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Die arithmetischen Theorien der Irrationalzahlen.

Vortrag, gehalten in der Vereinigung von Mathematiklehrern an Schweiz.
Mittelschulen, am 6. Dezember 1902.

Von Dr. C. Brandenberger.

1. Die irrationalen Zahlen haben in der zweiten Hälfte des vorigen
Jahrhunderts von drei Mathematikern, von Dedekind, W eie r strass
und G. Cantor, eine rein arithmetische Behandlung erfahren.

Die Dedekindschen Betrachtungen stammen aus dem Jahre 1858,

also aus der Zeit, wo Dedekind Professor der Mathematik am eidg\
Polytechnikum in Zürich war. Er hatte damals Vorlesungen zu halten über
die Elemente der Differential- und Integralrechnung und fühlte bei dieser

Gelegenheit wie nie zuvor den Mangel einer streng begründeten Arithmetik.

Er fasste den Entschluss, so lange nachzudenken, bis er „eine
rein arithmetische und völbg strenge BegTÜndung der Prinzipien der

Infinitesimalrechnung gefunden haben würde". Dies gelang ihm im
November 1858, aber erst im Jahre 1872 veröffentlichte er seine

Untersuchungen in einer kleinen Schrift „Stetigkeit und irrationale Zahlen",
die 20 Jahre später eine zweite Auflage erlebte (Braunschweig, Vieweg &
Sohn, 1 M.).

W eie r strass behandelte die Irrationalzahlen in der Einleitung- zu
seinen Vorlesungen über die Theorie der analytischen Funktionen.
Veröffentlicht wurde seine Darstellung durch seine Schüler: Durch den Gyni-
nasiaUehrer Kossak in der Programm-Abhandlung des Werderschen

Gymnasiums, Berlin 1872; durch Pincherle in einer itabenischen
mathematischen Zeitschrift (Giorn. di mat. 18) ; durch Biermann in seinem

Buche „Theorie der analytischen Funktionen", Leipzig 1887. Georg
Cantor pubbzirte seine Theorie in der Abhandlung „Über die
Ausdehnung eines Satzes aus der Theorie der trig-onometrischen Reihen" im
5. Bande der math. Annalen, ebenfalls im Jahre 1872. Heine schliesst
sich in seinen „Elementen der Funktionenlehre" (J. für Math. 74) an



189

Cantor an. Die neuem Lehrbücher der Arithmetik, Algebra und
algebraischen Analysis gehen entweder von der Cantorschen oder der
Dedekindschen Definition der Irrationalzahl aus. Stolz und Gnieiner z. B.
stellen in ihrer „Theoretischen Arithmetik" die Cantorsche Definition an
die Spitze und behandeln die Irrationalzahlen im Anschluss an die Lehre
von den systematischen Brüchen. Von der Dedekindschen Definition gehen
aus: Weber in seiner „Algebra"; ferner Hr. Prof. Burkhardt in Zürich
in seinem neuesten Buche „Algebraische Analysis", das in Bälde
erscheinen wird.

2. Bevor ich dazu übergehe, in den Hauptzügen wenigstens, die drei
Theorien der Irrationalzahlen darzustellen, will ich (in einer Art
Vorbereitung) von drei Punkten reden. Erstens von der Erweiterung des

Zahlbegriffs im allgemeinen. Ich werde bei dieser Gelegenheit die Fragen
nennen, die wir bei jeder Erweiterung des Zahlbegriffes, also auch bei der
Einführung der irrationalen Zahlen zu beantworten haben. Zweitens
werde ich an einem Beispiele zeigen, dass wir mit den rationalen Zahlen
nicht auskommen, dass wir eine unabsehbare Menge von Aufgaben stellen
können, die man im Reiche der rationalen Zahlen nicht zu lösen im stände
ist. Drittens will ich an einen für die Einführung der irrationalen Zahlen
fundamentalen Satz über rationale Zahlen erinnern.

3. Den Ausgangspunkt der Arithmetik bilden die natürbchen Zahlen
1, 2, 3, 4, 5 Sie werden zum Gegenstand mathematischer
Untersuchung, wenn man mit ihnen gewisse Verknüpfungen vornimmt, wenn
man mit ihnen gewisse Operationen ausführt, wenn man mit ihnen „rechnet".
Die Arithmetik leitet Gesetze ab, die angeben, wie gerechnet wird. Jedes
Gesetz sagt aus, dass eine Reihe von Operationen ersetzt werden kann
durch eine Reihe anderer Operationen, ohne dass sich das Schlussergebnis
ändert, z. B. c (a -4- b) ac -4- bc oder (ß -J- b)'.. (a — V)== a2 — Iß. Wir
unterscheiden Fundainentalgesetze und abgeleitete Gesetze. Der Einteilungs-
grund begt in der Art der Beweisführung. Das erste der beiden
genannten Gesetze ist ein Fundamentalgesetz, das zweite ein abgeleitetes
Gesetz. Das erste wird in folgender Weise bewiesen : c(a-\-b) heisst, man
soll (a-\-b) cmal als Summand setzen. Wir gehen also zurück auf den

Begriff der Multiplikation und die Bedeutung der Zahl c. Ein Gesetz,
bei dessen Herleitung auf die reale Bedeutung der Operationen und der
Objekte zurückgegangen wird, heisst ein Fundamentalgesetz. Soll dagegen
die Richtigkeit der Formel (a -4- b) (a — b) — a2 — b2 nachg-ewiesen werden,
so wii'deinfach multipbzirt nach bereits abgeleiteten Gesetzen; wir rechnen
mit den Zeichen der Operationen und der Objekte. Solche Gesetze heissen

abgeleitete Gesetze. Bei der Erweiterung des Zahlengebietes ist diese
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Einteilung der arithmetischen Gesetze, wie wir bald sehen werden,
wichtig.

