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Über den Aufbau der Geometrie. *j

Von Prof. Dr. M. Grossmann, Zürich.

Zwei Erscheinungen drängen sich auf, wenn man die historische

Entwicklung der exakten Wissenschaften überblickt: einmal der Einfluss
der allgemeinen kulturellen Zustände auf die Forschung, dann aber eine

gelegentliche Änderung der Richtung des Forschungstriebes, eine

Verlegung des Schwerpunktes des Interesses von einer Epoche zur andern.

Auf Perioden tatenreichen und fruchtbaren Entdeckens folgen Perioden
der Sammlung und Sichtung des gewonnenen Materials und der kritischen
Prüfung der Grundlagen. Die Abhängigkeit der einzelnen exakten
Wissenschaften voneinander zeigt sich in einem mehr oder weniger deutlich

ausgeprägten zeitlichen Parallelismus dieser Erscheinungen in ihrer
Geschichte.

Auch die Entwicklung der Geometrie im 19. Jahrhundert lässt
das Aufeinanderfolgen einer mehr schöpferischen und einer mehr kritischen
Periode erkennen. Von bescheidenen Ansätzen ausgehend, sind in der
ersteren durch Ausgestaltung der synthetischen und der analytischen
Forschungsmethode ganze Wissensgebiete neu entstanden : die projektive
und die darstellende Geometrie, die Theorie der geometrischen Verwandtschaften,

die Lehre von den algebraischen Kurven und Flächen und den

Anwendungen der Invarianten- und Gruppentheorie, die Differentialgeometrie

usw.
Dieser Bereicherung der Geometrie, die in ihrer Geschichte beispiellos

dasteht, folgte ihre Vertiefung. Das Ergebnis der kritischen Forschungen
der letzten Jahrzehnte gewährt einen klaren Einblick in die Grundlagen
der Geometrie und lässt eine Fülle von Zusammenhängen der geometrischen
Sätze erkennen.

]) Dieser Aufsatz ist die Ausarbeitung eines Vortrages, den der Verfasser am

22. Mai 1909 vor der „Vereinigung der Mathematiklehrer an schweizerischen
Mittelschulen" in Bern gehalten hat.



283

Die Anfänge der Kritik gehören allerdings nicht dem letzten
Jahrhundert an, sondern lassen sich zurückverfolgen bis zu den ersten
Kommentatoren des Euklid. Gegenstand der Kritik war in erster Linie das

Parallelenaxiom des Euklid '). Der Inhalt dieses Postulates wurde zwar
nicht angezweifelt, aber auch nicht als einleuchtend genug angesehen,

um unbewiesen unter die Grundsätze aufgenommen zu werden. Die
Entdeckung der nichteuklidischen Geometrie, die im ersten Drittel des

19. Jahrhunderts fast gleichzeitig und im wesentlichen unabhängig
voneinander durch Boly.ai, Lobatschefsky und Gauss erfolgte, liess

die Erfolglosigkeit aller Beweisversuche begreifen. Es ergab sich, dass

das euklidische Parallelenaxiom ersetzt werden könne durch ein anders

lautendes, dessen logische Konsequenzen mit unserer Anschauung ebensogut

verträglich sind wie die Sätze der euklidischen Geometrie. R i e m a n n
erkannte später noch die Möglichkeit einer dritten Geometrie, die
gleichberechtigt neben die zwei schon bekannten trat.

Um die Mitte des vorigen Jahrhunderts war man also im Besitz

von drei geometrischen Systemen, deren Sätze zwar verschieden lauten,
aber mit unserer Erfahrung, der nur ein kleines Gebiet des Raumes zur
Verfügung steht, trotzdem im Einklang bleiben.

