen. Mehrere Forschungsreisende be-
statigen z. B. die Tatsache, dass die Zulukaffern noch jetzt nur mit
Hilfe der Finger ziihlen; fir jeden Gegenstand, der gezidhlt werden soll,
heben sie einen Finger in die Hohe und beobachten dabei eine feste
Reihenfolge. Jedesmal, wenn zehn durchgezihlt sind, klatschen sie einmal
laut in die Hinde. — Ein Mossutoneger kann auch niemals anders als
mit Hilfe der Finger zihlen.*) Will er aber eine grossere Zahl aus-
dricken, so klatscht er nicht in die Hinde, wie ein Zulukaffer es tut,
sondern holt sich einen Hulfsmann, welcher durch Aufheben der Finger,
die Zehner anzudeuten hat. So oft zehn durchgezihlt sind, streckt dieser
Kamerad einen Finger in die Hoéhe, und der erste fingt von neuem an.
Bei Zahlen tber hundert wird sogar noch ein dritter Mann zum Andeuten
der Hunderter angestellt.

*) v.Schrumpf, ,Zeitschrift der deutschen morgenldndischen Gesellschaft“
XVI, S. 463.
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Zu solchem Zihlen sind weder Zahlworter noch Zahlzeichen not-
wendig; es bildet die allererste Phase der Entwicklung.

Auf diesem Kulturzustande ist jedoch die Menschheit glicklicher-
weise nicht iiberall stehen geblieben. Als der menschliche Geist seinen
Ausdruck in der Sprache fand, wurden auch die Zahlennamen ge-
schaffen. Hier beginnt eine zweite Phase in der Geschichte des Zahlen-
begriffes: die Bildung der Namen fur ganze Zahlen und die Darstellung
der Zahlen durch die Schrift.

Es lag zuerst nahe, die Zahlen gerade so zu benennen wie gewisse
konkrete Dinge, welche jedem geldufig waren und iiberdies die Vorstellung
einer bestimmten Anzahl erweckten, wie etwa ,Fligel® und ,zwei“. In
vielen Sprachen finden sich solche bildlichen Bezeichnungen. Der Gelehrte
Alexander von Humboldt, der Linguist Pott, u. a., fiilhren Sprachen an,
in welchen ,Hand“ oder ,Faust® durch dasselbe Wort wie funf* aus-
gedriicckt wird. Von zahlreichen weiteren Beispielen sei eines aus dem
y,dunkeln Weltteile“ zitiert: in einer afrikanischen Mundart heisst die Zahl
zwanzig ,mobande“. Die wortliche Ubersetzung ergibt: ,mo“ — Mensch;
ybande* ist Participium des Zeitwortes ,ban“ — beendigen, also: ,mo-
bande“ — _ein Mensch beendigt“; wenn man némlich alle zehn Finger
und alle zehn Zehen durchgezdhlt hatte, war man zur Anzahl zwanzig
gelangt und hatte zugleich ,einen Menschen beendigt, d. h. ,fertig
gezihlt“.

Auch dieses Bild wird in vielen Sprachen angewandt. Die alten
Inder, wenigstens ihre bekannten mathematischen Schriftsteller, haben
dieses Prinzip der Zahlwortbildung sogar systematisch durchgefiihrt, so
z. B. Bhdskara icdrya, d. h. ,Bhaskara der Gelehrte“, geb. 1114 n. Chr.,
in einem Werke, das er Lildvati, d. i. ,die Reizende“, betitelt hat. Als
Beleg sei folgendes angegeben :

siirya bedeutet zugleich ,Sonne* und ,zwolf“, weil in der indischen
Mythologie der Sonne zwilf Wohnungen zugeschrieben wurden, ent-
sprechend den zwdlf Bildern des Tierkreises; abdhi hat gleichzeitig die
Bedeutungen ,0zean“ und ,vier“, da es in der indischen Mythologie vier
Ozeane gab. Das Wort abdhisiryae bedeutet demnach 124, nimlich vier
Einer und zwolf Zehner, wihrend die Wortverbindung sirydbdhi die
Zahl 412 vorstellt, ndmlich zwolf Einer und vier Hunderter. Die Beispiele
liessen sich beliebig vermehren. Fiir jede der kleineren Zahlen stand eine
grosse Anzahl von Namen zur Verfiigung, und so konnte ein und die-
selbe Zahl auf die mannigfaltigste Art bezeichnet werden, was den Vers-
dichtern eine grosse Erleichterung verschaffte. Bekanntlich liebten es die
alten Inder sehr, mathematische Regeln und Aufgaben in Verse zu kleiden.
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Dieser erste Stand der Zahlwortbildung musste bei fortschreitender
Kultur bald iberwunden werden. Wollten namlich die Menschen fur
jede neue Zahl auch einen neuen Namen haben, so waren sie gezwungen,
so viele Namen zu erfinden, als sie Zahlen gebrauchten. Dies hitte allzu
grosse Anforderungen an das menschliche Gedichtnis gestellt. Einer
solchen Gedichtnisiiberbiirdung konnte am einfachsten dadurch begegnet
werden, dass man bei einer gewissen Zahl einen Ruhepunkt machte und
die folgenden Zahlennamen durch Zusammensetzung bildete.