Während die direkten Operationen im Reiche der natürlichen Zahlen
unter allen Umständen ausführbare Operationen sind, erfordern die
indirekten Operationen viermal eine Erweiterung des Zahlbegriffs, d. h. man
macht neben den natürlichen Zahlen noch andere Gedankendinge. die

man auch mit dem Wort „Zahl" bezeichnet, zum Gegenstand der
Untersuchung. Wir führen ein bei der Subtraktion die negativen, bei der
Division die gebrochenen, bei der Wurzelausziehung die irrationalen und
die komplexen Zahlen. Die neuen Zahlen müssen definirt werden. Wir
verwenden dazu die bereits vorhandenen Zahlen. Die gebrochene Zahl
z. B. kann durch ein „Paar ganzer Zahlen" eingeführt werden; zur
Definition der Irrationalzahl ist nach jeder der drei Definitionen eine un-
endbche Menge rationaler Zahlen nötig. Darin besteht das Gemeinsame

der drei Definitionsformen; der Unterschied begt in den Bedingungen,
die die unendbche Menge rationaler Zahlen zu erfüllen hat, damit sie als

Grundlage der Definition einer irrationalen Zahl dienen kann und, wie
Cantor sagt, „in dem Erzeugungsmoment, durch welches die Menge mit
der durch sie definirten Zahl verknüpft ist". Sind die neuen Objekte

definirt, so muss gezeigt werden, wie man sie unter sich und mit den

bereits vorhandenen Zahlen vergleicht und wie man mit ihnen rechnet.
Man versucht, die Begriffe des Gleich-, Grösser- und Kleinerseins und die

Grundoperationen so zu definiren, dass die Gesetze, die für das Rechnen

mit natürbchen Zahlen gelten, auch für die neuen Zahlen aufrecht
erhalten bleiben.

Ich fasse zusammen : Führen wir neue Zahlen ein, so müssen sie genau
definirt werden; es muss untersucht werden, ob und wie sich die
Grundoperationen und die Begriffe des Gleich-, Grösser-
und Kleinerseins definiren lassen, dass die Gesetze, nach welchen

mit natürbchen Zahlen gerechnet wird, auch im erweiterten Zahlenreiche

gelten. Dabei genügt der Beweis für die Permanenz der
Fundamentalgesetze; gelten diese, so gelten auch die abgeleiteten
Gesetze.

4. Um zu zeigen, dass wir mit den rationalen Zahlen nicht
auskommen, betrachten wir die rein quadratische Gleichung

x2 a,

wo a eine positive ganze Zahl ist. Wir fragen nach den Bedingungen,
unter denen die Gleichung eine rationale Wurzel hat. Ist die Wurzel

prational, so ist sie entweder eine ganze Zahl n, oder ein Bruch —>
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wo p und q ganz und als relativ prim vorausgesetzt werden. Wenn die

ganze Zahl n die Wurzel der Gleichung- ist, so ist a m2, d. h. a ist das

Quadrat einer ganzen Zahl. Ist dagegen

-r Px —
3

die Wurzel, so ist
p2

q'i >

woraus folgt
p2 a q2.

«, p und q sind ganze Zahlen. Die bnke und die rechte Seite dieser

Gleichung sind ganze Zahlen. Ein Faktor der rechten Seite muss auch

Faktor der bnken Seite sein, q2 muss in p2, q in p enthalten sein, was gegen
dieVoraussetzung ist. Ein Bruch kann somit die Gleichung nicht befriedigen.
Wir finden den Satz : Ist a keine Quadratzahl, so gibt es keine rationale
Zahl, welche die Gleichung- x2 a befriedigt. Der ausgesprochene Satz

ist der einfachste Spezialfall eines aUgemeinen Satzes über algebraische
Gleichungen.

Nun stehen zwei Wege offen: Wir können erklären, dass solche

Gleichungen keine Lösung zulassen, oder versuchen, durch Einführung
neuer Zahlen ihre Lösung zu ermögbchen. Da geometrische Probleme oft
solche Gleichungen befern, werden wir den zweiten Weg- einschlagen und
neue Zahlen, die sogenannten Irrationalzahlen, schaffen. Eine Irrationalzahl,

die, wie hier, Wurzel einer algebraischen Gleichung sein kann, heisst
eine algebraische irrationale Zahl. Jede nicht-algebraische
Irrationalzahl heisst transzendent. Zwei transzendente Irrationalzahlen

spielen eine grosse Rolle: », das Verhältnis des Umfangs zum
Durchmesser eines Kreises, und e, die Basis des natürlichen Logarithmensystems.

Es gibt sehr viel mehr transzendente als algebraische Irrationalzahlen.

Ich verweise Sie in dieser Beziehung auf die Schrift von Klein
& Tägert : „Vorträge über ausgewählte Fragen der Elementarmathematik"
(Leipzig, 1895). Klein beweist dort, dass es sehr viel mehr transzendente
als algebraische Irrationalzahlen gibt; er zeigt, dass in jedem noch so

kleinen Bereiche sozusagen oo8 transzendente Zahlen liegen.

Ich habe diese Bemerkungen hier gerne eingeschoben, um Sie die

Wichtigkeit einer strengen Theorie der Irrationalzahlen erkennen zu
lassen. Sie sehen, dass es sich nicht nur um Quadrat- und Kubikwurzeln
bandelt; die Natur der Zahlen ,-i und e kann erst auf Grund einer
vollkommenen Theorie der irrationalen Zahlen überhaupt erkannt werden.
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5. Zum Schlüsse dieser Vorbereitung wiU ich an einen Satz über
rationale Zahlen erinnern, den wir oft brauchen werden: -Die rationalen

Zahlen bilden eine geordnete, überall dichte, aber
keine stetige Menge." Ich wül versuchen, Ihnen den Inhalt dieses

Satzes und die Bezeichnungen „Menge", „geordnet", „dicht" und „stetig"
zu erklären.

Unter einer Menge verstehen wir die begriffliche Zusammenfassung
von Objekten unserer Anschauung oder unseres Denkens. Wir, geehrte
Kollegen, bilden eine Menge; die natürlichen Zahlen bilden eine Menge;
die rationalen Zahlen bilden eine Menge.

Eine Menge heisst geordnet, wenn angegeben werden kann, welches

von zwei beliebigen Elementen der Menge das grössere ist. Die rationalen
Zahlen bilden eine geordnete Menge. Denn wählen wir zwei beliebige

3 5
rationale Zalüen, z. B. —r und -jj-, so kann man sofort entscheiden, welches

4 6

Element das grössere ist.

Eine Menge heisst dicht, wenn zwischen zwei Elementen immer
noch andere Elemente der Menge gefunden werden. Bilden die natürlichen
Zahlen eine dichte Menge? Nein; denn zwischen zwei aufeinanderfolgenden
positiven ganzen Zahlen begt kein Element der Menge. Die rationalen
Zahlen hingegen bilden eine überall dichte Menge. Geben Sie mir zwei
bebebige rationale Zahlen, sie mögen noch so nahe beieinander begen, so

kann ich immer eine und damit unendlich viele andere rationale Zahlen

nennen, die zwischen den gegebenen Zahlen liegen. Zwischen den rationalen

Zahlen a und b begt z. B. ihr arithmetisches Mittel -^ (a-\-b).