So ist in den Geometrien von Lobatschefsky, von Euklid und

von Riemann die Winkelsumme im ebenen Dreieck bezw. kleiner,
gleich oder grösser als zwei Rechte. Die Ausmessung der Winkel eines

Dreiecks gestattet keine Entscheidung zugunsten eines der drei Systeme;
denn man kann beweisen, dass in den beiden nichteuklidischen Geometrieeu
der Unterschied £ der Winkelsumme von zwei Rechten der Fläche F des

Dreiecks proportional ist:
« F,

wo A jedenfalls eine sehr kleine Zahl ist. Daher ist dieser Unterschied e

auch bei den grössten Dreiecken, die uns zur Verfügung stehen, noch so

klein, dass keine Messung; genau genug ist, um ihn erkennen zu lassen.2)

Nun haben die geometrischen Figuren aber auch Eigenschaften, die

von der besonderen Form, die man dem Parallelenaxiom geben kann,

unabhängig sind, d. h. es gibt geometrische Sätze, die in allen drei

Systemen gleich lauten.

Wenn eine Gerade zwei Gerade trifft und mit ihnen auf derselben Seite innere

Winkel bildet, deren Summe kleiner ist als zwei Rechte, so treffen sich die beiden

Geraden, wenn man sie auf dieser Seite verlängert.
2) Als historische Einführung in die nichteuklidische Geometrie eignet sich

Bonola-Liebmann, Die nichteuklidisohe Geometrie, Leipzig, B. G. Teubner, 1908

(Wissenschaft und Hypothese, Bd. TV).
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Ausgehend von der euklidischen Elementargeometrie hatten nämlich

Poncelet, Möbius, Steiner u. a. einen besonderen Zweig der
Geometrie, die Geometrie der Lage, entwickelt; diese betrachtet die

Verknüpfung von Punkten, Geraden und Ebenen zu Figuren und entwickelt
Sätze, die nur wieder solche Verknüpfungen beurteilen, ohne dabei

Massverhältnisse zu berücksichtigen. Metrische Begriffe, wie Entfernungen.
Winkel, Flächen, Kreise usw. spielen in der reinen Geometrie der Lage
keine Rolle. Die historische Entwicklung der Geometrie der Lage liess

die Unabhängigkeit ihrer Sätze von metrischen Begriffen nicht erkennen,

weil im Aufbau die Sätze der Planimetrie und der Trigonometrie
ausgiebig verwendet wurden. Aber eine von der Elementargeometrie
unabhängige Entwicklung der Geometrie der Lage ist möglich und wurde

zum erstenmal von v. S tau dt versucht,8) ohne dass seine Deduktionen

lückenlos, einwandsfrei gewesen wären. Später hat Klein bemerkt, dass

der v. Staudtsche Gedankengang auch das Parallelenaxiom nicht
notwendig erfordere, und dass daher die Geometrie der Lage als gemeinsame

Grundlage aller drei Geometrieen müsse dienen können.

Ich will versuchen, an dieser Stelle einen wissenschaftlichen Aufbau
der Geometrie zu skizzieren, der zuerst die Geometrie der Lage begründet,
dann zur Einführung metrischer Begriffe schreitet, um schliesslich zu
den drei möglichen geometrischen Systemen zu führen. Die Kürze der

mir zur Verfügung stehenden Zeit gestattet keine ausführliche
Beweisführung aller notwendig werdenden Sätze; doch wird es möglich sein,

die einzelnen Axiomgruppen und ihre Tragweite anzugeben und so einen

Einblick in das ganze System zu gewähren. Eingehender werde ich mich

nur mit der wichtigen Frage der Einführung analytischer Methoden in
die Geometrie befassen.

Die Punkte, Geraden und Ebenen sind die Bausteine der Geometrie.