Die gewohnte Art der Abzihlung an den Fingern wies den Weg,
den man zu gehen hatte. Zundchst war jede Zahl mit einem besonderen
Namen zu bezeichnen bis hinauf zu jener ersten Ruhepunktszahl; wir
wollen diese mit & bezeichnen, um an das Wort Basis zu erinnern. Die
hierauf folgenden Zahlen bekamen Namen, welche nach folgendem Schema
gebildet wurden:

b+1, 042 06+43,....

Es war also nicht nétig, neus Zahlennamen aufzustellen, sondern
man wandte die fiir die Einer geschaffenen Namen von neuem an. —
Einen zweiten Ruhepunkt machte man bei 42, einen dritten bei 53, einen
vierten bei b4, u.s.w.

So kam man dazu, die Namen der Zahlen nach folgendem Schema
zusammenzusetzen :

ag+a,.b4ay.024a5.034....Fax.bE4....
mit der Bedingung: o <ayx <{b fir jeden Index &.

Man brauchte also nur fiir folgende Zahlen selbstindige und primi-
tive Namen aufzustellen:

1. fir die Einer: 0, 1, 2, 3,.... b—1;

2, fir die Stufenzahlen: b, b2 b8, b4, . ...

Die Grenze, bis zu welcher man Namen fur die Stufenzahlen bildete,
richtete sich nach den Bediirfnissen des praktischen Lebens; bis ins
Mittelalter kannte man in Europa keinen hoheren Stufenzahlennamen als
ytausend“, abgesehen vom griechischen wigroc = 10000. Die Worter
,Million“, ,Milliarde“, ,Billion“, ,Trillion“, u.s. w., sind erst im 16. Jahr-
hundert oder noch spiter entstanden.

Ein einziges Volk der ganzen Erde hat hiervon eine Ausnahme ge-
macht und schon in den dltesten Zeiten eine sehr lange Reihe von Stufen-
zahlennamen ausgebildet: die alten Inder, welche bekanntlich, was Zahlen
und Rechnen anbetrifft, die Lehrmeister der zivilisierten Menschheit ge-
worden sind. Die alten Buddhisten haben sogar ganze Biicher dariiber
geschrieben, wie man, durch Kombination verschiedener Silben, Namen
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fur Stufenzahlen von immer hdéherer Ordnung bilden kann. Sie trieben

. 9128
diese Namengebung bis zu einer Zahl, die wir als 10"°%" definieren

wiirden. *) Wollte man diese Zahl drucken, so wiirden ihre aneinander
gereihten Nullen eine solche Liinge erfordern, dass die Entfernung der
Erde von der Sonne hierzu bei weitem nicht ausreichte, selbst unter
Anwendung der kleinsten Druckschrift, die es gibt; man musste vielmehr
iiber eine Strecke verfiigen, welche der Entfernung der Erde bis zu einem
Sterne gleichkommt, dessen Licht 1000 Billionen Jahre braucht, um zu
uns zu gelangen; dabei ist in Rechnung gezogen, dass das Licht in jeder
Sekunde 300000 Kilometer zuriicklegt, und diese ganz ungeheure Strecke
wiire erst ein Millionstel von der wirklichen Linge obiger Zahl.|

Die verbreitetste aller Basiszahlen ist 10, und fiir diese Tatsache,
dass gerade die Zahl 10 als erste Ruhepunktszahl auftritt, gibt es gar
keinen anderen Grund als den, dass wir Menschen zehn Finger haben.
— In vielen Sprachen ist funf die Basiszahl, in einigen anderen ist es
zwanzig. So befolgten die altkultivierten Azteken, die Ureinwohner vor
Mexiko, ein vigesimales Zahlensystem. Ebenso herrschte in der keltischen
Sprache die Grundzahl zwanzig, und ein Uberbleibsel davon ist die noch
heutzutage ubliche vigesimale Zdhlung im Franzosischen zwischen 60 und
100, ferner im Dinischen zwischen 40 und 100.

Wiren die Zahlwirter nichtivon Menschen im Kindesalter der Kultur,
sondern von Gelehrten am Schreibtisch erfunden und gebildet worden,
so hitten diese gewiss nicht die Zahl zehn, sondern vier oder sechs als
Basis gewihlt.

Was nun den schriftlichen Ausdruck der Zahlen anbelangt,
dessen Entwicklung wir jetzt in aller Kiirze andeuten wollen, so lassen
sich dabei mehrere Prinzipien unterscheiden. Auf unsystematische Be-
zeichnungen, wozu auch die Darstellung der Zahlen durch die Buch-
staben des Alphabetes zu rechnen ist, soll hier gar nicht weiter einge-
gangen werden.

Das erste, eine strenge Gesetzmissigkeit ausdriickende Prinzip ist das-
sogenannte additive Prinzip.

Die romischen Ziffern sind ein Beispiel seiner Anwendung. Es liegt
auf der Hand, jeden der zu z#éhlenden Gegenstinde durch einen ein-
fachen Strich zu ersetzen. So sind die natiirlichen Zahlzeichen entstanden:.

EOL NG

nicht nur bei den Romern, sondern noch bei sehr vielen anderen Volkern.