Wann heisst eine Menge stetig? Dedekind findet das Wesen der
Stetigkeit in dem folgenden geometrischen Axiome: „ZerfaUen alle
Punkte der Geraden in zwei Klassen von der Art, dass jeder Punkt der
ersten Klasse hhks von jedem Punkt der zweiten Klasse begt, so existirt
ein und nur ein Punkt, welcher diese Einteilung aber Punkte in zwei
Klassen, diese Zerschneidung der Geraden in zwei Stücke hervorbringt."1)
Demnach wird eine Menge stetig genannt werden, wenn eine Scheidung
allei- ihrer Elemente in zwei Klassen von der Art, dass jedes Element
der einen Klasse grösser ist als jedes Element der andern Klasse, durch
ein bestimmtes Element der Menge und nur durch ein solches mögbch
ist Man bezeichnet die erste Klasse auch als das Obergebiet, die
zweite als das Un ter gebiet. Nennen wir eine Einteilung der Elemente

l) „Stetigkeit und irrationale Zahlen", p. 11.
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einer Menge in zwei Klassen von der Art, dass jedes Element einer Klasse

angehört und dass jedes Element der einen Klasse kleiner ist als jedes
Element der andern Klasse, einen „Schnitt in die Menge", so können
wir die Definition der Stetigkeit so fassen:

Eine Menge heisst stetig, wenn jeder Schnitt in die
Menge durch ein bestimmtes Element der Menge erzeugt
wird.

Wir behaupten, dass die rationalen Zahlen keine stetige Menge bilden.
In der Tat werden wir bei der Dedekindschen Theorie zeigen, dass wir
in die Menge der rationalen Zahlen Schnitte ausführen können, nicht nur
durch rationale Zahlen, also nicht nur durch Elemente der Menge,
sondern auch auf andere Art. „Dichte Menge" und „stetige Menge" sind
wohl auseinander zu halten.

Ich wül versuchen, Ihnen diese Begriffe durch ein Beispiel zu
veranschaulichen. Sie, verehrte Anwesende, bilden eine Menge. Sie wird
zu einer geordneten, wenn ich Sie in gerader Linie aufstelle und festsetze,
dass von zwei Elementen dasjenige das höhere sein soU, das rechts vom
andern steht. Nehme ich [die 12. Person aus der Reihe heraus, rechne
die 11 ersten zur ersten, die andern zur zweiten Klasse, so habe ich einen

Schnitt in die Menge ausgeführt, und zwar wurde dieser Schnitt erzeugt
durch ein Element der Menge. SoUen dagegen die 15 ersten Personen
der 1., alle andern der 2. Klasse angehören, so wird dieser Schnitt nicht
durch ein Element der Menge ausgeführt. Wir werden zeigen, dass wir
in die Menge der rationalen Zahlen sowohl Schnitte der ersten wie der
zweiten Art ausfuhren können. Wäre sie eine stetige Menge, so bessen

sich keine Schnitte der zweiten Art konstruiren.
6. Wir wenden uns zur Dedekindschen Theorie der Irrationalzahlen.
Wir fassen die unendliche Menge rationaler Zahlen ins Auge und

führen, nach irgend einem bekannten Gesetze, einen Schnitt in die Menge.
Das Untergebiet sei A, das Obergebiet A'. Jede rationale Zahl kommt
in A oder A' vor. Jedes A ist kleiner als jedes A'. Der Schnitt wird
passend durch AjA' bezeichnet. Ein Beispiel : Ich rechne zum Untergebiet

aUe Zahlen, die kleiner sind als 1000, also abe negativen Zahlen
und die positiven Zahlen bis 1000 ; dem Obergebiet gehören abe Zahlen

an, die grösser sind als 1000. 1000 selbst rechne [ich z. B. zum Untergebiet.

Wir können von jeder Zahl sagen, zu welchem Gebiet sie gehört :

—3 zum Untergebiet; 1001 zum Obergebiet.

Vergleichen wir abe denkbaren Schnitte, die in die Menge der rationalen

Zahlen ausgeführt werden können, so werden wir drei Fälle
unterscheiden :

Schweiz. Pädagog. Zeitschrift 190H. 13
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I. Das Untergebiet enthält eine grösste Zahl, d. h. eine Zahl,
die grösser ist als alle andern Zahlen des Untergebietes und das

Obergebiet eine kleinste Zahl, d. h. eine Zahl, die kleiner ist als alle
andern Zahlen des Obergebietes.

H. Das Untergebiet besitzt eine grösste, aber das

Obergebiet keine kleinste Zahl oder das Obergebiet besitzt eine
kleinste, aber das Untergebiet keine grösste Zahl.

IH. Es gehört weder dem Untergebiet eine grösste- noch
dem Obergebiet eine kleinste Zahl an.

Wir werden zeigen: Der Schnitt I ist undenkbar; durch den

Schnitt II wird die rationale, durch den Schnitt III die irrationale

Zahl definirt.

Dass der erste FaU nicht statthaben kann, sieht man indirekt ein.

Es sei g die grösste Zahl des Untergebietes, k die kleinste Zahl des

Obergebietes. Somit ist g<Ck. Die Menge der rationalen Zahlen ist eine

überall dichte Menge, d. h. es begen zwischen zwei behebigen Elementen

noch andere Elemente. Zwischen g und k z. B. liegt m=-^ (g-\-k). Zu

welchem Gebiete gehört m? m ist grösser als g, grösser als die grösste
Zahl des Untergebietes; m gehört nicht zum Untergebiet, m ist kleiner
als k, kleiner als die kleinste Zahl des Obergebietes ; m gehört nicht zum
Obergebiet, m gehört also weder zum Unter- noch zum Obergebiet, was
aber gegen die Definition des Schnittes ist. Dieser Widerspruch wird nur
dadurch gehoben, dass wir zugeben, dass ein Schnitt I. also ein Schnitt,
bei dem das Untergebiet eine grösste und gleichzeitig das Obergebiet eine

kleinste Zahl besitzen, unmöghch ist.

Kehren wir zu dem Beispiel zurück, wo der Schnitt durch die Zahl
1000 erzeugt wird. 1000 gehört zum Untergebiet; dieses besitzt also

eine grösste Zahl, nämlich 1000. Das Obergebiet besitzt aber keine kleinste
Zahl. Denn bezeichnet man bgend eine Zahl des Obergebietes als die

kleinste, so kann man immer noch andere Zalden nennen, die zwischen

ihr und 1000 begen. 1000,000001, welche Zahl doch 1000 sehr nahe

kommt, ist nicht die kleinste; denn es ist z. B. 1000,00000001 noch kleiner
und gehört auch noch dem Obergebiet an. — Rechnen wir 1000 zum
Obergebiet, so besitzt das Obergebiet eine kleinste, aber das Untergebiet
keine grösste Zahl. Die grösste Zahl des Untergebietes, bez. kleinste Zahl
des Obergebietes ist gerade die Zahl, welche den Schnitt hervorbringt
Umgekehrt können wir jede rationale Zahl durch einen solchen Schnitt
definiren.
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Ein Schnitt in die Menge der rationalen Zahlen, so
beschaffen, dass entweder das Untergebiet eine grösste
oder das Obergebiet eine kleinste Zahl besitzt, definirt
eine rationale Zahl.

