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Uber den Aufbau der Geometrie. )
Von Prof. Dr. M. Grossmann, Zurich.

Zwei Erscheinungen dringen sich auf, wenn man die historische
Entwicklung der exakten Wissenschaften uberblickt: einmal der Einfluss
der allgemeinen kulturellen Zuostéinde auf die Forschung, dann aber eine
gelegentliche Anderung der Richtung des Forschungstriebes, eine Ver-
legung des Schwerpunktes des Interesses von einer Epoche zur andern.
Auf Perioden tatenreichen und fruchtbaren Entdeckens folgen Perioden
der Sammlung und Sichtung des gewonnenen Materials und der kritischen
Priifung der Grundlagen. Die Abhéingigkeit der einzelnen exakten Wissen-
schaften voneinander zeigt sich in einem mehr oder weniger deutlich
ausgepriigten zeitlichen Parallelismus dieser Erscheinungen in ihrer Ge-
schichte.

Auch die Entwicklung der Geometrie im 19. Jahrhundert lisst
das Aufeinanderfolgen einer mehr schépferischen und einer mehr kritischen
Periode erkennen. Von bescheidenen Ansitzen ausgehend, sind in der
ersteren durch Ausgestaltung der synthetischen und der analytischen
Forschungsmethode ganze Wissensgebiete neu entstanden: die projektive
und die darstellende Geometrie, die Theorie der geometrischen Verwandt-
schaften, die Lehre von den algebraischen Kurven und Flichen und den
Anwendungen der Invarianten- und Gruppentheorie, die Differential-
geometrie usw.

Dieser Bereicherung der Geometrie, die in ihrer Geschichte beispiellos
dasteht, folgte ihre Vertiefung. Das Ergebnis der kritischen Forschungen
der letzten Jahrzehnte gewihrt einen klaren Einblick in die Grundlagen
der Geometrie und lisst eine Fiille von Zusammenhingen der geometrischen
Sétze erkennen.

1) Dieser Aufsatz ist die Ausarbeitung eines Vortrages, den der Verfasser am
22. Mai 1909 vor der ,Vereinigung der Mathematiklehrer an schweizerischen Mittel-
schulen* in Bern gehalten hat.
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Die Anfinge der Kritik gehdren allerdings nicht dem letzten Jahr-
hundert an, sondern lassen sich zuruckverfolgen bis zu den ersten Kom-
mentatoren des Euklid. Gegenstand der Kritik war in erster Linie das
Parallelenaxiom des Euklid!). Der Inhalt dieses Postulates wurde zwar
nicht angezweifelt, aber auch nicht als einleuchtend genug angesehen,
um unbewiesen unter die Grundsiitze aufgenommen zu werden. Die Ent-
deckung der nichteuklidischen Geometrie, die im ersten Drittel des
19. Jahrhunderts fast gleichzeitig und im wesentlichen unabhéngig von-
einander durch Bolyai, Lobatschefsky und Gauss erfolgte, liess
die Erfolglosigkeit aller Beweisversuche begreifen. Es ergab sich, dass
das euklidische Parallelenaxiom ersetzt werden kénne durch ein anders
lautendes, dessen logische Konsequenzen mit unserer Anschanung ebenso-
gut vertriglich sind wie die Séiitze der euklidischen Geometrie. Riemann
erkannte spiter noch die Moglichkeit einer dritten Geometrie, die gleich-
berechtigt neben die zwei schon bekannten trat.

Um die Mitte des vorigen Jahrhunderts war man also im Besitz
von drei geometrischen Systemen, deren Sitze zwar verschieden lauten,
aber mit unserer Erfahrung, der nur ein kleines Gebiet des Raumes zur
Verfigung steht, trotzdem im Einklang bleiben.