*) v. Schiefner, Bulletin de I’Académie des Sciences de St-Pétersbourg,
t. V, p. 299.
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Solche ,natiirliche Zahlzeichen“ wurden auch von den Azteken angewandt;
doch wird bei ihnen jedem Gegenstand ein Kreis zugeordnet, wenigstens
von 1 bis 20. Die Zahl 16 z. B. wird durch 16 nebeneinander gezeichnete
Kreise dargestellt. In den mexikanischen Hieroglyphen sind diese farbig
ausgefithrt und wahrscheinlich Bilder der grossen runden Korner, mit
welchen jenes Volk ziihlte und rechnete. Zur konsequenten Anwendung
des additiven Prinzips missen noch Zeichen fiir die Stufenzahlen vor-
handen sein. So wird, bei der vigesimalen Zdhlmethode der Azteken, 20
durch eine kleine Fahne dargestellt, ferner 202 =400 durch eine Feder,
208 = 8000 durch einen vollen Beutel. Als Beispiel diene die Zahl 9876:

1 Beutel zur Bezeichnung von 8000
4 Federn % , 4.400=1600
13 Féahnlein |, = S8 200 — 260
16 Kreise 52 = 16
34 Zeichen " 2 9876

Man ersieht auch hieraus, dass das additive Prinzip schon bei nicht
sehr hohen Zahlen auf lange und deswegen unbequeme Ausdriicke fithrt,
und es nimmt Zeit, bis man sich gleichsam durch die Zahl hindurch-
addiert hat.

Dem additiven Prinzipe gegenuber steht das sogenannte multiplikative
Prinzip. Dieses ist unter anderem von den Chinesen in ihrer Ziffer-
schrift konsequent durchgefuhrt. Will man die Zahlen nach dem multi-
plikativen Prinzip darstellen, so braucht man ein besonderes Zeichen fur
jeden Einer

28 e ]
und ein besonderes Zeichen fiir jede Stufenzahl
;b3 08,7 b& i

Um dieses Prinzip durch ein Beispiel zu illustrieren und dabei doch
nicht die komplizierten chinesischen Zeichen anzuwenden, will ich die
uns geldufigen romischen Zeichen fir die Stufenzahlen benutzen:

10=X, 100=0C, 1000=M, 10000=(([)), u.s. w.

Unter dieser Annahme erhilt man
fir 1889 den Ausdruck 1M8C8X9

1080 & % 1M8X
= 100087 . 1¢()8
S e 3 1CaxX

Die chinesische Schrift weist 14 Zeichen fur die 14 ersten aufeinander-
folgenden Stufenzahlen auf.
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Erst in dieser Methode war im schriftlichen Systeme derselbe
Grad der Vollkommenheit erreicht, auf dem man sich im gesprochenen
Zahlensysteme schon lingst befand.

Eine dritte Methode zur Darstellang der Zahlen liefert das Marken-
prinzip, von H. Hankel auch elevatorisches Prinzip genannt. .Hiernach
braucht man nur Zeichen fiir die Einer; die Stufenzahlen werden durch
Marken, etwa durch Punkte oder Kreise, angedeutet:

0

1889 wird ausgedriickt durch 1889 0der 18809
I.l o
1008 : g 478
s 0% o
1080 5 iR =18
- 0 0
180 = ? S8 SESUE

Eine vierte Darstellungsweise, welche im fritheren Mittelalter in ganz
Europa angewandt wurde, konnte als Kolonnenprinzip bezeichnet werden.
Bei Anwendung dieses Prinzipes konnen die Zahlen nicht frei geschrieben
werden, sondern nur auf eine Tafel, die eine Reihe von Kolonnen ent-
hilt, welche nach ihrer Folge die Stufenzahlen I, X, C, M, ((])),..... als
Uberschrift tragen:

Gp) M C [ X I

9876 9 i) 6
1080 1 ’ 8

10008 | 1 | 8
180 AT

Es ist ein weiterer Schritt in der Verbesserung, in der Kiirzung der
multiplikativen Zifferschrift: man lisst nimlich auch alle Marken, iiber-
haupt alle Zeichen fiir die Stufenzahlen, weg; freilich ergibt sich dadurch
ein grosser Nachteil: es sind besonders eingerichtete Rechenbretter not-
wendig. Schon die Griechen und Rémer haben solche gebraucht und
ihnen den Namen &Bag, bezw. abacus, gegeben.

Das letzte Prinzip, das ich hier erwiihne, ist das Positionsprinzip
oder Prinzip des Stellenwertes, nach welchem heute alle zivilisierten
Nationen ihre Zahlen schreiben.