Wir kommen zur Frage nach der Möglichkeit des Schnittes III.
Können wir in die Menge der rationalen Zahlen Schnitte ausführen von
der Art, dass weder das Untergebiet eine grösste, noch das Obergebiet
eine kleinste Zahl besitzt? Wir beweisen, dass dies in der Tat möglich
ist. Zu diesem Zwecke konstruireu wir in die Menge der rationalen

fitZahlen einen Schnitt nach |folgender Festsetzung: — sei eine positive

9
Zahl, aber kein Quadrat, z. B. nicht r^r. Zum Untergebiet rechnen wir

alle positiven Zahlen, deren Quadrat < ist als —, zum Obergebiet alle

m
Zahlen, deren Quadrat > ist als —. Dadurch ist der Schnitt definirt.

Wir können von jeder beliebig vorgelegten Zahl entscheiden, zu welcher

Klasse sie gehört. Wir quadriren sie, vergleichen das Quadrat mit —

und werfen sie ins Unter- oder Obergebiet, je nachdem das Quadrat kleiner

oder grösser ist als —. Nun behaupten wir: Bei diesem Schnitt gehört

dem Untergebiet weder eine grösste, noch dem Obergebiet eine kleinste

Zahl an. Wir begnügen uns, den ersten Teil der Behauptung nachzu-
m

weisen, a sei eine Zahl des Untergebietes, also a2 <" —. Die Mengte der
n

rationalen Zahlen ist dicht. Somit lässt sich eine Zahl a' finden, so

beschaffen, dass a' zwischen a2 und — liegt, mit a. W. ist' n a

m o m-— a'2 < a2,
n >a% '

aus welcher Ungleichung leicht a'> a gefunden wird. Es kann somit zu

jeder Zahl a des Untergebietes immer eine grössere Zahl a' des

Untergebietes gefunden werden, d. h. das Untergebiet besitzt keine grösste
Zahl. Ebenso beweist man, dass dem Obergebiet keine kleinste Zahl
angehört. Der so konstruirte Schnitt wird also nicht durch eine rationale
Zahl hervorgebracht. Vergleichen wir diese Tatsache mit der oben

gegebenen Definition der Stetigkeit, so können wir schliessen : Die ratio-
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nalen Zahlen bilden keine stetige, sondern eine unstetige
Menge. Um die unstetige Menge der rationalen Zahlen zu der stetigen

Menge der abgemeinen (reellen) Zahlen zu ergänzen, ordnen wir jeder
Lücke eine neue, eine irrationale Zahl zu. Die Dedekindsche Definition
der Irrationalzahl kann also so formuhrt werden :

Ein Schnitt in die Menge der r ationalen Zahlen, so

beschaffen, dass weder das Untergebiet eine grösste, noch
das Obergebiet eine kleinste Zahl besitzt, definirt eine
irrationale Zahl.

Die rationalen und irrationalen Zahlen büden die reellen oder

allgemeinen Zahlen. Die Menge der reellen Zahlen ist eine
stetige; denn einschnitt in diese Menge wird immer durch ein Element
der Menge erzeugt.

Ich habe Ihnen den Dedekindschen Existenzbeweis der Irrationalzahl
so ausführbch vorgetragen, weü er, mich wenigstens, so recht von dem
Vorhandensein dieser Zahlen überzeugt hat.

7. Nun sob an einem Beispiel gezeigt werden, wie auf Grund der
Definition der Irrationalzahl mittelst des Begriffes des Schnittes diese

berechnet werden kann. Als Beispiel wählen wir die irrationale Zahl,
die den Mathematikern zuerst entgegentrat, nämhch y" 2. Wir suchen
die Zahl, deren Quadrat 2 ist. Zu diesem Zwecke konstruiren wir in die

Menge der rationalen Zahlen einen Schnitt nach folgender Festsetzung:
Zum Untergebiet rechnen wir alle Zahlen, deren Quadrat < 2, zum
Obergebiet alle Zahlen, deren Quadrat > 2. Durch Probiren findet man : 1

gehört zum Untergebiet, denn l2 1 <; 2 ; 2 gehört zum Obergebiet, denn
22 4>2. Zum Untergebiet gehören alle Zahlen < 1, zum Obergebiet

alle Zahlen > 1. Dagegen ist noch unentschieden, welchem Gebiete die
Zahlen zwischen 1 und 2 angehören. Greifen wir eine behebige ZaM aus
dem „Intervab der Unentschiedenheit" heraus, so können wir entscheiden
zu welchem Gebiete sie gehört. 1,5 z. B. gehört zum Obergebiet, denn
1,52 2,25 > 2. Das Obergebiet ist bis 1,5 ausgedehnt, das Intervab der
Unentschiedenheit ist jetzt 1... 1,5. Die Zahl 1,25 gehört zum
Untergebiet; denn 1,252 1,5625 < 2. Das Intervab der Unentschiedenheit ist
nun 1,25 1,5. Auf diese Weise findet man, dass angehören :
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dem Untergebiet: dem Obergebiet:
1 x 2

1,25 1,5

1,375 1,4375

1,4063 1,4219

1,4141 1,4180

• 1,4160

1,4150

1,4145

Das IntervaU der Unentschiedenheit ist nun

1,4141 1,4145;

wir wissen 1,4141 < yT<C 1,4145. Durch hinreichend oftmabges
Halbiren des Intervabes der Unentschiedenheit kann man der Irrationalzahl
bebebig nahekommen, man kann sie mit vorgeschriebener Genauigkeit
berechnen.

Diesem Beispiele entnehmen wir die abgemeine Bemerkung, dass wir
bei der Berechnung einer Irrationalzahl auf Grund der Definition durch
den Schnitt eine Zahl des Unter- und eine des Obergebietes kennen und
ein Verfahren besitzen müssen, durch welches das Intervab der
Unentschiedenheit immer kleiner und kleiner gemacht werden kann.

Näheres über die Berechnung der Irrationalzahlen auf Grund der drei
Definitionen finden Sie in einem Aufsatze von Hrn. Prof. Burkhardt
(Vierteljahresschrift der naturf. Gesellschaft Zürich, Bd. 46, p. 179).