So ist in den Geometrien von Lobatschefsky, von Euklid und
von Riemann die Winkelsumme im ebenen Dreieck bezw. kleiner,
gleich oder grosser als zwei Rechte. Die Ausmessung der Winkel eines
Dreiecks gestattet keine Entscheidung zugunsten eines der drei Systeme;
denn man kann beweisen, dass in den beiden nichteuklidischen Geometrieen
der Unterschied ¢ der Winkelsumme von zwei Rechten der Fliche F des
Dreiecks proportional ist: '

e =4, F,

wo . jedenfalls eine sehr kleine Zahl ist. Daher ist dieser Unterschied &
auch bei den grissten Dreiecken, die uns zur Verfiigung stehen, noch so
klein, dass keine Messung genau genug ist, um ihn erkennen zu lassen.Z)

Nun haben die geometrischen Figuren aber auch Eigenschaften, die
von der besonderen Form, die man dem Parallelenaxiom geben kann,
unabhiingig sind, d. h. es gibt geometrische Sidtze, die in allen drei
Systemen gleich lauten.

1) Wenn eine Gerade zwei Gerade trifft und mit ihnen auf derselben Seite innere
Winkel bildet, deren Summe kleiner ist als zwei Rechte, so treffen sich die beiden
Geraden, wenn man sie auf dieser Seite verldngert.

2) Als historische Einfiihrung in die nichteuklidische Geometrie eignet sich
Bonola-Liebmann, Die nichteuklidische Geometrie, Leipzig, B. G. Teubner, 1908
(Wissenschaft und Hypothese, Bd. IV).
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Ausgehend von der euklidischen Elementargeometrie hatten nimlich
Poncelet, M6bius, Steiner u. a. einen besonderen Zweig der Geo-
metrie, die Geometrie der Lage, entwickelt; diese betrachtet die Ver-
kniipfung von Punkten, Geraden und Ebenen zu Figuren und entwickelt
Siitze, die nur wieder solche Verkniipfungen beurteilen, ohne dabei Mass-
verhiltnisse zu bertucksichtigen. Metrische Begriffe, wie Entfernungen,
Winkel, Flichen, Kreise usw. spielen in der reinen Geometrie der Lage
keine Rolle. Die historische Entwicklung der Geometrie der Lage liess
die Unabhiingigkeit ihrer Siitze von metrischen Begriffen nicht erkennen,
weil im Aufbau die S#étze der Planimetrie und der Trigonometrie aus-
giebig verwendet wurden. Aber eine von der Elementargeometrie unab-
hingige Entwicklung der Geometrie der Lage ist moéglich und wurde
zum erstenmal von v. Staudt versucht,®) ohne dass seine Deduktionen
liickenlos, einwandsfrei gewesen wiren. Spiter hat Klein bemerkt, dass
der v. Staudtsche Gedankengang auch das Parallelenaxiom nicht not-
wendig erfordere, und dass daher die Geometrie der Lage als gemeinsame
Grundlage aller drei Geometrieen miisse dienen kénnen.

Ich will versuchen, an dieser Stelle einen wissenschaftlichen Aufbau
der Geometrie zu skizzieren, der zuerst die Geometrie der Lage begrindet,
dann zur Einfihrung metrischer Begriffe schreitet, um schliesslich zu
den drei moglichen geometrischen Systemen zu fithren. Die Kiirze der
mir zur Verfigung stehenden Zeit gestattet keine ausfithrliche Beweis-
fiilhrung aller notwendig werdenden Sitze; doch wird es moglich sein,
die einzelnen Axiomgruppen und ihre Tragweite anzugeben und so einen
Einblick in das ganze System zu gewihren. Eingehender werde ich mich
nur mit der wichtigen Frage der Einfithrung analytischer Methoden in
die Geometrie befassen.

Die Punkte, Geraden und Ebenen sind die Bausteine der Geometrie.
Fine einwandsfreie Definition des Punktes und der Geraden ist nicht
moglich. Es kann sich nur darum handeln, eine Erliuterung dieser Be-
oriffe auf Grund der Erfahrung zu geben. Die erkenntnis-theoretische
Unbrauchbarkeit der auch heute noch im Unterrichte gelegentlich ver-
suchten Definitionen erhellt am besten aus dem Umstande, dass nirgends
im Lehrgebiude auf den Inhalt der gegebenen Definition zuriickgegriffen
wird. Hétte der Schiiler nicht eine durch ungezihlte Beobachtungen be-
festigte Vorstellung vom Punkte und der Geraden, so konnte sie ihm auch
- (urch keine Definition vermittelt werden. Die ,mathematische Prizision¥,
die in vielen Lehrgingen von den ersten Begriffen an zu geben versucht