Wie ist man wohl zu diesem Prinzipe gekommen? Fiir jemanden,
der das ,Markenprinzip“ und das ,Kolonnenprinzip“ kennt, scheint die
Antwort dusserst einfach. Man braucht ja nur ein Fiillzeichen, ein Zeichen
fir Nichts! Dann kann man, auch bei Fortlassung aller Stufenzahlen-
zeichen und aller Marken, Zahlen wie 1008, 180, 18, ohne weiteres von-
einander unterscheiden. — Aber die grissten Denker und Rechner des
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Altertums haben diesen Gedanken nicht gehabt; er muss also doch nicht
so natiirlich und naheliegend sein, wie er uns heutzutage erscheint. Es
kommt uns recht merkwiirdig vor, dass ein Genie wie Archimedes, der
grosste Mathematiker des ganzen Altertums, der die kompliziertesten
Berechnungen mit einem kolossalen Aufwand an Muhe und Zeit durch-
fuhrte, der die Schwerfilligkeit seiner Zifferschrift sicherlich gefuhlt hat,
nicht eine vollkommenere schuf. Wie sollte aber auch ein Romer oder ein
Grieche, der immer nur die Wirklichkeit der Welt ins Auge fasste, auf
den Gedanken verfallen, dass man fir etwas, das gar nicht da ist, ein
Zeichen, also etwas Wirkliches setzen konne? Kein anderes Volk als das
der Inder war dazu priidestiniert, die Null zu erfinden; sie liebten es
ungemein, sich mit phantastisch grossen Zahlen zu beschiftigen; sind es
doch auch die alten Inder, welche das Nirvina, d. h. das Leere, das
Zerfliessen in Nichts, als hochstes und letztes Ziel des Daseins hinstellten.
y,Die Inder“, so drickt sich ein Schriftsteller geistreich aus, ,haben in
dem Nichts ein brauchbares Etwas gesehen und durch das Nichts die
Vollendung des Etwas bewirkt“. Dieses Nichts, die Null, nannten die
Araber sifar, d. h. wortlich ,das Leere“; aus dieser Wurzel stammt
unser Wort ,Ziffer*; es bedeutete also urspriinglich nur die Null, wie
noch heute im Englischen.

Durch welche Zwischenstufen hindurch sich nun aus den ilteren
Ziffersystemen, in denen manchmal mehrere Prinzipien in ganz inkonse-
quenter Weise gleichzeitiz angewandt wurden, das Positionsprinzip in
seiner jetzigen Klarheit entwickelt hat, ist noch nicht ganz sichergestellt.
Dass aber die Erfindung der Null und des Ziffersystems mit Stellenwert
.den Indern zufillt, steht ausser allem Zweifel. Nur sind es die Araber
gewesen, welche diesen Schatz aus dem sagenhaften Indien geholt und
ihn dem Abendland iibermittelt haben. Dadurch wird die noch oft ge-
brauchte Bezeichnung ,arabisches System“ erklirt — und in gewissem
Sinn auch gerechtfertigt. Die Erfindung des Positionssystems bildet einen
Abschluss in der theoretischen Vervollkommnung der Zifferschrift; denn
-es ist das Ideal erreicht: mit Hillfe von zehn einfachen Zeichen jede noch
so grosse Zahl in kiirzester und klarster Weise zu bezeichnen. Hierzu ge-
niigen sogar zwei Zeichen, die Null und die Eins, wenn man die Basis &
gleich 2 wiihlt (bindires oder dyadisches Zahlensystem).

Die Bedeutung des Begriffes ,Zahl“ erfuhr schon im grauen Alter-
tum eine wesentliche Erweiterung. Unter ,Zahl® verstand man nicht
mehr allein das Resultat einer Zahlung, sondern auch jedes Resultat des
Messens. Dies erdffnet eine dritte Phase in der Entwicklung des Zahlen-
begriffes. Bei der Operation des Messens findet nimlich das Abzihlen
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eine sehr héufige und wichtige Anwendung, gilt es doch, zu bestimmen,
wie oft eine gewilhlte Einheit in der zu messenden Grosse enthalten sei.
Die Bediirfnisse einer sich immer mehr ausbreitenden Kultur veranlassten
nun zum Messen, zwangen auch zum Teilen. Dabei kamen nicht immer
ganze Zahlen heraus; so fassten denn die Menschen allmilig den Begriff
der ,gebrochenen Zahl“ und fihrten die Zahlenbriiche ein.

Bekanntlich hat Pythagoras die Zahl zum Prinzipe der Dinge gemacht,
indem er sagte: ,Die Dinge sind Zahlen“. Es ist schwierig, eine zu der
Mathematik der Pythagorier passende Bedeutung in den Wortlaut dieses.
Ausdruckes hineinzulegen. Diese Worte kénnen kaum etwas anderes be-
deuten als dass alle Dinge sich durch Zahlen bestimmen lassen. Da hierbei
nicht wohl von etwas anderem die Rede sein kann als von der Grosse
der Dinge, so wird gesagt, dass es moglich sei, die Grosse der Dinge
durch Zahlen auszudricken und zwar durch ganze oder durch gebrochene
Zahlen, weil keine anderen bekannt waren. — Nun entdeckte man aber
schon im Altertum, dass dem nicht so ist. Man fand z. B. heraus, dass
die Linge der Diagonale eines Quadrates, dessen Seiten siimtlich gleich
der Lingeneinheit sind, durch keine derartige Zahl ausgedriickt werden
kann, weder durch eine ganze, noch durch eine gebrochene.

Dies fithrte im Laufe der Zeit dazu, die Bedeutung des Wortes ,Zahl“
abermals zu erweitern: man schuf die sogenannten irrationalen Zallen.
Die spitere Entwicklung hat gezeigt, dass dieselben in zwei grosse
Kategorien zerfallen: einerseits die algebraischen Irrationalititen, anderer-
seits die transzendenten Zahlen.