8. Wir zeigen, wie zwei abgemeine, durch Schnitte definirte Zahlen,
vergbchen werden können, d. h. wir definiren die Begriffe des Gleich-,
Grösser- und Kleinerseins.

Gegeben seien die Zahlen a A\A' und ß B\B'. a und ß heissen

gleich, wenn jedes A ein B und jedes A' ein B' ist. — a heisst grösser
als ß, wenn mindestens ein A ein B' ist. — a heisst kleiner als ß, wenn
mindestens-ein A! ein B ist.

9. Was die Grundoperationen mit so definirten Zahlen betrifft,
beschränke ich mich auf die Definition der Addition und auf den Beweis für
die Gültigkeit des Kommutationsgesetzes der Addition. Eine ausführliche

Darstellung findet sich z. B. in Cahen, „Eléments de la théorie des

nombres", einem Buche, das die Theorie der Irrationalzahlen sehr klar
auseinandersetzt.
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Gegeben seien wieder die Zahlen « AIA' und ß B/B'. Was
versteht man unter der Summe a -f- ß Wir addiren jedes A zu jedem B
und erhalten eine Menge C. Wir addiren jedes -<4' zu jedem B' und
erhalten eine Menge C. Nun lässt sich zeigen, dass die Mengen C und
C' die zur Definition einer allgemeinen Zahl notwendigen Eigenschaften
besitzen : Jedes C ist kleiner als jedes C" ; jede rationale Zahl gehört (im
allgemeinen) entweder C oder C an. Der Schnitt C\C in die Menge der

reeben Zahlen definirt eine neue Zahl y, die rational oder irrational sein

kann. y= CjC heisst die Summe von a=A/A' und ß BjB'.
Bilden wir statt a-\-ß in gleicher Weise ß-\-a, so gewinnt man

offenbar dieselbe Zahl y, d. h. es ist a-\-ß= ß-\- a, das kommutative
Gesetz der Addition gilt.

10. Während Dedekind die Irrationalzahl ohne Benützung irgend
eines arithmetischen Ausdruckes definirt, knüpfen Weierstrass und Cantor
ihre Definitionen an eine bestimmte formale Darstebung der Irrationalzahl

an.
Wir gehen aus von einem Satze, den wir schon unsern Schülern

beweisen. Ist a eine positive Zahl, aber keine «.Potenz einer rationalen

Zahl, so lässt sich -j/7T in einen unendlichen, unperiodischen Dezimalbruch

entwickeln, iu einen Dezimalbruch von der Form

r J--£l _1_ °2 _|_ Cfl
_1_1>T iA T inn ~r inno "r10 T 100 ~ 1000 ~ 10000

c0 ist 0 oder eine positive ganze Zahl; c1; c2, c3, sind Zahlen der Reihe

0, 1, 2,.... 9. Nach diesem Satze lässt sich y 2 in einen unperiodischen
Dezimalbruch entwickeln: Y~¥= 1,4142 oder

4 1 4 2
y/<2 1~*~~W + TW + lÖÖÖ "t" 10000 +

Dieser Ausdruck besitzt zwei Eigenschaften, von welchen man zu der

Definition der Irrationalzahl nach Weierstrass und Cantor gelangen kann.
Die beiden Eigenschaften lauten:

a) Wieviele und welche der Grössen

4 14 2
li 10 ' 100, 1000' 10000'

ich auch in endlicher Anzahl summire, die Summe ist immer endbch.

Addiren wir die 5 ersten Grössen, so erhalten wir eine endliche Zahl;
addiren wir die 1., 3.,... 999. Grösse, die Summe ist endlich. Nennt
man die Summe aus einer bebebigen, aber endbchen Anzahl der Grössen

einen „Bestandteil" der Reihe, so drückt sich die erste Eigenschaft
kurz so aus: „Jeder Bestandteil ist endlich."
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b) Um die zweite Eigenschaft zu erkennen, bbden wir die Reihe:

1; 1,4; 1,41; 1,414; 1,4142;

Wir sehen : Dadurch, dass ich eine hinreichend grosse, aber endbche
Anzahl von Anfangsgbedern dieser Reihe unterdrücke, kann die Differenz
zweier bebebiger Gbeder der noch übrig bleibenden Reihe bebebig klein
gemacht werden. Soll die Differenz zweier Glieder z. B. kleiner sein als

nf) so genügt es, die 3 ersten Gbeder wegzulassen. Auch diese Eigenschaft

können wir mittelst des Begriffes der „Schwankung" kürzer
fassen. Unter einer Schwankung ist der absolute Wert der Differenz
zweier Gbeder zu verstehen. Die Schwankung von 1,41 und 1,4142 z. B. ist:

11,41 — 1,4142 | 0,0042.

Damit lautet die zweite Eigenschaft: „Dadurch, dass ich eine
endliche Zahl von Anfangsgliedern unterdrücke, kann die
Schwankung unter jeden Kleinheitsgrad hinuntergedrückt
werden."

Weierstrass entnimmt der ersten Eigenschaft das Prinzip
der Summenbildung; Cantor steigt von der zweiten empor zu
dem Begriff der Fundamentalreihe. Was eine Fundamentalreihe ist,
werde ich bei der Cantorschen Theorie zeigen ; für jetzt sei nur bemerkt»

dass YÏ dargestebt wird durch die Fundamentalreihe 1 ; 1,4 ; 1,41 ;

1,414;
11. Auch Weierstrass legt der Definition der Irrationalzahl eine

unendhche Menge rationaler (vorläufig positiver) Zahlen zugrunde. Wir
schreiben sie nebeneinander und verbinden sie durch Pluszeichen :

«l-|-a2 + «3 + «4 + a5 +
Dieses Aggregat definirt ein neues Objekt, das wir mit a bezeichnen
woben. Wir nennen a eine abgemeine Zahl, f

Merken wir uns aber wohl : Das neue Objekt wird durch das Aggregat
(ai4"fl2"f"a3~\-¦ ¦ ¦ •) definirt und nicht etwa durch die „Summe" der
unendlichen Menge rationaler Zahlen. Die Bezeichnung „Summe-' ist hier
sinnlos, web bis jetzt nie definirt wurde, was man unter der „Summe"

2
von unendlich vielen Zahlen zu verstehen hat. Wie 5, —3, -~ u. s. w.