Eine einwandsfreie Definition des Punktes und der Geraden ist nicht
möglich. Es kann sich nur darum handeln, eine Erläuterung dieser

Begriffe auf Grund der Erfahrung zu geben. Die erkenntnis-theoretische
Unbrauchbarkeit der auch heute noch im Unterrichte gelegentlich
versuchten Definitionen erhellt am besten aus dem Umstände, dass nirgends
im Lehrgebäude auf den Inhalt der gegebenen Definition zurückgegriffen
wird. Hätte der Schüler nicht eine durch ungezählte Beobachtungen
befestigte Vorstellung vom Punkte und der Geraden, so könnte sie ihm auch

durch keine Definition vermittelt werden. Die „mathematische Präzision",
die in vielen Lehrgängen von den ersten Begriffen an zu geben versucht

3) G. K. Ch. v. Staudt, Geometrie der Lage, Nürnberg, 1847.
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wird, ist daher nur eine scheinbare und nur geeignet, Verwirrung zu
stiften. Den Unterricht in der Elementargeometrie im Sinne derartiger
Einwendungen einer erneuten Prüfung zu unterziehen, ist eine berechtigte
Forderung. Das vor kurzem erschienene Werk von Thieme stellt einen

wertvollen Versuch dar, den geometrischen Unterricht mit den Ergebnissen

der kritischen Forschung in Einklang zu bringen.4) Punkt und
Gerade sind also als primitive Begriffe in die Geometrie einzuführen, und

zum wissenschaftlichen Aufbau ist nur die Postulierung der Existenz von
Dingen, die man Punkte und Geraden nennt, nötig. Dagegen kann die
Ebene in bekannter Weise (durch den Projektionsprozess) aus Punkten
und Geraden erzeugt werden. Die gegenseitigen Verknüpfungsmöglichkeiten

der Punkte, Geraden und Ebenen sind zum Teil als Axiome zu

postulieren, während sie sich zum andern Teil als Lehrsätze durch
Deduktion ergeben.

Diese Verknüpfungssätze der Geometrie der Lage zeichnen sich aus

durch ihre ausnahmslose Gültigkeit. (Zwei Gerade, die in einer Ebene

liegen, haben immer einen gemeinsamen Punkt, zwei Ebenen immer eine

gemeinsame Gerade usw.) Die Möglichkeit dieser ausnahmslosen Gültigkeit
wurde von Pasch in seinen „Vorlesungen über neuere Geometrie", 1882,

dargetan, dessen Theorie der uneigentlichen Elemente (Punkte,
Gerade und Ebenen) die Ausnahmen beseitigte. Auch die euklidische

Elementargeometrie hat sich ja der Einführung uneigentlicher (das
bedeutet in diesem Falle unendlich ferner) Punkte, Geraden und Ebenen

bedient, um nichtschneidenden Geraden einer Ebene, nichtschneidenden
Ebenen usw. gemeinsame Elemente zuzuweisen, d. h. Ausnahmefälle der

Verknüpfung zu beseitigen. Folgende Überlegung ist der Angelpunkt der
Theorie der uneigentlichen Elemente. Es seien o und b zwei Geraden,
die in einer Ebene liegen. Ist ein Schnittpunkt £ beider bekannt oder

nachweisbar, so geht die Schnittgerade c der Ebenen (P, a) und (P, b),

die ein ausserhalb der Ebene (a, b) liegender Punkt P mit den beiden
Geraden bestimmt, durch den Schnittpunkt S. Ist Q ein zweiter Punkt
ausserhalb der Ebene (a, b) und nicht in c gelegen, so geht auch die

Schnittgerade d der Ebenen (Q, a) und (Q, b) durch S und a, b, c, d

bilden die Strahlen eines Bündels, dessen Scheitel S ist. Haben dagegen

a und b keinen nachweisbaren Schnittpunkt, so kann man trotzdem
zeigen, dass die wie oben konstruierten Geraden c und d in einer Ebene

liegen, d. h. dass die vier Geraden a, b, c, d so liegen, als ob sie einem

Bündel angehören würden. Man wird daher sagen dürfen, vier derartige

4) H. Thieme, Die Elemente der Geometrie, Leipzig, B. G. Teubner, 1909.
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Gerade bilden ein uneigentliches Bündel und diesem einen

uneigentlichen Scheitel S zusprechen, der allen vier Geraden gemeinsam

ist. Fortgesetzte Betrachtungen dieser Art führen zu den uneigent-
liciien Geraden und Ebenen und gestatten, alle Ausnahmefälle der
Verknüpfung auszumerzen.