3) G. K. Ch. v. Staudt, Geometrie der Lage, Nﬁmber.g,v 1847.
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wird, ist daher nur eine scheinbare und nur geeignet, Verwirrung zu
stiften. Den Unterricht in der Elementargeometrie im Sinne derartiger
Einwendungen einer erneuten Prifung zu unterziehen, ist eine berechtigte
Forderung. Das vor kurzem erschienene Werk von Thieme stellt einen
wertvollen Versuch dar, den geometrischen Unterricht mit den Ergeb-
nissen der kritischen Forschung in Einklang zu bringen.4) Punkt und
Gerade sind also als primitive Begriffe in die Geometrie einzufithren, und
zum wissenschaftlichen Authau ist nur die Postulierung der Existenz von
Dingen, die man Punkte und Geraden nennt, nétig. Dagegen kann die
Ebene in bekannter Weise (durch den Projektionsprozess) aus Punkten
und Geraden erzeugt werden. Die gegenseitigen Verkniipfungsmoglich-
keiten der Punkte, Geraden und Ebenen sind zum Teil als Axiome zu
postulieren, wihrend sie sich zum andern Teil als Lehrsidtze durch De-
duktion ergeben.

Diese Verkniipfungssitze der Geometrie der Lage zeichnen sich aus
durch ihre ausnahmslose Giltigkeit. (Zwei Gerade, die in einer Ebene
liegen, haben immer einen gemeinsamen Punkt, zwei Ebenen immer eine
cemeinsame Gerade usw.) Die Moglichkeit dieser ausnahmslosen Gultigkeit
wurde von Pasch in seinen ,Vorlesungen iiber neuere Geometrie®, 1882,
dargetan, dessen Theorie der uneigentlichen Elemente (Punkte,
Gerade und Ebenen) die Ausnahmen beseitigte. Auch die euklidische
Elementargeometrie hat sich ja der Einfilhrung uneigentlicher (das be-
deutet in diesem Falle unendlich ferner) Punkte, Geraden und Ebenen
bedient, um mnichtschneidenden Geraden einer Ebene, nichtschneidenden
Ebenen usw. gemeinsame Elemente zuzuweisen, d. h. Ausnahmefiille der
Verkniipfung zu beseitigen. Folgende Uberlegung ist der Angelpunkt der
Theorie der uneigentlichen Elemente. Es seien @ und b zwei Geraden,
die in einer Ebene liegen. Ist ein Schnittpunkt S beider bekannt oder
nachweisbar, so geht die Schnittgerade ¢ der Ebenen (P, @) und (P, b),
die ein ausserhalb der Ebene (a, b) liegender Punkt P mit den beiden
Geraden bestimmt, durch den Schnittpunkt S. Ist @ ein zweiter Punkt
ausserhalb der Ebene (a, b)) und nicht in ¢ gelegen, so geht auch die
Schnittgerade d der Ebenen (¢, @) und (@, 8) durch S und a, b, ¢, d
bilden die Strahlen eines Biindels, dessen Scheitel S ist. Haben dagegen
a und b keinen nachweisbaren Schnittpunkt, so kann man trotzdem
zeigen, dass die wie oben konstruierten Geraden e und & in einer Ebene
liegen, d. h. dass die vier Geraden @, b, ¢, d so liegen, als ob sie einem
Biindel angehdren wiirden. Man wird daher sagen diirfen, vier derartige

4 H. Thieme, Die Elemente der Geometrie, Leipzig, B. G. Teubner, 1909.
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Gerade bilden ein uneigentliches Bindel und diesem einen un-
eigentlichen Scheitel S zusprechen, der allen vier Geraden gemein-
sam ist. Fortgesetzte Betrachtungen dieser Art fihren zu den uneigent-
lichen Geraden und Ebenen und gestatten, alle Ausnahmefille der
Verkniipfung auszumerzen.