ganz bestimmte Objekte bezeichnen, so ist auch (aj -|- a2 -4- «3 -j- -...) das

Zeichen eines zu untersuchenden Objektes, dem wir, seiner Eigenschaften

wegen, auch den Namen „ Zahl " geben. Es wäre ein logischer
Fehler, wenn man die zu definirende Grösse gleich der Summe setzen

wobte, weil eben die Summe einer unendbchen Menge von rationalen
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Grössen noch nicht definirt, ist. Wir werden zwar den Begriff der Summe

auch einführen, aber erst, nachdem wir bereits eine Reihe von
Eigenschaften der neuen Grössen kennen; vorher werden wir zeigen, Wann <x

unendbch oder endbch ist, wie man zwei neue Grössen unter sich und

mit rationalen Zahlen vergleichen kann, wir werden vor der Einführung
des Begriffs der „Summe" die Addition und Multipbkation und die

Gültigkeit der entsprechenden Fundamentalgesetze nachweisen. Weierstrass

gebührt das Verdienst, den genannten logischen Fehler zum erstenmal

konsequent vermieden zu haben. Cantor ist der Überzeugung, dass abe

Schwierigkeiten, die man früher in dem Begriffe des L-rationalen gefunden
habe, mit diesem logischen Felder zusammenhangen; „wird er vermieden,"
sagt Cantor, „so wird sich die irrationale Zahl mit der gleichen Klarheit,

Deutlichkeit und Bestimmtheit in unserm Geiste festsetzen, wie die

rationale, ja wie die natürbche Zalü".
12. Ich gebe nun kurz den Gedankengang der Weierstrassschen

Theorie.
Definirt ist die neue Grösse durch das Aggregat (at -j- a^ -f- % -4-.. -.).

W'eierstrass untersucht zunächst, wann diese Grösse einen endlichen Wert
hat und findet: a ist endbch, wenn 1. kein a unendbch ist, 2. kein end-
bches a unendlich oft vorkommt und 3. jeder Bestandtefl endbch ist Es

werden nur endbche Grössen betrachtet. Wh- zeigen, wie man zwei
Grössen

a al -\- a2 -J- «3 + • • ¦ ¦ und ß b1 -f- b2 + b3 -{-
miteinander vergleichen kann. Dass die Begriffe des Gleich-,
Grösser- und Kleinerseins neu definirt werden müssen, ist klar. Rationale
Zahlen werden verglichen, indem man die sie darstellenden Brüche gleichnamig

macht und die Zähler vergleicht. Eine solche Vergleichung ist
hier unmögbch, weil eine unendliche Anzahl gemeiner Brüche gleichnamig

zu machen wäre. Es ist
a ß, wenn die Einheit und jeder Stammbruch |in a und ß gleich

oft vorkommen (wenn jeder Bestandteil von a auch Bestandteil von ß ist) ;

a > ß, wenn mindestens ein Stammbruch in a öfters vorkommt
als in ß;

a < ß, wenn mindestens ein Stammbruch in ß öfters vorkommt
als in a.

Jetzt definiren wir die Summe (a -f- ß) und das Produkt a-- ß

zweier Grössen; man versteht darunter bez. die Grössen, definirt durch
die Aggregate

« + ß («1 + *i) + («2 + h) + («3 + h) + ¦ ¦

a ¦ ß fll &i + (o, b2 -\- a2br) -\- (axè3 -4- a2b2 + a^bj) +
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Durch Addition und Multiplikation neuer Grössen erhält man Grössen

gleicher Art ; die entsprechenden Fundamentalgesetze bleiben erhalten.

Erst jetzt, nachdem wir mehrere Eigenschaften der neuen Grössen

kennen, „nachdem sie in unserm Geiste eine bestimmte Reabtät erlangt
haben" (Cantor), erst jetzt wird die „Summe" der unendbchen Reihe
definirt. Wir gelangen dazu in folgender Weise. Wir bilden die sog.

Summenglieder oder Partialsummen

s1 a1, s2=a1-\-a2, s3 at -4- a2 + a3, s„ ax + a2 -4- a3-\-...a„,
und führen einen Fundamentalbegriff der Analysis, den Limes-Begriff
ein. Wir-sagen:

Die Grössen sl5 s2, s3, s „,. konvergben gegen die Grösse s,

wenn, nach Annahme einer (beliebig kleinen) positiven Grösse s, der Index
n so gewählt werden kann, dass

\s — Sh\ <C e, wenn Ä>»;
oder wenn sich das Summengbed s„ mit wachsendem n von s behebig
wenig unterscheidet. * heisst der Grenzwert der Grössen sv s2, s3,

Nun werden die Sätze bewiesen:

Ist die durch das Aggregat (a1-\-a2-\-a3-\-...) definirte Grösse a
endbch (wofür die Bedingungen angegeben wurden), so konvergiren die
Grössen slt s2, s3,...., und man nennt den Grenzwerts die Summe der
unendbchen Menge rationaler Zahlen.

Umgekehrt: Konvergiren die s, so ist die durch (a,i-\-a2-{ a3-\-..
eine endhche Grösse definirt.

Unter der Summe der unendlichen Menge rationaler
Zahlen a1; a2, a3,.... verstehen wir somit den Grenzwert s,

gegen welchen die Summenglieder
sl al>s2 al +a2> s3 «l+a2+ a3) s>< ffl +«2 +«3 + -••+«».
konvergiren.

Setzt man die Grössen Oj, a^, a3, als positiv voraus und nimmt
man an, dass die Summenglieder al5 a, -(- a2,l ax -\- a2 -4- a3,... endbch

bleiben, so ists„ eine konvergente Funktion von n; ist lim sn nicht rational,

so definirt er eine neue Grösse, eine irrationale Zahl. Oder, indem
wir die a ganz aus dem Spiele lassen : Ist eine unendliche Menge
positiver rationaler Zahlen gegeben, die beständig wachsen,

aber nicht ins Unendliche wachsen, so wird durch
diese Zahlenfolge eine allgemeine, also eine rationale oder
eineirrationale Zahl dargestellt, nämlich die, nach welchen
die s„ konvergiren.
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Näher können wir hier auf die Weierstrasssche Theorie der Irrationalzahlen,

die offenbar mit der Lehre von der unendbchen Reihe aufs engste
im Zusammenhange steht, nicht eintreten; wir gehen zur Cantorschen
Theorie über.1)

13. Wie bereits bemerkt, legt auch Cantor seiner Definition der
Irrationalzahl eine bestimmte arithmetische Darstebung derselben zu

gründe. Er definirt vor abem die „Fundamentalreihe".
Eine unendliche Reihe rationaler Zahlen heisst eine

Fundamentalreihe, wenn, nach Annahme einer beliebig
kleinen positijven Grösse e, ein Index n so gewählt werden
kann, dass die Differenz zweier beliebiger Glieder, deren
Index höher ist als n, dem absoluten Betrage nach kleiner
ist als e.