Für den Aufbau der Geometrie der Lage ist diese Theorie der un-
eigentlichen Elemente übrigens gar nicht notwendig: man postuliert
einfach die ausnahmslose Gültigkeit der Axiome der Verknüpfung
und überlässt die Unterscheidung der eigentlichen und uneigentlichen
Elemente den drei geometrischen Systemen, die späterhin aus der Geometrie
der Lage hervorgehen.

Die folgenden Entwicklungen stützen sich lediglich auf die Axiome
der Verknüpfung ; es soll gezeigt werden, wie weit man mit diesen allein
auskommt und insbesondere untersucht werden, ob eine Begründung der

analytischen Geometrie mit ihrer alleinigen Hülfe möglich ist.
Von grundlegender Bedeutung für die Geometrie der Lage ist der

Satz von Desargues über perspektivische Dreiecke.

Fig. 1.

Wenn zwei Dreiecke Tj U^ \\ und T2 U2 V%, die in zwei
verschiedenen oder in der gleichen Ebene liegen, so
aufeinander bezogen sind, dass die Schnittpunkte entsprechender

Seiten in derselben Geraden s liegen, so gehen die
Verbindungsgeraden entsprechender Ecken durch einen
und denselben Punkt 0 (Fig. 1).

Sind nämlich erstens die Ebenen der beiden Dreiecke voneinander

verschieden, ist also « ihre Schnittgerade, so sind die Geraden Tx To.

U1 U2, F, V2 die Schnittgeraden der drei Ebenen 1\ L\ T2 U2, ET, \\ U2 V2,
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Vl Tj V2 T2 und gehen also durch einen Punkt 0. Auf diesen ersten Fall
zurückführbar ist der zweite, bei welchem die Ebenen der beiden Dreiecke

zusammenfallen. Ebenso einfach ist die Umkehrung des Satzes zu
beweisen.

Es mögen nun sechs Punkte A, B, C; D, E, F, die von einer
Geraden aus den Gegenseiten eines vollständigen Vierecks geschnitten werden,

eine quadrangulare Gruppe genannt werden, was symbolisch
mit Q (A,B,C; D,E,F) bezeichnet sei (Fig. 2). Ist insbesondere B F
und C F, so heisse die Gruppe eine harmonische.5)

Aus dem Satz von Desargues folgt dann:
Sind in einer quadrangularen (insbes. harmonischen)

Punktgruppe alle Punkte bis auf einen bestimmt, so ist
es auch dieser eine.

Denn die beiden vollständigen Vierecke 7\ C/j V1 Wt und T2 U2 V2 W2,

die zur Konstruktion des letzten Punktes der Gruppe herangezogen
werden (Fig. 3), sind perspektiv gelegen, weil sich fünf Paare entsprechender

Seiten auf der Geraden s (dem Träger der quadrangularen Gruppe)
schneiden. Zur Konstruktion des letzten Punktes einer quadrangularen
Gruppe kann also irgendein vollständiges Viereck verwendet werden, von
dem fünf Seiten in vorgeschriebener Weise durch die fünf gegebenen
Punkte gehen; die sechste Seite bestimmt den fehlenden Punkt.

Projiziert man Fig. 2 von irgendeinem ausserhalb ihrer Ebene gelegenen
Punkte aus auf irgendeine andere Ebene, so erkennt man:

Die Projektion einer quadrangularen (insbes.
harmonischen) Punktgruppe ist wieder eine quadrangulare (bezw.

harmonische) Punktgruppe.
Die Geometrie der Lage beschäftigt sich mit denjenigen Eigenschaften

der geometrischen Figuren, die beim Projektionsprozess erhalten bleiben.