Fir den Aufbau der Geometrie der Lage ist diese Theorie der un-
eigentlichen Elemente ibrigens gar nicht notwendig: man postuliert
einfach die ausnahmslose Giiltigkeit der Axiome der Verkniipfung
und tberlisst die Unterscheidung der eigentlichen und uneigentlichen
Elemente den drei geometrischen Systemen, die spiterhin aus der Geometrie
der Lage hervorgehen.

Die folgenden Entwicklungen stutzen sich lediglich auf die Axiome
der Verkntipfung; es soll gezeigt werden, wie weit man mit diesen allein
auskommt und inshesondere untersucht werden, ob eine Begriindung der
analytischen Geometrie mit ihrer alleinigen Hilfe mdglich ist.

Von grundlegender Bedeutung fir die Geometrie der Lage ist der
Satz von Desargues iiber perspektivische Dreiecke.

Higle

Wenn zwei Dreiecke T, U; V; und Ty U, V,, die in zwei
verschiedenen oder in der gleichen Ebene liegen, so auf-
einander bezogen sind, dass die Schnittpunkte entspre-
chender Seiten in derselben Geraden s liegen, so gehen die
Verbindungsgeraden entsprechender Ecken durch einen
und denselben Punkt O (Fig. 1).

Sind nimlich erstens die Ebenen der beiden Dreiecke voneinander
verschieden, ist also 8 ihre Schnittgerade, so sind die Geraden T, T,
U, Us, V; Vy die Schnittgeraden der drei Ebenen T} U; Ty Uy, Uy Vy Us Vs,
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V1 Ty Vo T, und gehen also durch einen Punkt 0. Auf diesen ersten Fall
zuriickfithrbar ist der zweite, bei welchem die Ebenen der beiden Drei-
ecke zusammenfallen. Ebenso einfach ist die Umkehrung des Satzes zu
beweisen.

Es modgen nun sechs Punkte 4, B, C; D, E, F, die von einer Ge-
raden aus den Gegenseiten eines vollstindigen Vierecks geschnitten wer-
den, eine quadrangulare Gruppe genannt werden, was symbolisch
mit @ (4,B,C; D, E, F) bezeichnet sei (Fig. 2). Ist insbesondere B—=F
und C=F, so heisse die Gruppe eine harmonische.5)

Aus dem Satz von Desargues folgt dann:

Sind in einer quadrangularen (insbes. harmonischen)
Punktgruppe alle Punkte bis auf einen bestimmt, so ist
es auch dieser eine.

Denn die beiden vollstindigen Vierecke T, U; Vy W; und T, U, ¥V, W,
die zur Konstruktion des letzten Punktes der Gruppe herangezogen
werden (Fig. 3), sind perspektiv gelegen, weil sich fiinf Paare entspre-
chender Seiten auf der Geraden s (dem Triger der quadrangularen Gruppe)
schneiden. Zur Konstruktion des letzten Punktes einer quadrangularen
Gruppe kann also irgendein vollstindiges Viereck verwendet werden, von
dem fiunf Seiten in vorgeschriebener Weise durch die fiinf gegebenen
Punkte gehen; die sechste Seite bestimmt den fehlenden Punkt.

Projiziert man Fig. 2 von irgendeinem ausserhalb ihrer Ebene gelegenen
Punkte aus auf irgendeine andere Ebene, so erkennt man:

Die Projektion einer quadrangularen (insbes. harmo-
nischen) Punktgruppe ist wiedereine quadrangulare (bezw.
harmonische) Punktgruppe.

Die Geometrie der Lage beschiftigt sich mit denjenigen Eigenschaften
der geometrischen Figuren, die beim Projektionsprozess erhalten bleiben.