Dem franzosischen Mathematiker Joseph Liouville (24. Miirz 1809 bis
8. September 1882) gebiihrt das Verdienst, die Existenz dieses sehr tief
liegenden und prinzipiell wichtigen Unterschiedes zum erstenmal bewiesen
zu haben. Einen Anstoss hierzu gab wohl die Frage nach der ,Quadratur
des Zirkels“, die Zahl # = 3,1415926 . . ., welche angibt, wie oft ein Kreis-
durchesser in der zugehorigen Kreisperipherie enthalten ist (vgl. F. Rudio:
,Das Problem von der Quadratur des Zirkels“). Die Uberzeugung, es sei
diese Zahl z iberhaupt nicht Wurzel einer algebraischen Gleichung mit.
rationalen Koéffizienten, hatte sich bei den Mathematikern allmilig ge-
bildet. Schon Leonhard Euler (1707 bis 1783) und Legendre (1752
bis 1833) hatten diese Vermutung ausgesprochen; Lambert (geboren 1728
zu Miilhausen, gestorben 1777 als Oberbaurat in Berlin) hatte sie geradezu
zu einem Satze formuliert und zum Beweise desselben aufgefordert. Aber
man hatte doch bis 1844 gar keinen positiven Anhaltspunkt dafir, dass
es iiberhaupt Zahlen gebe, welche nicht Wurzeln irgendeiner algebraischen
Gleichung mit rationalen Koéffizienten sein konnen. Liouville war der
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erste, der hierfiir einen strengen Beweis lieferte®), indem er Zahlen von
einfachem Bildungsgesetze herstellte, von denen sich nachweisen liess,
dass sie keiner algebraischen Gleichung mit rationalen Koéffizienten ge-
nigen. Als solches Beispiel fiihrt er unter anderem an:

x:Il-}-l—ll_; -|-.”Lllg+. +m__1+....

Bedeuten hierin 4, /;, I, ... ganze Zahlen, und wiichst I hinreichend
rasch mit dem Index m, so lisst sich zeigen, dass z nicht Wurzel irgend
einer algebraischen Gleichung mit rationalen Koéffizienten sein kann. —
Seit dieser wichtigen Liouvilleschen Entdeckung ist man berechtigt, alle
Zahlen in algebraische und transzendente einzuteilen, wihrend
man frither nur von rationalen und irrationalen Zahlen sprechen konnte.
Unter einer algebraischen Zahl versteht man jetzt jede Zahl z, welche
‘Wurzel einer algebraischen Gleichung ist, d. h. einer Gleichung von der
Form: :

" et pan 2. . =0
in welcher die Koéffizienten ¢;, ¢g,.... en siimtlich rationale Zahlen
sind, wihrend der hochste Koéffizient immer gleich 1 vorausgesetzt wird.
Sind iiberdies diese Koéffizienten séimtlich [ganze Zahlen, so heisst z
eine ganze algebraische Zahl. Unter einer transzendenten Zahl
versteht man jede nicht algebraische Zahl.

Es wiirde hier zu weit fuhren, diese Entwicklungsrichtung néher zu
verfolgen; denn sie leitet zu Betrachtungen uber den Unendlichkeits-
begriff und dadurch auf das Gebiet der Philosophie hiniiber.

Alle bisher angegebenen Bedeutungen des Wortes ,Zahl“ werden
unter dem gemeinschaftlichen Namen reelle Zahlen zusammengefasst. Man
gelangte also zu! diesem allgemeinen Begriffe dadurch, dass man unter
einer Zahl nicht allein das Resultat des Abzihlens, sondern uberhaupt
das Ergebnis einer Messung verstand.

Eine vierte Erweiterung hat der Zahlenbegriff durch die moderne
Mathematik erfahren; man kann sie durch folgende Definition charakte-
risieren : Unter einer Zahl ist jedes Objekt menschlichen Denkens zu versiehen,
mit welchem man rechnen kann. Durch die Theorie der Gleichungen wurden
die Mathematiker zu dieser Erweiterung veranlasst. Diese Auffassung hat
zu den mnegativen und zu den allgemeinen komplexen Zahlen gefihrt. Sie
hat ferner Ernst Eduard Kummer (geboren 29. Januar 1810 in Sorau,
gestorben 14. Mai 1893 in Berlin) die Idee zur Schopfung der idealen
Zahlen eingeflosst; sie hat schliesslich Hrn. Georg Cantor den Ge-
danken zur Bildung der transfiniten oder iiberendlichen Zahlen gegeben.

*) Liouvilles Journal, Bd. XVI (1851).
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An einem Beispiele mochte ich zeigen, welcher Weg dabei eingeschlagen
werden kann.