5) Ich entnehme diese Definition der inhaltsreichen Abhandlung: Veblen and
V o u n g, A Set of Assumptions for Projectiv Geometry, American Journal of Mathe-
matics, Vol. XXX, 1908.
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Punktreihen, die durch fortgesetzte Projektionen auseinander hervorgehen,
sind von P on cele t projektiveP unkt reihen genannt worden. Aus
der ausnahmslosen Gültig'keit der Verknüpfungsaxiome geht hervor, dass

die Projektivität zweier Punktreihen eine umkehrbar-eindeutige Beziehung"
zwischen den beiden Punktreihen ist; doch darf man nicht jede
umkehrbar-eindeutige Beziehung- als Projektivität ansprechen, wie dies

gelegentlich früher geschah. Diese Poncelet sehe Definition der Projektivität
eignet sich sehr wohl für die Herleitung der Geometrie der Lage aus
der Elementargeometrie. Bekanntlich lässt sich leicht beweisen, dass vier

Fig. 3.

Punkte der einen Reihe das gleiche Doppelverhältnis haben wie die vier
entsprechenden der andern. Daraus folgt dann weiter, dass die Projektivität
zweier Punktreihen bestimmt ist durch drei Paare entsprechender Punkte
und ergibt sich die bekannte Konstruktion weiterer Paare entsprechender
Elemente. Verzichtet man dagegen auf die Elementargeometrie, so erweist
sich die Ponceletsche Definition der Projektivität als wenig brauchbar
(vgl. übrigens die Anm. 7 auf S. 9).

v. Staudt schlug daher eine andere, inhaltsreichere Definition vor.
Da beim Projektionsprozess harmonische Gruppen erhalten bleiben, so
entsteht die Frage, ob die Projektivität zweier Punktreihen definiert
werden könne als eine derartige Beziehung der Punkte beider Reihen, bei
der jeder harmonischen Gruppe der einen eine harmonische Gruppe der
andern entspricht, v. Staudt versuchte in der Tat den Beweis des nach
ihm benannten Fundamentalsatzes der Projektivität, wonach
eine derartige Beziehung zweier Punktreihen durch drei
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Paare entsprechender Punkte eindeutig bestimmt ist, ohne

allerdings, wie Weierstrass bemerkte, einwandfrei zum Ziel zu
gelangen. Ausschlaggebend für den Beweis dieses Fundamentalsatzes ist
der Nachweis, dass bei zwei projektiven Punktreihen, die auf ein und
derselben Geraden liegen, und bei denen drei Punkte mit ihren
entsprechenden zusammenfallen, alle Punkte mit ihren entsprechenden
zusammenfallen. Hat also eine Projektivität in einer Geraden drei Doppelpunkte,

so sind alle Punkte der Geraden Doppelpunkte, d. h. die

Projektivität ist die Identität der beiden Punktreihen.

Zum Beweise des Fundamentalsatzes der Projektivität reichen die
Axiome der Verknüpfung nicht aus, sondern es sind neue Voraussetzungen
(über die Art der Anordnung der Punkte in der Geraden und über die

Stetigkeit) hinzuzufügen. Da sich diese neuen Axiome nicht mit wenigen
Worten einführen lassen, und der auf sie aufgebaute Beweis des Funda-
mentalsatzes einige Erörterungen erheischen würde, beschränke ich mich
auf den Hinweis auf die Darlegungen von Enriques.6)

Aus dem Fundameutalsatz der projektiven Geometrie ergibt sich

mit Leichtigkeit die Theorie der projektiven Verwandtschaften
der Elementargebilde zweiter und dritter Stufe (der Kollineationen und

Reziprozitäten) und damit der gesamte Untersuchungsapparat der projektiven

Geometrie.
Interessant ist die Rolle, die der v. Staudtsche Fundamentalsatz

bei der Einführung analytischer Methoden spielt. Um den

Punkten einer Geraden Zahlen zuzuordnen, seien auf ihr drei voneinander
verschiedene Punkte gewählt, denen die Zahlen 0, 1 und co zugeordnet
werden; die drei Punkte seien bezw. mit P0, Px und P^ bezeichnet.