5) Ich entnehme diese Definition der inhaltsreichen Abhandlung: Veblen and
Young, A Set of Assumptions for Projectiv Geometry, American Journal of Mathe-
matics, Vol. XXX, 1908.
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Punktreihen, die durch fortgesetzte Projektionen auseinander hervorgehen,
sind von Poncelet projektive Punktreihen genannt worden. Aus
der ausnahmslosen Giiltigkeit der Verkniipfungsaxiome geht hervor, dass
die Projektivitiit zweier Punktreihen eine umkehrbar-eindeutige Beziehung
zwischen den beiden Punktreihen ist; doch darf man nicht jede um-
kehrbar-eindeutige Beziehung als Projektivitit ansprechen, wie dies ge-
legentlich frither geschah. Diese Pon celetsche Definition der Projektivitiit
eignet sich sehr wohl fiir die Herleitung der Geometrie der Lage aus
der Elementargeometrie. Bekanntlich lisst sich leicht beweisen, dass vier

2
Fig. 3.

Punkte der einen Reihe das gleiche Doppelverhiiltnis haben wie die vier
entsprechenden der andern. Daraus folgt dann weiter, dass die Projektivitit
zweier Punktreihen bestimmt ist durch drei Paare entsprechender Punkte
und ergibt sich die bekannte Konstruktion weiterer Paare entsprechender
Elemente. Verzichtet man dagegen auf die Elementargeometrie, so erweist
sich die Ponceletsche Definition der Projektivitit als wenig brauchbar
(vgl. tbrigens die Anm. 7 auf S. 9).

v. Staudt schlug daher eine andere, inhaltsreichere Definition vor.
Da beim Projektionsprozess harmonische Gruppen erhalten bleiben, so
entsteht die Frage, ob die Projektivitit zweier Punktreihen definiert
werden konne als eine derartige Beziehung der Punkte beider Reihen, bei
der jeder harmonischen Gruppe der einen eine harmonische Gruppe der
andern entspricht. v. Staudt versuchte in der Tat den Beweis des nach
ihm benannten Fundamentalsatzes derProjektivitit, wonach
eine derartige Beziehung zweier Punktreihen durch drei
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Paare entsprechender Punkte eindeutig bestimmt ist, ohne
allerdings, wie Weierstrass bemerkte, einwandfrei zum Ziel zu ge-
langen. Ausschlaggebend fir den Beweis dieses Fundamentalsatzes ist
der Nachweis, dass bei zwei projektiven Punktreihen, die auf ein und
derselben Geraden liegen, und bei denen drei Punkte mit ihren ent-
~ sprechenden zusammenfallen, alle Punkte mit ihren entsprechenden
zusammenfallen. Hat also eine Projektivitat in einer Geraden drei Doppel-
punkte, so sind alle Punkte der Geraden Doppelpunkte, d. h. die Pro-
jektivitit ist die Identitit der beiden Punktreihen.

Zum Beweise des Fundamentalsatzes der Projektivitit reichen die
Axiome der Verkniipfung nicht aus, sondern es sind neue Voraussetzungen
(iber die Art der Anordnung der Punkte in der Geraden und uber die
Stetigkeit) hinzuzufugen. Da sich diese neuen Axiome nicht mit wenigen
Worten einfithren lassen, und der auf sie aufgebaute Beweis des Funda-
mentalsatzes einige Erorterungen erheischen wiirde, beschriinke ich mich

auf den Hinweis auf die Darlegungen von Enriques.$)

Aus dem Fundamentalsatz der projektiven Geometrie ergibt sich
mit Leichtigkeit die Theorie der projektiven Verwandtschaften
der Elementargebilde zweiter und dritter Stufe (der Kollineationen und
Reziprozititen) und damit der gesamte Untersuchungsapparat der projek-
tiven Geometrie. :

Interessant ist die Rolle, die der v. Staudtsche Fundamentalsatz
bei der Einfithrung analytischer Methoden spielt. Um den
Punkten einer Geraden Zahlen zuzuordnen, seien auf ihr drei voneinander
verschiedene Punkte gewiihlt, denen die Zahlen 0, 1 und o zugeordnet
werden; die drei Punkte seien bezw. mit F, P; und P, bezeichnet.
Hierauf moge eine Punkt-Algebra in der Geraden definiert sein durch die
beiden folgenden Operationen:

Sind zwei Punkte Py und Py bekannt, denen die Zahlen z, bezw. y
zugeordnet sind (vgl. hieriiber die weiter unten gegebene Erliuterung der
Figuren), so werde