Bilden die Zahhen

ai> a2> "te a»,....
eine Fundamentalreihe und ist s eine bebebig kleine positive Grösse, so lässt
sich ein n so angeben, dass

\ak — ah I < e, wenn h und k~>n.
Durch Unterdrückung der n ersten Gbeder kann die Schwankung der
noch übrig bleibenden Gbeder bebebig klein gemacht werden.

3; 3,1; 3,14; 3,141; 3,1415; 3,14159;

ist eine Fundamentalreihe. Setzt man e inf> so hat man « 3 zu

nehmen.

Eine besondere Fundamentalreihe ist die Elementarreihe. Nach
E. Herne versteht man darunter eine Fundamentalreihe, deren Gbeder
sich von 0 mit wachsendem Index n immer weniger unterscheiden ; oder

genauer: Eine Fundamentalreihe ist eine Elementarreihe,
wenn nach Annahme einer positiven Grösse * ein Index n

so gewählt werden kann, dass der absolute Betrag jedes
Gliedes, dessen Index höher ist als », kleiner ist als *,
wenn also

I a k I <C * ; wenn k~>n.
Ein Beispiel :

1 ; 0,1 ; 0,01 ; 0,001 ; 0,0001 ; 0,00001 ;
14. Wir definiren die Grundoperationen mit Fundamental

reihen. Gegeben sind che beiden Fundamentalreihen
et (av a2, 03, a4, a„ ¦ und
ß (bi, bfy b3, bir b„

Nach Vorlesungen von Hrn. Prof. Hurwitz..
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Die Summe, die Differenz, das Produkt und der Quotient sind definirt
durch :

« + 0 («1 + h, a2-\-b2, a3 -f- b3, «„-+-&„,..
a — ß (fix — bv a2 —- b2, a3 — b3, an — b„,
a ¦ ß (a1 ¦ bv a2 • bfr Og • b3, a;„ • è „,
a / ax a^ «3 a« \

: T=VV V V"" 17'"f
Nun lässt sich der Satz beweisen : Die Grundoperationeu mit Fundamentalreihen

sind unter aben Umständen ausführbare Operationen, ausgenommen
die Division durch eine Elementarreihe; das Resultat ist wieder eine

Fundamentalreihe. Die Grundgesetze bleiben erhalten.

Lassen Sie mich z. B. zeigen, dass die Summe zweier Fundamentalreihen

wieder eine solche ist. Es ist zu zeigen, dass

\(ah+bh) — (ak-\-bk)\ < e.

a ist eine Fundamentalreihe, somit \ ah — »& | <Z ~ä'>

ß ist eine Fundamentalreihe, somit \ bh — bk \ < -j^-

Weil der absolute Betrag der Summe kleiner oder höchstens gleich
ist der Summe der absoluten Beträge der einzelnen Summanden, folgt :

|(a* — ak) + (bh — bk)\ <e
oder I («*+&») — (ak-\-bk) \ < e, w. z. b.

Die Summe der beiden Fundamentalreihen

a (1 ; 1,4 ; 1,41 ; 1,414 ; und
ß (3; 3,1; 3,14; 3,141;....)

ist «4-/î (4; 4,5; 4,55; 4,555; .-..),
offenbar wieder eine Fundamentalreihe.

15. Nun teüen wir die Fundamentalreihen in Gruppen ein nach
folgender Festsetzung: Zwei Fundamentalreihen soben dann und nur dann
der gleichen Gruppe angehören, wenn ihre Differenz eine Elementarreihe
ist. Ich schreibe einige Fundamentalreihen auf, die wir sodann nach

dieser Festsetzung einteilen wollen.

-S (l; 1,4; 1,41; 1,414;....)
0 (3; 3,1; 3,14; 3,141;....)
y =(4; 3.2; 3,15; 3,142;

Nur ß und y gehören in die gleiche Gruppe, denn ihre Differenz

y-ß=(l; 0,1; 0,01; 0,001;....)
ist eine Elementarreihe.
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Die Gesamtheit der Fundamentalreihen, die einer
Gruppe angehören, betrachten wir als neues Objekt und
bezeichnen es als allgemeine Zahl.

Wie definirt also Georg Cantor die abgemeine Zahl? Er versteht
darunter den Inbegriff der Fundamentalreihen einer Gruppe, den Inbegriff
der Fundamentalreihen, deren Differenzen Elementarreihen sind. „Jedes
Individuum der Gruppe „stellt die allgemeine Zahl dar". Eine
allgemeine Zahl besitzt unendbch viele Darstellungen. Die rationale
Zahl r wird dargestebt durch die Reihe (r, r, r, Ist che allgemeine
Zahl nicht rational, so heisst sie irrational. Alle Elementarreihen gehören
derselben Gruppe an; sie steben alle die Zahl 0 dar.

16. Wie können wir mit allgemeinen Zahlen rechnen? Wh steben

jede allgemeine Zahl durch eine Fundamentalreihe dar, fuhren mit diesen

die Operationen aus und erhalten als Resultat eine Fundamentalreihe, die
eine allgemeine Zahl, das Resultat, darstellt. SoU z. B. berechnet werden

|/2. V% so stebt man dar:
V~% durch (1; 1,4; 1,41; 1,414;

V3 „ (1; 1,7; 1,73; 1,732;...);
multipbzbt man die Fundamentalreihen, so kommt

|/2""V/3"=(1 • 1; 1,1 • 1,7; 1,41 ¦ 1,73; 1,414- 1,732;

|/2"- >/3"^(l; 2,4; 2,45; 2,449;

Dem vorhin ausgesprochenen Satze über Fundamentalreihen entspricht
der folgende Satz über allgemeine Zahlen: Im Reiche der abgemeinen
Zalden sind die Grundoperationen unter aben Umständen ausführbare

Operationen, ausgenommen die Division durch 0 ; das Resultat der Rechnung

ist wieder eine allgemeine Zahl. Die Grundgesetze bleiben erhalten1).
17. Wie werden zwei allgemeine Zahlen miteinander

verglichen? Wir beweisen den Satz: Die Gbeder einer Fundamentalreihe,
die keine Elementarreihe ist, sind von einem bestimmten Index an
entweder abe positiv oder alle negativ; man sagt, die. Fundamentalreihe
habe im ersten Fabe positiven, im zweiten Fabe negativen Charakter.

Denn wären die Glieder einer Zahlenreihe, wie weit nach rechts man auch

gehen mag, bald positiv, bald negativ, so wären entweder die Schwankungen

nicht beliebig klein, oder die Glieder würden sich bebebig wenig
von der 0 unterscheiden. Im ersten Fabe ist die Reihe keine

Fundamentalreihe, im zweiten Fabe ist sie eine Elementarreihe. Alle Fundamentalreihen

der gleichen Gruppe haben den gleichen Charakter. Eine allgemeine

>) Vergi. Cahen, a. a. 0., p. 155.
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Zahl heisst positiv oder negativ, je nachdem die Fundamentalreihen der
sie definirenden Gruppe positiven oder negativen Charakter haben.