Hierauf möge eine Punkt-Algebra in der Geraden definiert sein durch die
beiden folgenden Operationen:

Sind zwei Punkte Px und P7 bekannt, denen die Zahlen x, bezw. y
zugeordnet sind (vgl. hierüber die weiter unten gegebene Erläuterung der

Figuren), so werde

1. der Punkt Px+y bestimmt durch die quadrangulare Beziehung

Q(P„, fx,P0; -Pooj-Py.-fi+y);

was symbolisch durch
Px+y Pi "T-fy

angedeutet sei;

6) Enriques, Vorlesungen über projektive Geometrie, deutsche Ausgabe von

Fleischer, Leipzig, B. G. Teubner, 1903.
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2. der Punkt P*} bestimmt durch die quadrangulare Beziehung

Q(P0,P^PX; Pm,Pr,P*j),
oder symbolisch

In Fig. 4 sei z. B. x 2, y 3. Px P2 wurde im unteren Teil der

Figur konstruiert aus der Beziehung

Q(P„,PltP0; PmiPi,F&
also als harmonisch zugeordnet zu P0 bezüglich Px und Pm. Der Punkt
Pj P3 wurde erhalten aus der Beziehung

<?(P„,P1; Pa; P„,P2,P3).
Der obere Ted der Figur zeigt die Konstruktion von Px+y P5 aus

der Beziehung

Q(P„,P2,F0; P.,P3,P6).

Fig. 5 zeigt einen interessanten Spezialfall der konstruktiven Addition.
In dieser Figur wurde Pa in den einen und einzigen unendlich-fernen
Punkt der Geraden gelegt, dessen Existenz aus dem euklidischen
Parallelenaxiom folgt. Man erkennt, dass die Konstruktion auf die

Addition derAbszissen in einer gewöhnlichen Skala fuhrt, dass also

7) Veblen und Tonn g, a.a.O. Da die beiden Autoren P on cele t s Definition
der Projektivität benützen, unterscheiden sich die folgenden Beweisführungen von
ihren Entwicklungen.
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Fig. 5.

in diesem Spezialfälle die projektive Skala in der Geraden zur
gewöhnlichen Skala wird. Im oberen Teil der Figur ist ausserdem die eine
der beiden durch Pm gehenden Vierecksseiten als die unendlich-ferne Gerade
der Ebene gewählt worden.

In Fig. 6 ist die Konstruktion von Pxy P6 aus Px P2 und Py P3

dargestellt.

Fig. 6.

Fig. 7 enthält wieder den Spezialfall der gewöhnlichen Skala und
zeigt an ihm die konstruktive Multiplikation. Diese Figur bietet auch

elementar-geometrisches Interesse, wenn man die Proportionenlehre auf
sie zur Beweisführung anwendet.

Welchen Gesetzen genügen nun die beiden Operationen?
Ist Pz ein Punkt der Geraden, dem die Zahl z zugeordnet wurde, so

können die Konstruktionslinien leicht so angeordnet werden, dass man
unmittelbar erkennt :
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S. $ % 3] T
Fig. 7.

Die Operationen der Addition und der Multiplikation
sind assoziativ, d. h. es ist

¦Px+y ~\~ -*z :== -Tx -\- ^y+z
und

x xy • -* z -£x -*yz>

Ferner zeigt Fig. 8 die Anordnung der Konstruktionslinien zum
Beweise des distributiven Gesetzes

Pxy -p ^ yz —— Px(y + z).

Sind nämlich Px, Py, Pz bekannt, so sei

Py+z konstruiert mit dem Viereck ABCD,
Pxy „ „ „ ADFE,
Pxz

¦

„ i i ZtfW,
endlich Px(y+z) aus Px und Py+z mit dem Viereck DFEH.

Definitionsgemäss besteht nun die Beziehung
Ç(Pœ,Py,P0; P.,P«,Pj+.).
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Projiziert man diese quadrangulare Gruppe von D aus auf AC, so

entsteht die neue quadrangulare Gruppe
Q(C,A,PQ;C,G,H).

Diese projiziert sich von F aus in
Q (P«, Pxy; Pq P» Psz, Px(y + z))-

Aus dieser Beziehung folgt aber, dass

-Pxy ~p Pxz Px(y+z))
ist.