Wir betrachten zwei beliebige reelle Zahlen ¢ und # und denken
uns dieselben in irgend einer Weise miteinander verbunden, ich mdchte
fast sagen: zusammengeheftet oder zusammengeschmiedet, so dass sie nur
noch ein Ganzes bilden. Dieses neue Gedankending heisst ein Zahlenpaar,
die Zahlen @ und b Komponenten des Zahlenpaares; sie konnen einander
gleich oder voneinander verschieden sein. Es ist offensichtlich méglich,
unendlich viele solcher Zahlenpaare zu bilden. Diese betrachten wir nun
als Objekte unseres mathematischen Denkens. Wenn wir uns dann die
Aufgabe stellen, mit solchen Zahlenpaaren zu rechnen, so behandeln wir
diese Gedankendinge gerade so, als ob es Zahlen wéren, obgleich sie in
Wirklichkeit etwas viel komplizierteres sind. Folgendes Bild ist geeignet,
den Unterschied zu veranschaulichen: man betrachte zwei metallische
Stibchen als Darstellung der zwei Komponenten und denke sich dieselben
an dem einen ihrer Endpunkte gelenkartig miteinander verbunden; es
entsteht dadurch ein Ding, das einem kleinen Zirkel dhnlich sieht, und
dieser ist dann eine Versinnlichung des Zahlenpaares. Gerade so wie nun
ein Wesensunterschied besteht zwischen dem Zirkel als Ganzem und den
beiden metallischen Stibchen, bevor sie in dieser eigentiimlichen Weise
miteinander verbunden waren, so herrscht auch ein prinzipieller Unter-
schied zwischen dem Zahlenpaar einerseits, den beiden getrennt gedachten
Komponenten andererseits. Es tritt eben noch die charakteristische Ver-
kniipfung zu einem Ganzen hinzu; diese soll im Folgenden stets durch
Einklammerung der Komponenten angedeutet werden: (a, ) wird ge-
sprochen: ,Zahlenpaar a, b“.

Rechnen heisst bekanntlich, aus zwei gegebenen Grissen nach be-
stimmten Gesetzen eine dritte ableiten. Wir stellen uns also jetzt die
Aufgabe, aus zwei Zahlenpaaren (a, b) und (e, d), nach festgesetzten oder
noch festzusetzenden Regeln, ein drittes Zahlenpaar abzuleiten. Zu diesem
Behufe miissen wir angeben, was unter der ,Gleichheit zweier Zahlen-
paare®, was unter ihrer ,Summe“, was unter ihrem ,Produkt“ verstanden
werden soll; zunichst die Definition ihrer ,Gleichheit®:

Zwei Zahlenpaare mogen stets und nur dann einander gleich heissen,
wenn ihre entsprechenden Komponenten iibereinstimmen.

In Zeichen: (a, b)) = (¢, d), wenn gleichzeitigz a = ¢, b = d.

Eine Gleichung zwischen solchen Zahlenpaaren zieht demnach zwei
Gleichungen zwischen reellen Zahlen nach sich.

‘Wir lassen die Erklidrung der Summie zweier Zahlenpaare folgen; diese
muss wieder ein Zahlenpaar sein. Es gelte die ganz willkiirliche Festsetzung :



341

»Zahlenpaare werden addiert, indem man die entsprechenden Kompo-
nenten addiert“; in Zeichen: '

(@ b) 4 (¢, @) = (a4 ¢, b4 a).

Dadurch ist die Addition im Bereiche dieser Zahlenpaare definiert.
Wirft man nun die Frage nach der inversen Operation auf, so ergibt
sich, dass ,die Differenz zweier Zahlenpaare® immer existiert und nach
folgender Regel gebildet wird:

(a, b) — (¢, d) = (@ — ¢, b — a).
Gehen wir nun zur Definition der Multiplikation tuber; wir setzen,
abermals ganz willkiirlich, folgendes fest:

,Das Produkt aus zwei solchen Zahlenpaaren (a, ) und (¢, d) ist
wieder ein Zahlenpaar, fiir dessen Komponenten das Bildungsgesetz gilt,
welches in der Gleichung

(a,d) . (e, d) = (ac—bd, ad - bc) enthalten ist“.

Durch diese Formel wird eine ,Multiplikation* im Bereich unserer
Zablenpaare in eindeutiger Weise festgelegt; stellt man wieder die Frage
nach der inversen Operation, so muss sie in bejahendem Sinne beant-
wortet werden. Es existiert néimlich im allgemeinen ein Zahlenpaar (z, y)
von der Beschaffenheit, dass '

(e; @) . (=, y) = (a, b),
wenn (a, b) und (¢, d) beliebig vorgeschrieben werden:
Aus der Beziehung

(ex—dy cy+dz) = (a, b)

und der Definition der ,Gleichheit von Zahlenpaaren“ entspringen die
Gleichungen :

cx—dy—=a

dz -4 cy—=02,

& bd —ad-+4 b
deren Auflosung lautet: @ = —-—“cg i Y= _____c‘; +';2_f
Hieraus ersieht man, dass der ,Quotient des Zahlenpaares (g, b) durch

das Zahlenpaar (¢, d)“ im allgemeinen eindeutig bestimmt ist und nach
folgender Regel gebildet wird:

ac+bd —ad-tbe
(a,b):(c,d)=(02+d2, o)
Ich wiederhole, dass diese Definitionen a priori ganz willkiirlich sind,
dass man mit gleichem Rechte die Operationen und die Gleichheit anders
definieren konnte.
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Nimmt man aber obige Definitionen an, so siecht man erstens ein
dass ein Zahlenpaar existiert, welches genau dieselbe Rolle spielt, wie
die Null im Gebiete der reellen Zahlen; es ist das Zahlenpaar (0, 0). In
der Tat:

(a, b) 4 (0, 0) = (a, b),

d. h. durch Addition oder Subtraktion von (0, 0) wird kein Zahlenpaar
geidndert; ferner : '
(oo b) (0.-0), = (0,20,

d. h. multipliziert man irgend ein Zahlenpaar mit (0, 0), so kommt immer

(0, 0) heraus.