Sollen die beiden allgemeinen Zahlen

a (au a2, a3, und

ß (Pv k> h, ¦ ¦ •)

miteinander vergbchen werden, so bilden wir die Differenz a — ß.

Nun heisst

a ß, wenn a—ß eine Elementarreihe ist;
a>- ß, „ a — ß „ Fundamentalreihe pos. Charakters ist;
a </3, „ « — ß „ „ neg. „ „
Beispiel :

a — (lj 1,4; 1,41; 1,414;

ß-(l; 1,7; 1,73; 1.732;....),
y (2; 1,5; 1,42; 1,415;....).

Es ist:

a<Cß; denn a — ß (0; —0,3; —0,32; —0,318; ist eine

Fundamentalreihe negativen Charakters.

a y, denn a—y=(—1; —0,1; —0,01; —0,001;...) ist eine

Elenientarreihe.

18. Endbch führen wir den Limes-Begriff ein. Die Grössen a,,
a^, a3, jeder Fundamentalreihe bilden eine konvergente Reihe, und
der Limes ist gleich der allgemeinen Zahl, welche durch die Fundamentalreihe

dargestellt wird. Umgekehrt: Eine unendliche Reihe von Zahlen
ist dann und nur dann konvergent, wenn sie die charakteristische Eigenschaft

der Fundamentalreihe besitzt. Auch hier sei noch hervorgehoben,
dass Cantor die Irrationalzahl nicht definirt als Grenzwert der unendbchen
Menge rationaler Zahlen. Es wäre dies der gleiche logische Fehler, auf
den wir bei der Weierstrassschen Theorie schon aufmerksam machten.
Die Existenz dieses Grenzwertes muss abgeleitet werden aus den
Eigenschaften der die allgemeine Zald definirenden unendbchen Menge rationaler
Zahlen. In der Enzyklopädie der mathematischen Wissenschaften sagt
Pringsheim darüber: „W'esentbch ist, dass die zu definirende allgemeine
reebe Zahl (welche je nach Umständen eine rationale oder irrationale
sein kann) nicht etwa als „Summe" einer unendlichen Anzahl von
Elementen oder als „unendbch entferntes Gbed" einer Reihe durch irgend
welchen nebelhaften Grenzprozess gewonnen wird".

19. Zum Schlüsse will ich die drei Theorien noch kurz
miteinander vergleichen.

Dedekind definirt die allgemeine Zalü durch einen Schnitt in die
Menge der rationalen Zahlen. Weierstrass durch das Prinzip der Summenbildung,

Cantor durch Fundamentalreihen, also
Dedekind Schnitt,
Weierstrass Summenbildung,
G. Cantor Fundamentalreihe.
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Das Gemeinsame aller drei Definitionsformen besteht einmal darin,
dass jede eine unendbche Menge rationaler Zahlen zu gründe legt und
Bedingungen stebt, die die rationalen Zahlen erfüllen müssen, damit sie
als Grundlage der Definition einer allgemeinen Zahl dienen können.

Ferner treten in allen Theorien Fundamentalreihen auf. Cantor
definirt die abgemeine Zahl durch eine Gruppe von Fundamentalreihen,
jede abgemeine Zahl wird durch unendbch viele Fundamentalreihen dar-
gestebt. Weierstrass leitet den Satz ab, dass die Summengbeder sx, s^,
s3, beständig wachsen, aber nicht ins Unendliche wachsen ; sie bilden
eine sog. monotone Fundamentalreihe. Und wenn Sie sich an die
Berechnung von j/ITauf Grund der Dedekindschen Definition der Irrationalzahl

erinnern, so entdecken Sie dort zwei Fundamentalreihen: Die
Näherungswerte < |/T bilden eine ansteigende, die Näherungswerte > V~%

eine absteigende Fundamentalreihe, oder, wie Paul Bachmann sagt,
„zwei gegeneinander konvergirende Zahlenreihen".1)

Bei der Berechnung der Irrationalzahlen durch Entwickelung in
Dezimalbrüche oder Kettenbrüche treten immer Fundamentalreihen auf.
Bei Kettenbruchentwicklungen bilden die Näherungswerte geraden Ranges
eine absteigende, che Näherungswerte ungeraden Ranges eine ansteigende
Fundamentab-eibe.j

Einen Unterschied der drei Theorien haben wir bereits genannt.
Während Dedekind die Irrationalzahl ohne einen arithmetischen Ausdruck
definirt, knüpfen Weierstrass und Cantor ihre Definitionen an eine formale
Darstellung der Irrationalzahl an.

Der Hauptunterschied der drei Definitionen liegt in den Bedingungen,
welche die Menge der rationalen Zahlen erfüllen muss, damit sie der
Definition der allgemeinen Zahl zu gründe gelegt werden kann. Dedekind
braucht zur Definition einer Irrationalzahl stets alle rationalen Zahlen,
Weierstrass und Cantor nur einen Teil (aber doch unendlich viele)
derselben. Dagegen sind die Bedingungen, die Weierstrass und Cantor
stellen, viel engere als die, welche Dedekind voraussetzt. Eine und dieselbe
allgemeine Zahl wird durch einen und nur einen Dedekindschen Schnitt,
dagegen durch unendlich viele Weierstrasssche Summen und unendbch viele
Cantorsche Fundamentalreihen dargestellt. Die Übersicht über die Menge
der reellen Zahlen lässt, sofern diese durch Schnitte definirt werden, nichts
zu wünschen übrig.

20. In der mir zur Verfügung stehenden Zeit war es mir unmöglich,
die drei Theorien der Irrationalzahlen nur einigermassen erschöpfend zu
behandeln. Vieles konnte ich nur andeuten, anderes nur durch Beispiele
zum Ausdruck bringen. Wer sich mit dem einen oder andern Punkt
genauer befassen will, findet die nötigen Literaturangaben in der
Enzyklopädie der mathematischen Wissenschaften (I A 1). Für
die Behandlung der Irrationalzahlen auf der Mittelschule
seien zum Studium empfohlen: Hocever, Lehrbuch der Arithmetik und
Algebra (Wien und Prag, Tempsky, 1902) und — besonders in
geometrischer Hinsicht — Thieme, Leitfaden der Mathematik. II. Teil (Leipzig,
Freytag, 1902).

l) P. Bachmann, Vorlesungen über die Natur der Irrationalzahlen. Leipzig,
Teubner 1892.
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