Mit Leichtigkeit beweist sich ferner :

Die Operation der Addition ist kommutativ, d. h. es

ist

Es sei nämlich in Fig. 9 Px+y konstruiert mit dem Viereck ABCD,
Py+X ganz analog mit dem Viereck AB'CD'. Ordnet man nun den Ecken
ABCD des ersten, bezw. die Ecken CD'AB des zweiten zu, so treffen
sich fünf Paare entsprechender Seiten auf dem Träger s der projektiven
Skala; die beiden Vierecke liegen also perspektiv, d. h. die sechsten Seiten
BD un D'B' treffen sich auch auf der Geraden s, oder Px+y ist identisch
mit Py + x-

Damit ist aber alles erschöpft, was aus den Axiomen
der Verknüpfung allein abgeleitet werden kann. Denn es gilt
der Satz :

Die Operation der Multiplikation ist kommutativ oder
nicht, je nachdem der Fundamentalsatz der Projektivität
gilt oder nicht.
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In Fig. 10 sei Pxy konstruiert mit dem Viereck ABCD, Pyx analog
mit dem Viereck ABCD'. Es ist nun nicht möglich, die Ecken der beiden
Vierecke sich so entsprechen zu lassen, dass sich fünf Paare entsprechender

Seiten in den fünf gegebenen Punkten P0, Plt Pm,Px, P> treffen. Dabeiist

es auch nicht möglich, ohne weitere Hülfsmittel einzusehen, dass sich

BD und BD' auf dem Träger s schneiden, d. h. dass Pxy und Pyx identisch

sind. Worauf es beim Beweis dieser Identität ankommt, erhellt aus
der folgenden Überlegung:

Fig. 10.

Es ist
P^PoPjPx^P^CD,

weil die erste Gruppe von A aus in die zweite projiziert wird; ferner

P.ECD ^P^PoPyPxy,
weil die erste Gruppe von B aus in die zweite projiziert erscheint. Also
ist

1. P.PqPîPx * PxP0PyPxy.

Ebenso erhält man durch Projektionen von C, bezw. von D' aus

P.PoPjPx 7sE'PaÄB,
und

E'P0ÄB * PœP0PyPyX,
oder also

2. P^PoPiP** PœP0PyPxy.

Aus den Projektivitäten 1. und 2. folgt dann die neue

P« Po Py Pxy ^ P» *o Py Py*-
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Gilt nun der Fundamentalsatz der Projektivität, so ist

Pxy PyX;

denn in diesem Falle besitzt eine Projektivität, die drei Doppelpunkte
hat, nur Doppelpunkte.

Wie schon erwähnt, sind zum Beweise dieses Fundamentalsatzes die
Axiome der Anordnung und der Stetigkeit erforderlich. Aus diesen

Axiomen ergibt sich dann auch, dass zwei Punkte, denen durch unsere
konstruktiven Operationen zwei verschiedene Zahlen zugeordnet
wurden, nicht zusammenfallen können. Endlich bietet es keine

Schwierigkeiten, auch die inversen Operationen der Sub traktio n
und der Division zu definieren und damit allen rationalen Zahlen
Punke der Geraden zuzuordnen. Zu den Punkten der Geraden, denen

irrationale Zahlen zukommen, wird man durch sukzessive Annäherung
gelangen.

Für die analytische Behandlung der Projektivität in einer Geraden

ist nun von Wichtigkeit der Satz:
Jede lineare Transformation

x=^Zfd' W-bc =1= o),

stellt eine Projektivität dar und umgekehrt.
Da nämlich jede derartige Transformation erzeugt werden kann durch

die wiederholte Ausführung der besonderen Transformationen

x =x-f-a, x =ax und x =-,
so genügt es, diese letztern zu betrachten. Nun zeigen aber die Fig. 11 —13,
dass man die entsprechenden zu vier Punkten xx, x2, x?i, x4 in allen drei
Fällen erhalten kann durch eine Kette von Projektionen. Die drei
besonderen lineai-en Transformationen vermitteln also Beziehungen, bei
denen harmonische Gruppen erhalten bleiben, das sind Projektivitäten.
— Und da eine Projektivität durch drei Paare entsprechender Punkte
bestimmt ist, so reichen die zur Verfügung stehenden Konstanten -=' -f -.