Durch diese Eigenschaften wird aber ,die Null* im Bereiche der
gewohnlichen Zahlen charakterisiert. Wir werden uns also nicht mehr
die Mithe geben, jedesmal das ganze Zahlenpaar (0, 0) zu schreiben; zur
Abkiirzung werden wir vielmehr schreiben und sprechen: 0 statt (0, 0).
Wir missen uns aber dabei immer bewusst bleiben, dass dieses Zeichen
0 etwas ganz anderes vorstellt als die Null, welche vor vielen Jahr-
hunderten die alten Inder erfunden haben; hier bedeutet es gleichsam
eine stenographische Abkiirzung fiir das Zahlenpaar (0, 0).

Nimmt man die vorigen Definitionen an, so sieht man zweitens
ein, dass ein Zahlenpaar existiert, welches genau dieselbe Rolle spielt
wie ,die Eins“ im Gebiete der gewohnlichen Zahlen; es ist das Zahlen-
paar (1, 0). In der Tat ergibt sich:

@8 . (1, 0) = (g b),
(a, D) : (1, 0) = (‘IE ) = (g, b),

und diese zwei Eigenschaften: beim Multiplizieren und beim Dividieren
jede Grosse ungedndert zu lassen, sinl charakteristisch fir die Zahl 1,
Wir werden demnach auch in diesem Fall eine bequeme Abkiirzung an-
wenden und statt ,Zahlenpaar (1, 0)“ schreiben und sprechen: 1.

Dritte Uberlegung: man erkennt, dass diejenigen Zahlenpaare, deren
zweite Komponente Null ist, eine Untergruppe fiir sich innerhalb
des Bereiches aller dieser Zahlenpaare bilden.

Eine verschwindende zweite Komponente reproduziert sich nidmlich
bei den vier rationalen Operationen: zundchst bei Addition und Sub-
traktion:

(a, 0) & (¢, 0) = (@a+¢, 0),
ferner bei Multiplikation und Division, wie aus den Formeln
(@ 0) . (¢ 0) = (ac, 0)
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ac

(@, 0) = (e:0) == (?, 0) = (g, 0) hervorgeht.

Wir werden also auch in diesem Falle nicht jedesmal das ganze
Zahlenpaar schreiben, sondern die zweite Komponente, wenn sie Null ist,
ganz unterdriicken und zur Abkiirzung schreiben und sprechen: a, statt
»Zahlenpaar (a, 0)“. ‘

Daraus schliessen wir nun umgekehrt, dass jede reelle Zahl b als
Zahlenpaar aufgefasst werden kann, namlich als ein solches, dessen
zweite Komponente Null ist:

b = (b, 0).
Diese Erkenntnis gestattet folgende Zerlegung:

(a, b)) = a -+ b. (0, 1).

Es ist in der Tat nach den friher aufgestellten Definitionen von
Multiplikation und Addition zunichst:

b H0; 1)—="by Oy {01 = (070
dann’:

; a+t+5b.(0,1) = (a,0) + (0, b) = (a, b).

Diese Zerlegung weist dem Zahlenpaare (0, 1) eine besonders inter-
essante Rolle zu. Nun findet man durch Anwendung der Multiplikations-
regel :

©,1).0,1) = (—1, 0).

Das ist aber ein Zahlenpaar von der besonderen Beschaffenheit, dass
seine zweite Komponente verschwindet; wir konnen es also nach dem
oben Ausgefuhrten abkiirzend mit (— 1) bezeichnen. Die zuletzt erhaltene
Gleichung geht dann in folgende iiber:

fODpc——nc o]
woraus: Zahlenpaar (0, 1) = y—1.

Es schlug aber schon Gauss fiir y—1 eine Abkiirzung vor, die sich
iiberall eingebiirgert hat, nimlich den Anfangsbuchstaben des Wortes
pimaginir®: e
V—1—=..

Somit hat sich ergeben: Zahlenpaar (0, 1) = 1.
Das Endresultat dieser Uberlegungen ist folgender Lehrsatz:

Jedes der hier betrachteten Zahlenpaare (a, b) lisst sich in der Form
(¢, b)) =a 4 b .1
darstellen, wobei das Symbol i durch die Gleichung :

2 = __ 7
definiert ist.
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Mit anderen Worten: die Za.hlenpaare, die wir hier untersucht haben,
sind mit den gewohnlichen komplexen Zahlen, den sogenannten imagindren
Zahlen, identisch. Diese ,imaginiren Zahlen“ sind demnach Gedanken-
dinge, die nur deswegen den Titel ,Zahlen* verdienen, weil mit ihnen nach
den gewohnlichen Regeln der Algebra gerechnet werden kann; sie sind aber
weder das Ergebnis des Abzihlens, noch das Resultat irgend einer Messung.

Das Gleiche lisst sich von den negativen Zahlen aussagen.