1. der Punkt Py.y bestimmt durch die quadrangulare Beziehung
Q(Pcn) PX:PO; Pm) PY’PI"'Y))

was symbolisch dorch
Px +y — Px + Py
angedeutet sei;

6) Enriques, Vorlesungen iiber projektive Geometrie, deutsche Ausgabe von
Fleischer, Leipzig, B. G. Teubner, 1903.
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2. der Punkt Pxy bestimmt durch die quadrangulare Beziehung

Q (P03 PX! Pl; Pw’ Py_’ ny)‘)
oder symbolisch
Px)’—_— Px. P.v'z)

Fig. 4.

In Fig. 4 sei z. B. x=2, y—=3. Px = P, wurde im unteren Teil der
Figur konstruiert aus der Beziehung

Q(‘P.awPlJPO; Pw=P11P2)5

also als harmonisch zugeordnet zu P, bezuglich P; und P_. Der Punkt
P; = P; wurde erhalten aus der Beziehung

Q (Py, Py, Py; Py, By, Py).
Der obere Teil der Figur zeigt die Konstruktion von Px+y = P; aus
der Beziehung
Q (P, Py, Fy; P, Py, Fy).

Fig. 5 zeigt einen interessanten Spezialfall der konstruktiven Addition.
In dieser Figur wurde P, in den einen und einzigen unendlich-fernen
Punkt der Geraden gelegt, dessen Existenz aus dem euklidischen
Parallelenaxiom folgt. Man erkennt, dass die Konstruktion auf die
Additionder Abszissen in einer gewohnlichen Skala fuhrt, dass also

) Veblen und Young, a.a. 0. Da die beiden Autoren Poncelets Definition
der Projektivitit beniitzen, unterscheiden sich die folgenden Beweisfiihrungen von
ihren Entwicklungen.



Fig. 5.

in diesem Spezialfalle die projektive Skala in der Geraden zur ge-
wohnlichen Skala wird. Im oberen Teil der Figur ist ausserdem die eine
der beiden durch P, gehenden Vierecksseiten als die unendlich-ferne Gerade
der Ebene gewihlt worden.

In Fig. 6 ist die Konstruktion von Pxy — P; aus Px — Py und Py = P,
dargestellt.

e P e P
[} 7 A ” :} [+ o)
Fig. 6.

Fig. 7 enthilt wieder den Spezialfall der gewdhnlichen Skala und
zeigt an ihm die konstruktive Multiplikation. Diese Figur bietet auch
elementar-geometrisches Interesse, wenn man die Proportionenlehre auf
sie zur Beweisfithrung anwendet.

Welchen Gesetzen geniigennun die heidenOperationen?

Ist P, ein Punkt der Geraden, dem die Zahl z zugeordnet wurde, so
konnen die Konstruktionslinien leicht so angeordnet werden, dass man
unmittelbar erkennt:



Fig. 7.

Die Operationen der Addition und der Multiplikation
sind assoziativ, d. h. es ist

PX+}'+PZ. :Px+P}'+z
ny.Pz ::Px-Pyz-

Ferner zeigt Fig. 8 die Anordnung der Konstruktionslinien zum
Beweise des distributiven Gesetzes

Pxy 4 Py = Px(y+2).

und

Sind némlich Py, Py, P; bekannt, so sei
: Py, konstruiert mit dem Viereck 4BCD,
PIY ) n ” b » ADFE)
. s SR ) woles
endlich Px(y4+z) aus Px und Pyy; mit dem Viereck DFEH.
Definitionsgeméss besteht nun die Beziehung
Q(Pwpr’PO; Poo)Pz:PY'i'z)'
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Projiziert man diese quadrangulare Gruppe von D aus auf AC, so
entsteht die neue quadrangulare Gruppe

Q (C, 4, Py; C, G, H).
Diese projiziert sich von F aus in
Q@ (Pys Pxy, Fy; P, Pxz, Px(y+2))-
Aus dieser Beziehung folgt aber, dass

Pxy 4 Pxz = Px(y+2))
ist.
Mit Leichtigkeit beweist sich ferner:

Die Operation der Addition ist kommutativ, d. h. es
ist

Px+y — Py+x-

&

Es sei ndmlich in Fig. 9 Px;y konstruiert mit dem Viereck ABCD,
Pyix ganz analog mit dem Viereck A'B'C'D". Ordnet man nun den Ecken
ABCD des ersten, bezw. die Ecken C'D'A’B’ des zweiten zu, so treffen
sich funf Paare entsprechender Seiten auf dem Triiger s der projektiven
Skala; die beiden Vierecke liegen also perspektiv, d. h. die sechsten Seiten
BD un D'B treffen sich auch auf der Geraden s, oder Px4y ist identisch
mit Pyix.

Damit ist aber alles erschopft, was aus den Axiomen

derVerknipfung allein abgeleitet werden kann. Denn es gilt
der Satz:

Die Operation der Multiplikation ist kommutativ oder

nicht, je nachdem der Fundamentalsatz der Projektivitit
gilt oder nicht.
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In Fig. 10 sei Py konstruiert mit dem Viereck ABCD, Py; analog
mit dem Viereck A'B'C’'D'. Es ist nun nicht moéglich, die Ecken der beiden
Vierecke sich so entsprechen zu lassen, dass sich fiinf Paare entsprechen-
der Seiten in den funf gegebenen Punkten Py, P, P_, Px, Py treffen. Daher
ist es auch nicht moglich, ohne weitere Hulfsmittel einzusehen, dass sich
BD und B'D’ auf dem Triger s schneiden, d. h. dass Pxy und Py, iden-
tisch sind. Worauf es beim Beweis dieser Identitit ankommt, erhellt aus
der folgenden Uberlegung:

Fig. 10.

Es ist
PP xP ECD,
weil die erste Gruppe von 4 aus in die zweite projiziert wird; ferner
.Pw ECD XPOO POPnyy,
weil die erste Gruppe von B aus in die zweite projiziert erscheint. Also
ist
1. P PyP Px x P, Fy Py Pry.
Ebenso erhdlt man durch Projektionen von €', bezw. von D’ aus
PP PP xEP AR,
und
ErPDA’B' ~ Pm PU‘PY Pyx,
oder also :
2. Pw ‘PUPIPx ~ Pm P‘)Pnyy-
Aus den Projektivitdten 1. und 2. folgt dann die neue
P, Py Py Pry x P, Fy Py Py
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Gilt nun der Fundamentalsatz der Projektivitit, so ist
Pxy = Pyx;

denn in diesem Falle besitzt eine Projektivitit, die drei Doppelpunkte
hat, nur Doppelpunkte.

Wie schon erwihnt, sind zum Beweise dieses Fundamentalsatzes die
Axiome der Anordnung und der Stetigkeit erforderlich. Aus diesen
Axiomen ergibt sich dann auch, dass zwei Punkte, denen durch unsere
konstruktiven Operationen zwei verschiedene Zahlen zugeordnet
wurden, nicht zusammenfallen konnen. Endlich bietet es keine
Schwierigkeiten, auch die inversen Operationen der Subtraktion
und der Division zu definieren und damit allen rationalen Zahlen
Punke der Geraden zuzuordnen. Zu den Punkten der Geraden, denen
irrationale Zahlen zukommen, wird man durch sukzessive Annédherung
gelangen.

Fur die analytische Behandlung der Projektivitat in einer Geraden
ist nun von Wichtigkeit der Satz:

Jede lineare Transformation

‘ b
z :(:xi——}t—d’ (ad — be == o),

stellt eine Projektivitiat dar und umgekehrt.

Da némlich jede derartige Transformation erzeugt werden kann durch
die wiederholte Ausfithrung der besonderen Transformationen

, / . 1
& =z-4a & —ax und &=,

so geniigt es, diese letztern zu betrachten. Nun zeigen aber die Fig.11—13,
dass man die entsprechenden zu vier Punkten z;, @5, 5, x, in allen drei
Fillen erhalten kann durch eine Kette von Projektionen. Die drei be-
sonderen linearen Transformationen vermitteln also Beziehungen, bei
denen harmonische Gruppen erhalten bleiben, das sind Projektivititen.