eben aus zur analytischen Bestimmung der Projektivität.
Definiert man endlich als Doppelverhältnis von vier Punkten

P,, P2. P3, P4 die Funktion

x^ x3 x% xt
der ihnen zugeordneten Zahlen, so ist damit eine Zahl eingeführt, die
sich projektiven Transformationen gegenüber als invariant erweist, da

sie ihren Wert bei linearen Transformationen von nicht verschwindender
Determinante nicht ändert.
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Eine ausführlichere Begründung- der Geometrie des Masses auf
Grund der eben entwickelten Geometrie der Lage überschreitet den

Rahmen dieses Vortrages; ich muss mich beschränken auf die gedrängte
Angabe des Grundgedankens.8)

Man fügt zu den Begriffen uud Axiomen der Geometrie der Lage
den primitiven metrischen Begriff der Rechtwinkligkeit vonEbenen.
Aus den fundamentalen Eigenschaften der Rechtwinkligkeit folgt, dass

zwei zueinander senkrechte Ebenen als konjugiert in einem Polarsystem
betrachtet werden können, dessen Ordnungsfläche — die sog. absolute
Fläche zweiten Grades des Raumes — bei allen metrischen
Eigenschaften der Figuren die ausschlaggebende Rolle spielt. Man kann näm-

8) Man vergleiche über diese und andere Fragen den zusammenfassenden Artikel
von F.Enriques, Prinzipien der Geometrie, in der „Enzyklopädie der mathematischen

"Wissenschaften", Bd. IH, A, B, 1.
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3> i \ *ä#*i*i 4 x: 31
Fig. 13.

lieh zeigen, dass die B e w e g u n g e n im Raum aufgefasst werden können
als diejenigen projektiven Transformationen (Kollineationen), welche
diese absolute Fläche in sich transformieren. Die Entfernung zweier
Punkte ist dann zu definieren als eine solche Funktion ihrer Koordinaten,
die sich bei den Bewegungen als Invariante erweist. Allgemeiner können
die metrischen Eigenschaften einer Figur als ihre invarianten
Beziehungen zur absoluten Fläche betrachtet werden.

Die drei möglichen geometrischen Systeme unterscheiden sich in der

Art der absoluten Fläche.
Ist diese reell, so entsteht die Geometrie von Gauss-Bolyai-

Lobatschefsky (die hyperbolische Geometrie von Klein). Jede
Gerade hat zwei reelle unendlich-ferne Punkte, ihre Schnittpunkte

mit der absoluten Fläche. Durch jeden Punkt ausserhalb einer
Geraden gehen zwei „Parallelen" zu ihr, nämlich seine Verbindungsgeraden

mit ihren unendlich-fernen Punkten.
Ist die absolute Fläche imaginär, so entsteht die Geometrie von

Rie mann (genauer die elliptische Geometrie von Klein). Es gibt
dann keine reellen unendlich-fernen Punkte im Raum und
also auch keine parallelen Geraden.

Entartet dagegen die absolute Fläche, indem sie zu einer Ebene

und einem in ihr liegenden imaginären Kegelschnitt wird, so liegt die
Geometrie von Euklid (die parabolische Geometrie) vor. Die
unendlich-ferne Ebene des Raumes und der in ihr liegende imaginäre Kugelkreis

bilden dann das absolute Gebilde. Jede Gerade hat einen un-
endlich-fernenPunkt, ihren Schnittpunkt, mit der unendlich-fernen
Ebene. Daher gibt es zu einer Geraden durch jeden^ausserhalb ihr
gelegenen Punkt auch nur eine Parallele. _ ,T ,""..."".-

Schweiz. Pädagog. Zeitschrift. 1909. 20
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