Es ist auch nicht schwierig, die Definitionen von ,Gleichheit, von
»Addition® und von ,Multiplikation“ zweier Zahlenpaare so zu gestalten,
dass durch diese Festsetzungen ein Bereich umgrenzt wird, dessen Ele-
mente, ihren Eigenschaften nach, sich mit den negativen Zahlen als
identisch erweisen. Man konnte demnach mit gleichem Recht auf die
negativen Zahlen das Eigenschaftswort ,imaginir“ anwenden, wie auf die
Gauss’schen komplexen Zahlen. :

Es ist nun leicht, die Richtung zu tbersehen, nach welcher dieser
neue Zahlenbegriff sich entwickelte: es wurde die Anzahl der Kompo-
nenten vermehrt. So schuf man Zahlentripel, indem man drei reelle
Zahlen a, b, ¢ derart miteinander verbunden und verkniipft dachte, dass
sie ein einziges Gedankending bildeten : (e, b, ¢), und man ging dazu iber,
fir diese Zahlentripel die Gleichheit, die Addition und die Multiplikation
zu definieren.

Andere Mathematiker nahmen vier Komponenten an und bildeten
Zahlenquadrupel {Z” 3}, fir welche sie dann die Rechnungsoperationen
definierten. Das bekannteste und wichtigste Beispiel von Zahlenquadrupeln
sind die Quaternionen, welche vom englischen Mathematiker William Rowan
Hamilton (4. August 1805 bis 2. September 1865) entdeckt, zum erstenmal
studiert und auf zahlreiche Probleme der Geometrie, der Physik, der
Mechanik, u.s. w. angewandt wurden. Auf diese Weise schuf der mensch-
liche Geist die allgemeinen komplexen Zahlen, wohl auch hyperkomplexe Zahlen
genannt, mit beliebig vielen Komponenten. A priori konnen die Rech-
nungsoperationen in diesen Bereichen von hyperkomplexen Zahlen nach
ganz willkiirlich festgesetzten Regeln ausgefiihrt werden. Es stellt sich
aber heraus, dass dann die gewéhnlichen Eigenschaften der arithmetischen
Operationen nicht immer erhalten bleiben.

Bedeuten z. B. « und 8 zwei Quaternionen, so ist im allgemeinen
das Produkt « . 8§ vom Produkt g . « verschieden, die Multiplikation also
»nicht kommutativ®; in anderen Bereichen von hyperkomplexen Zahlen
existieren ,Nullteiler*, d. h. es kann ein Produkt Null sein, ohne dass
ein einziger Faktor verschwindet; oder es hat ,das distributive Gesetz“,
welches durch die Formel
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a(b4¢)=ab-tac
ausgedrickt wird, keine Giiltigkeit; kurz, bei vielen Systemen von hyper-
komplexen Zahlen wird das Prinzip von der Permanenz der formalen
Gesetze durchbrochen. Es wurde aber viel zu weit fihren, auf diese teil-
weise noch ungeldsten Fragen einzugehen; deswegen soll hier nur ihre
Existenz angedeutet werden.

Das letzte Stadium der Entwicklung besteht darin, unendlich viele
Komponenten anzunehmen; dadurch gelangt man zu den #ransfiniten
oder dberendlichen Zahlen.

Man betrachte die simtlichen uberhaupt existierenden ganzen Zahlen
in ihrer naturlichen Reihenfolge: 1, 2, 3, 4, ... in infinitum, und denke
sich dieselben derart miteinander verbunden und verkniipft, dass sie nur
noch ein grosses Gedankending bilden, was wieder durch Einklammerung
angedeutet werden mag:

(1, 2, 3, 4, ... in infinitam . ..)

Dieses aus unendlich vielen Elementen bestehende ungeheure Objekt
mathematischen Denkens heisst, nach Hrn, G. Cantor, die erste transfinite
Zahl und wird mit o bezeichnet.

Man bekommt ein Beispiel von der Begrenztheit menschlicher Ein-
bildungskraft, wenn man es versucht, sich diese transfinite Zahl » vor-
zustellen, etwa mit gewohnlichen Ziffern gedruckt: das ganze Weltall
bis iiber die weitesten Fernen hinaus miisste von aneinander- und uber-
einandergereihten Ziffern erfiillt sein, und wenn jemand, um alle Kompo-
nenten zu uberblicken, sie an seinem geistigen Auge vorbeiziehen lassen
wollte, wenn auch mit denkbar grosster Geschwindigkeit, so wirde er
dazu unendlich lange Zeit brauchen. — Es ist Hrn. Cantor gelungen,
unendlich viele solcher transfiniten Zahlen zu definieren und aus diesem
eigentumlichen Zahlenmaterial eine vollstindige Arithmetik aufzubauen,
die allerdings ganz wesentlich von der gewohnlichen abweicht.

Es leuchtet ein, dass auch diese Entwicklungsrichtung auf den Be-
griff des Unendlichen und damit auf das Gebiet der Philosophie hintber-
fihrt. Uberhaupt nimmt die Mathematik in gewissem Sinn eine zentrale
Stellung ein; denn sie grenzt einerseits an Philosophie und Logik, d. h.
an die abstraktesten spekulativen Wissenschaften, wihrend sie anderer-
seits durch ihre zahllosen Anwendungen aufs engste mit der Praxis zu-
sammenhingt. Ohne das Hulfsmittel einer gut ausgebildeten und in die
Tiefe dringenden theoretischen Mathematik hitte es die Technik wohl
nicht zu den grossen Errungenschaften gebracht, die wir heute mit Recht
bewundern. :

Schweiz. Pddagog. Zeitschrift. 1909. 23
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