— Und da eine Projektivitit durch drei Paare entsprechender Punkte
bestimmt ist, so reichen die zur Verfugung stehenden Konstanten g’ g’ (—;
eben aus zur analytischen Bestimmung der Projektivitit.
Definiert man endlich als Doppelverhédltnis von vier Punkten
Py, Py, Py, P, die Funktion
e

der ihnen zugeordneten Zahlen, so ist damit eine Zahl eingefuhrt, die
sich projektiven Transformationen gegeniiber als invariant erweist, da
sie ihren Wert bei linearen Transformationen von nicht verschwindender
Determinante nicht findert. '
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Fig. 11.

Eine ausfihrlichere Begriindung der Geometrie des Masses auf
Grund der eben entwickelten Geometrie der Lage iiberschreitet den
Rahmen dieses Vortrages; ich muss mich beschrinken auf die gedringte
Angabe des Grundgedankens.8)

[ ] ity ey | r
P T xkXx, R A

Fig. 12.

Man fugt zu den Begriffen und Axiomen der Geometrie der Lage
den primitiven metrischen Begriff derRechtwinkligkeitvonEbenen.
Aus den fundamentalen Eigenschaften der Rechtwinkligkeit folgt, dass
zwel zueinander senkrechte Ebenen als konjugiert in einem Polarsystem
betrachtet werden konnen, dessen Ordnungsfliche — die sog. absolute

‘Fldche zweiten Grades des Raumes — bei allen metrischen Eigen-
schaften der Figuren die ausschlaggebende Rolle spielt. Man kann nédm-

8) Man vergleiche iiber diese und andere Fragen den zusammenfassenden Artikel
von F.Enriques, Prinzipien der Geometrie, in der ,Enzyklopédie der mathematischen
Wissenschaften“, Bd. III, A, B, 1. ] : :



a? VK‘ leﬁx’(?ux;’xa’ X-, '-fc
Fig. 13.

lich zeigen, dass die Bewegungen im Raum aufgefasst werden konnen
als diejenigen projektiven Transformationen (Kollineationen), welche
diese absolute Fliche in sich transformieren. Die Entfernung zweier
Punkte ist dann zu definieren als eine solche Funktion ihrer Koordinaten,
die sich bei den Bewegungen als Invariante erweist. Allgemeiner konnen
die metrischen Eigenschaften einer Figur als ihre invarianten
Beziehungen zur absoluten Fliche betrachtet werden.

Die drei moglichen geometrischen Systeme unterscheiden sich in der
Art der absoluten Fléache.

Ist diese reell, so entsteht die Geometrie von Gauss-Bolyai-
Lobatschefsky (die hyperbolische Geometrie von Klein). Jede
Gerade hat zwei reelle unendlich-ferne Punkte, ihre Schnitt-
punkte mit der absoluten Fliche. Durch jeden Punkt ausserhalb einer
Geraden gehen zwei ,Parallelen“ zu ihr, nimlich seine Verbindungs-
geraden mit ihren unendlich-fernen Punkten.

Ist die absolute Fliche imaginir, so entsteht die Geometrie von
Riemann (genauer die elliptische Geometrie von Klein). Es gibt
dann keine reellen unendlich-fernen Punkte im Raum und
also auch keine parallelen Geraden. : : 3
. Entartet dagegen die absolute Fliche, indem sie zu einer Ebene
und einem in ihr liegenden imaginiren Kegelschnitt wird, so liegt die
‘Geometrie von Euklid (die parabolische Geometrie) vor. Die unend-
lich-ferne Ebene des Raumes und der in ihr liegende imaginire Kugel-
kreis bilden dann das absolut§ ‘Gebilde. Jede Gerade hat einen un-
endlich-fernen Punkt, ihren Schnittpunkt, mit der unendlich-fernen
Ebene. Daher gibt es zu einer Geraden durch jedenTausserhalb ihr ge-
']egenen Punkt auch nur eine Parallele. ' e R T

Schweiz. Pidagog. Zeitschrift, 1909. 20
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